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Multiresolution analysis for problems involving random parameter fields is considered. The
random field is discretized by a Karhunen-Loève expansion. The eigenfunctions involved in this
representation are computed by a wavelet expansion. The wavelet expansion allows to control
the spatial resolution of the problem. Fine and coarse scales are defined, and the fine scales are
taken into account by projection operators. The influence of the truncation level for the wavelet
expansion on the computed reliability is documented.

1. Introduction

Reliability analysis for problems involving random parameter fields is concerned with the
solution of stochastic elliptic boundary value problems. For the solution of stochastic bound-
ary value problems, the random parameter field has to be discretized. This can be accom-
plished either by a Karhunen-Loève expansion or a projection on a polynomial basis [1, 2]. As
a result of this discretization, the random parameter field can be approximated by an expres-
sion containing only a finite number of random variables. The reliability problem reduces
then to the computation of failure probabilities with respect to a finite number of random
variables.

After introduction of the discretization, the stochastic boundary value problem
becomes equivalent to a deterministic one, for which the approximation on the physical
domain, and on the stochastic domain can be treated differently. The deterministic boundary
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value problem can be solved by standard approximation methods. On the physical domain,
finite element (FE) approximations are prevalent. Galerkin projection methods or collocation
schemes on the stochastic domain give rise to stochastic Galerkin methods [1] and stochastic
collocation schemes [3–5]. Their theoretical foundation has been laid in [6–9], where
local and global polynomial chaos expansions were investigated and where a priori error
estimates have been proved for a fixed number of terms of the Karhunen-Loève expansion.
Approximate solutions of the stochastic boundary value problem can be viewed as local
stochastic response surfaces [10] that depend on three parameters: a discretization parameter
for the physical domain, a discretization parameter for the stochastic domain, and the
discretization level of the input random field.

Although the focus of many investigations concerning the approximate solution of
stochastic boundary value problems lies on the computation of the first- and second-order
moments of the solution, already, in [1], reliability computation techniques were described,
that are based on series representations of the response distribution, on the reliability index,
or on Monte Carlo simulation methods. In most of the papers that followed, for example,
[11, 12] and references therein, either the reliability index, or simulation methods has been
employed. Alternatively, once the random field is discretized, sampling-based response
surfaces [13, 14] can be applied as well. Except for the stochastic Galerkin method, all
methods provide nonintrusive algorithms, which allow combining the solution procedure
with repetitive runs of an FE solver for deterministic problems.

In this paper, the focus is on the discretization of the random field itself. The dis-
cretization of the random field may enforce a rather fine FE mesh and thus increase the com-
putational effort. The Karhunen-Loève expansion of the random field requires the solution of
an eigenvalue problem for the determination of the expansion functions. Recently, a wavelet
expansion of the eigenfunctions has been introduced [15]. The advantage of wavelet bases
resides in the fact that they are of localized compact support, which lead to sparse rep-
resentations of functions and integral operators. Moreover, the discrete wavelet transform
provides an efficient means to solve the integral equation related to the determination of
the eigenfunctions. Wavelet expansions have also been studied in the context of simulation
of random fields [16, 17] and for the solution of stochastic dynamic systems by polynomial
chaos expansion [18].

Here, the wavelet representation of the eigenfunctions is introduced into the stochastic
FE approximation procedure in order to control the spatial resolution of the eigenfunctions.
This leads to a multiresolution approximation scheme, where finer scales are taken into
account by projection operators. The truncation level of the wavelet expansion has been
identified as an additional parameter of the metamodel. As the multiresolution analysis
is based on the eigenfunctions involved in the Karhunen-Loève expansion of the random
field, it can be combined with stochastic Galerkin, stochastic collocation, or sampling-based
methods. In this paper, only the latter are considered in the examples.

The paper is organized as follows: the next section gives an introduction to multireso-
lution analysis. Section 3 discusses randomfield discretization by Karhunen-Loève expansion
with emphasis on wavelet approximations of the eigenfunctions. Section 4 provides basic
information on the approximate solution of the stochastic boundary value problem. Section 5
explains the proposed multiresolution approximation, and Section 6 gives some details on
reliability assessment. In Section 7, the proposed procedure is validated by examples and
relative errors for the failure probability are given. Finally, conclusions are drawn in Section
8.
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2. Multiresolution Analysis

A multiresolution analysis is a sequence of subspaces Vj ⊂ L2(R), {0} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂
V−1 ⊂ V−2 ⊂ · · · ⊂ L2(R), with

⋃

j∈Z

Vj = L2(R),
⋂

j∈Z

Vj = {0}, f(·) ∈ Vj ⇐⇒ f
(
2j ·

)
∈ V0, (2.1)

generated by a scaling function ϕ ∈ L2(R) via ϕj,k(x) = 2−j/2ϕ(2−jx − k) and Vj =
span{ϕj,k | k ∈ Z}. Especially, from ϕ ∈ V0 ⊂ V−1, there is a sequence {hk}k∈Z

of real numbers,
such that

ϕ(x) =
√
2
∑

k∈Z

hkϕ(2x − k). (2.2)

For every j ∈ Z, denote with Wj the orthogonal complement of Vj in Vj−1: Vj−1 = Vj ⊕Wj . It
follows that Vm = ⊕j≥m+1Wj , L2(R) = ⊕j∈ZWj and that f(·) ∈Wj ⇔ f(2j ·) ∈W0.

A wavelet is a function ψ ∈ L2(R)with

0 <
∫

R

∣∣ψ̂(ω)
∣∣2

|ω| dω <∞, (2.3)

where

ψ̂(ω) = lim
n→∞

(2π)−1/2
∫n

−n
ψ(x) exp(−ixω)dx. (2.4)

It can be shown [19] that there exists a wavelet ψ(x), such that ψj,k(x) = 2−j/2ψ(2−jx− k) is an
orthonormal basis forWj . Thus, any function f ∈ L2(R) can be decomposed into

f = Pmf +
m∑

j=−∞

∑

k∈Z

〈
f, ψj,k

〉
ψj,k, (2.5)

where Pm is the projection operator on Vm. As we are interested in functions with compact
support, the second sum in (2.5) is finite. Form = 0, we have after truncation at level −ν

f(x) =
∑

k∈Z

〈
f, ϕ0,k

〉
ϕ0,k(x) +

0∑

j=−ν

∑

k∈Z

〈
f, ψj,k

〉
ψj,k + e(x), (2.6)

where the error e(x) is an element ofW−(ν+1). Note that all sums are finite, if f(x) has compact
support.

The same representation can be obtained for functions L2(Rd)with d ∈ N. For example,
for d = 2, the functions

φj,k1,k2
(
x, y

)
= 2−jϕ

(
2−jx − k1

)
ϕ
(
2−jy − k2

)
, k1, k2 ∈ Z, (2.7)
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constitute an orthonormal basis of Vj and the functions

ψhj,k1,k2
(
x, y

)
= 2−jψ

(
2−jx − k1

)
ϕ
(
2−jy − k2

)
, k1, k2 ∈ Z,

ψυj,k1,k2
(
x, y

)
= 2−jϕ

(
2−jx − k1

)
ψ
(
2−jy − k2

)
, k1, k2 ∈ Z,

ψdj,k1,k2
(
x, y

)
= 2−jψ

(
2−jx − k1

)
ψ
(
2−jy − k2

)
, k1, k2 ∈ Z,

(2.8)

where superscript h stands for horizontal, υ for vertical, and d for diagonal translation of the
unidimensional wavelet ψ(x), constitute an orthonormal basis ofWj .

3. Karhunen-Loève Discretization of Random Fields

LetD be a convex bounded open set in R
n and (Ω,F, P) a complete probability space, where

Ω is the set of outcomes, F the σ-field of events, and P : F → [0 : 1] a probability measure.
We consider a random field α : D × Ω → R that has a continuous and square-

integrable covariance function

C
(
x, y

)
=
∫

Ω
(α(x,ω) − E[α](x))

(
α
(
y,ω

)
− E[α]

(
y
))
dP(ω), (3.1)

where the expectation operator E[α](x) =
∫
Ω α(x,ω)dP(ω) denotes the mean value of the

random field. It is assumed that α(x,ω) is bounded and coercive, that is, there exist positive
constants amin, amax, such that

P(ω ∈ Ω : amin < α(x,ω) < amax ∀x ∈ D) = 1. (3.2)

Due to the properties of the covariance function, the operator T : L2(D) → L2(D),

Tw =
∫

D

C
(
x, y

)
w(x)dx, (3.3)

is compact and self-adjoint and thus admits a spectrum of decreasing nonnegative
eigenvalues {λi}∞i=1,

∫

D

C
(
x, y

)
wi(x)dx = λiwi

(
y
)
. (3.4)

The corresponding eigenfunctions {wi(x)}∞i=1 are orthonormal in L2(D). The random varia-
bles given by

ξi(ω) =
1

√
λi

∫

D

(α(x,ω) − E[α](x))wi(x)dx (3.5)
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are uncorrelated (but in general not independent), have zero mean and unit variance, and
allow to represent the random field by the Karhunen-Loève expansion

α(x,ω) = E[α](x) +
∞∑

i=1

√
λiξi(ω)wi(x), (3.6)

that converges in L2(D × Ω) [20]. Conditions for stronger convergence properties are given
in [8]. The Karhunen-Loève expansion is usually truncated by retaining only the first M
terms. In order to keep the computational effort small, a fast decay of the spectrum of (3.3)
is important. It is shown in [21] that fast eigenvalue decay corresponds to smoothness of the
covariance function.

The solution of the Fredholm integral equation (3.4) can be computed by means of
the wavelet basis introduced before (cf., e.g., [15]). For the kth eigenfunction wk(x), an
approximation with a finite number of basis functions Ψi(x), i = 1, 2, . . . , n, of V0 and Wj ,
0 ≤ j ≤ −ν, is given by

w̃k(x) =
n∑

i=1

d
(k)
i Ψi(x). (3.7)

A Galerkin technique can be applied in order to compute the eigenvalue λk and the
coefficients of the normalized (

∫
D w̃

2
k(x)dx = 1) approximate eigenfunctions. To this end,

the representation (3.7) is inserted into the Fredholm integral equation (3.4) and the equation
is multiplied with a basis function Ψj(y). After integration over the domain D, one obtains
the algebraic eigenvalue problem

n∑

i=1

(∫∫

D

C
(
x, y

)
Ψi(x)Ψj

(
y
)
dxdyd(k)

i

)
= λkd

(k)
j , j = 1, 2, . . . n, (3.8)

where the coefficients on the left hand side can be obtained from discrete wavelet transforms
of the covariance function C(x, y).

More details and convergence studies for this approximation of the eigenfunctions
may be found in [15]. Here, the decomposition is introduced in order to obtain a coarse
approximation (by taking scales until a certain level −μ > −ν into account) and a fine
approximation (scales from −μ − 1 to −ν).

4. Stochastic Linear Elliptic Boundary Value Problems

Consider the following model problem with stochastic operator and deterministic input
function on D ×Ω: find u : D ×Ω → R, such that P almost surely:

−∇ · α(x,ω)∇u(x,ω) = g(x) on D, u(x,ω) = 0 on ∂D. (4.1)

It is assumed that the deterministic input function g(x) is square-integrable.
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We are interested in the probability that a functional F(u) of the solution u(x,ω)
exceeds a threshold F0, that is, we want to evaluate the integral

PF =
∫

Ω
χ(F0,∞)(F(u(x,ω)))dP(ω), (4.2)

where χI(·), the indicator function, assumes the value 1 in the interval I and vanishes
elsewhere.

The variational formulation of the stochastic boundary value problem necessitates the
introduction of the Sobolev spaceH1

0(D) of functions having generalized derivatives in L2(D)

and vanishing on the boundary ∂D with norm ‖u‖H1
0 (D) = (

∫
D |∇u|2dx)1/2, the space L2

P (Ω) of
square integrable random variables and the tensor product space H1

0(D) ⊗ L2
P (Ω) ofH1

0(D)-
valued random fields with finite second-order moments, equipped with the inner product

(u, υ)H1
0 (D)⊗L2(Ω) =

∫

Ω

∫

D

∇u(x,ω) · ∇v(x,ω)dxdP(ω). (4.3)

The variational formulation of the stochastic linear elliptic boundary value problem (4.1) then
reads find u ∈ H1

0(D) ⊗ L2
P (Ω), such that for all υ ∈ H1

0(D) ⊗ L2
P (Ω):

∫

Ω

∫

D

α(x,ω)∇u · ∇υdxdP(ω) =
∫

Ω

∫

D

g(x)υ(x,ω)dxdP(ω). (4.4)

The assumptions on the random field α(x,ω) guarantee the continuity and coercivity of the
bilinear form in (4.4). Existence and uniqueness of a solution to (4.4) follow from the Lax-
Milgram lemma.

For a prescribed, uniformly bounded random field α(x,ω), the random variables
ξi(ω) in (3.6) would be dependent non-Gaussian random variables whose joint distribution
function is very difficult to identify. If, on the other hand, independent but bounded
distributions are prescribed for ξi(ω), i = 1, 2, . . . ,M, the random field α(x,ω) is not
necessarily bounded for M → ∞. Thus, one is left with Gaussian distributions for ξi(ω)
and α(x,ω), with transformations of Gaussian random fields [22] or with some situations,
where nonnegative distributions for ξi(ω) lead to meaningful (e.g., Erlang-) distributions for
α(x,ω).

Some authors [11, 23] consider models that contain a finite number of random
variables as parameters of a boundary value problem. For this kind of problems, Babuška et
al. [8] investigate convergence properties of several approximation schemes. The examples
studied in this paper belong to this class of problems. It is henceforth assumed that the
random field α(x,ω) is given by a truncated sum

αM(x,ω) = E[α](x) +
M∑

i=1

√
λiξi(ω)wi(x), (4.5)

where ξi(ω) are continuous and independent random variables with zero mean and unit
variance, where Γi = ξi(Ω) are bounded intervals in R and the parameters λi and functions
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wi(x) are the firstM eigenvalues and corresponding eigenfunctions of the operator (3.3). In
the examples, ξi(ω) are Gaussian random variables truncated at ±3σ, σ = 1.

The representation of αM(x,ω) by a finite number of random variables allows to
consider a deterministic auxiliary problem:

−∇ ·
(
E[α](x) +

M∑

i=1

√
λiyiwi(x)

)
∇u

(
x, y

)
= g(x), for

(
x, y

)
∈ D × Γ, (4.6)

where Γ =
∏M

i=1 Γi ⊂ R
M. From the expression for u(x, y), one obtains u(x,ω) by replacing

the vector y with the vector of random variables ξi(ω), i = 1, 2, . . . ,M.
This equation is discretized on finite dimensional approximation spaces for the

physical domain. For H1
0(D), a family of standard FE approximation spaces Xh ⊂ H1

0(D) of
continuous piecewise linear functions in a regular triangulationTh ofDwithmesh parameter
h is considered.

Denote with Ni(x), i = 1, 2, . . . ,N, a basis of Xh ⊂ H1
0(D). The solution u(x, y) is

approximated by

u
(
x, y

)
=

N∑

i=1

ui
(
y
)
Ni(x). (4.7)

For a fixed value y, the unknown coefficients ui(y), i = 1, 2, . . . ,N, can be computed from the
solution of the FE problem

(
K(0) +

M∑

s=1

K(s)ys

)
u
(
y
)
= g, (4.8)

where the matrices K(0), K(s), s = 1, 2, . . . ,M and the vector g are given by

K
(0)
ij =

∫

D

E[α](x)∇Ni(x) · ∇Nj(x)dx, (4.9)

K
(s)
ij =

√
λs

∫

D

ws(x)∇Ni(x) · ∇Nj(x)dx, (4.10)

gi =
∫

D

g(x)Ni(x)dx, i, j = 1, 2, . . . ,N, (4.11)

and u(y) is the vector containing the nodal displacements ui(y), i = 1, 2, . . . ,N, for the fixed
value y. The matrices K(s), s = 1, 2, . . . ,M, can be interpreted, for example, as FE stiffness
matrices for a spatial variation of elastic properties.

5. Multiresolution Approximation

By means of multiresolution analysis, each of the matrices K(s) in (4.10) can be decomposed
as K(s) = K(s)

c + K(s)
f
, where K(s)

c contains the low-frequency content, expressed by the
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multiresolution scheme until the level −μ, while K(s)
f takes the high frequency content of the

levels −μ − 1 until −ν into account.
Given a fixed value for y, the decomposition of K(s) leads to a decomposition of the

global stiffness matrix:

(
Kc +Kf

)
u = g, (5.1)

where Kc = K0 +
∑M

s=1 K
(s)
c and Kf =

∑M
s=1 K

(s)
f . Also the solution u is decomposed into uc

and uf , where uc is represented on a coarse mesh and uf on a fine mesh. With the help
of an interpolation matrix P, the solution u is written as u = Puc + uf . Inserting these
decompositions into equation (5.1) leads to

KcPuc +Kcuf +KfPuc +Kfuf = g. (5.2)

This equation is split into

KcPuc = g, (5.3)

Kcuf +KfPuc +Kfuf = 0. (5.4)

Multiplication of the first equation with PT projects this equation onto the coarse mesh:

PTKcPuc = PTg. (5.5)

For uf , a coarse mesh approximation is computed in the following manner:

(i) the term Kfuf in (5.4) is neglected;

(ii) uf is represented on the coarse mesh by ũf , thus uf = Pũf .

After multiplication of (5.4)with PT , one then obtains

PTKcPũf = −PTKfPuc (5.6)

for the coarse mesh approximation ũf of uf . Thus, the linear system of equations in (5.5) and
(5.6) has to be resolved only on the reduced set of degrees of freedom given by the coarse
mesh, which saves a considerable amount of CPU time. The interpolation matrix P can be
generated from FE interpolation functions.
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6. Reliability Assessment

Once the algebraic problems are solved and the correction to the coarse scale solution is com-
puted, an approximation for u(x,ω) has been obtained. The approximation quality depends
on the following parameters:

(i) partition of the physical domain and the stochastic domain,

(ii) truncation of the Karhunen-Loève expansion (M),

(iii) wavelet scales (μ, ν).

The wavelet scales μ, ν appear as an additional parameter that influences the
approximation quality.

For solving reliability problems, (4.8) yields a functional relationship between the
input random variables and u(x, y). It is then possible to compute the most probable point of
failure (MPP), that is, the point ξ ∈ Γ with F(u(x, ξ)) = F0 with lowest Euclidean norm. The
norm of the MPP may serve as a control variable for the approximation quality and for the
adaptation of the parameters mentioned above.

The MPP may also be useful for the evaluation of the integral in (4.2) by means of
variance reduced Monte Carlo simulation (importance sampling). To this end, a sampling
density p̃(y) is introduced by shifting the original probability density function p(y) of
the random variables ξi(ω), i = 1, . . . ,M, to the previously obtained MPP, and (4.2) is
approximated by

PF ≈
Ns∑

j=1

χ(F0,∞)

(
F
(
u
(
x, yj

)))p
(
yj
)

p̃
(
yj
) p̃

(
yj
)
, (6.1)

where the sampling points yj , j = 1, 2, . . . ,Ns, are generated according to p̃(y).

7. Examples

7.1. Example 1: Clamped Square Plate

The first example deals with a standard problem for stochastic FE techniques, a clamped thin
square plate under uniform in-plane tension q (cf. [1]). The problem is depicted in Figure 1.
The plate has unit length l. The product of Young’s modulus and the thickness of the plate
are assumed to be an isotropic normal random field with covariance function

C
(
x1, y1;x2, y2

)
= σ2 exp

(
−|x1 − x2|

lx
−
∣∣y1 − y2

∣∣

ly

)
, (7.1)

with standard deviation σ = 0.2 and unit mean value. Poisson’s ratio is set to 0.3.
A first investigation is concerned with the efficiency of the multiresolution analysis.

To this end, relative errors for the maximum longitudinal displacement have been computed
by comparing the coarse mesh—coarse level (μ = −1) solution and the coarse solution
corrected by the fine level solution (ν = −4) to the fine mesh—fine level reference solution
(i.e., μ = 0, ν = −4). Dividing the relative error of the coarse scale solution by the relative
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q = 1l = 1

x

y

Figure 1: Thin square plate under uniform in-plane tension.
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Figure 2: Efficiency of the multiresolution scheme with respect to the number of Karhunen-Loève expan-
sion terms.

error of the corrected solution yields an improvement factor that indicates the efficiency of
the multiresolution correction. For a coarse mesh of 2 × 2 quadrilateral elements only and a
fine mesh of 4×4 quadrilateral elements, Figures 2 and 3 display the improvement factors for
a varying number of Karhunen-Loève expansion terms and for a variation of the correlation
length lc = lx = ly, respectively. Here and in the following, the fine mesh is generated from the
coarse mesh by halving the edge length of the elements. For Figure 2, the correlation length
was lc = 0.5, and, for Figure 3, 12 Karhunen-Loève expansion terms have been retained. The
figures reveal that the multiresolution scheme is more efficient if fluctuations become more
important, that is for a large number of Karhunen-Loève expansion terms and low correlation
lengths.

Next, the influence of the multiresolution correction on the prediction of failure
has been investigated. A threshold value of 1.5 is assumed for the maximum longitudinal
displacement, and failure occurs if the maximum longitudinal displacement exceeds this
threshold value.

The random field has been discretized by a Karhunen-Loève expansion with M = 4
terms for a correlation length lc = 1. The eigenfunctions were computed either on a coarse
(8 × 8 elements) or a fine (16 × 16 elements) mesh. A reference solution MPP has been
computed on the fine mesh including up to seven scales for the wavelet expansion of the
eigenfunctions, and a reference result for the failure probability has been obtained on the
fine mesh from importance sampling with 30000 samples. These results allow to evaluate the
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Figure 3: Efficiency of the multiresolution scheme with respect to the correlation length.
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Figure 4: Relative error of the norm for the MPP.

error due to the multiresolution scheme. To this end, relative errors for the Euclidean norm of
the MPP and the failure probability with respect to the reference results have been computed
from the multiresolution scheme with one coarse level (μ = −1) and up to seven fine levels.
Figure 4 presents the development of the relative errors for the norm of the design point.

Figure 5 displays the relative error of the failure probability. From the figure, an
exponential decrease of the error with respect to the number of fine scales involved can be
deduced. The coarse mesh solution needed less than half of the CPU time of the fine scale
solution.

7.2. Example 2: Soil-Structure Interaction

The second example, previously introduced in [24], considers a soil structure interaction
problem. In contrast to the first example, it deals with an anisotropic autocorrelation function
of the random field and an anisotropic FE mesh. The settlement of a foundation (width
2B = 10m), represented by a uniform pressure of 0.2MPa, on an elastic soil layer of thickness
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Figure 5: Relative error of the failure probability.
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Figure 6: Soil structure interaction problem.

t = 30m lying on a rigid substratum, is investigated. A plane strain deformation of the
soil is assumed with linear elastic material properties (cf. Figure 6). The Young’s modulus
is assumed to be a random field with mean value 50MPa, 20% coefficient of variation,
and an exponential correlation function as in (7.1) but with correlation length lx = 250m,
ly = 100m. Poisson’s ratio is set to 0.3. Six truncated Gaussian random variables (M = 6) for
the representation of the random field have been considered.

Starting from the center of the foundation, the right half of the soil layer is meshed
by quadrilateral finite elements until a length of L = 60m, as indicated in Figure 6. The
coarse mesh consists of 24 elements, while the fine mesh is divided into 96 elements. The
reliability problem deals with the displacement of point A in Figure 6, situated at the
center of the foundation and on the surface of the soil, where the vertical displacements of
the corresponding deterministic problem (i.e., considering only the mean value of Young’s
modulus) attain their maximum. Failure is defined as exceedance of a limit value of 0.1m for
the vertical displacement at point A. Figures 7 and 8 summarize the behavior of the relative
errors for the Euclidean norm of the MPP and for the failure probability, respectively. As
in the previous example, μ has been set to −1 and ν has been varied. It can be seen that,
while the error in the norm is relatively small, rather large errors for the probability of failure
may occur. As in the previous example, the relative error for the failure probability decreases
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Figure 7: Relative error of the norm for the MPP.
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Figure 8: Relative error of the failure probability.

exponentially with the wavelet level −ν; however, this decrease starts only after taking a
certain number of fine scales (4 and more) into account.

8. Conclusions

In this paper, wavelet-based Karhunen-Loève expansion has been extended to multiresolu-
tion analysis of stochastic FE problems. The proposed procedure allows to include fine scale
corrections of the FE solution by means of coarse mesh computations. Improvement due to
these corrections has been highlighted by examples, and it could be seen that the relative
error of the failure probability decreases exponentially with the wavelet level.

Although the procedure has been combined in this paper to importance sampling-
based computation of failure probabilities, it applies to stochastic Galerkin and stochastic
collocation methods as well, because it is solely based on the decomposition of the Karhunen-
Loève eigenfunctions. However, it relies on linear problems.

Typical applications for multiresolution analysis in the context of stochastic FE
methods arise inmultiscale analysis of material properties, especially if there is scale coupling
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and length scales that correspond to the length scales of the representative volume element
have to be taken into account. For this kind of application, the limitation of wavelets to rather
simple geometries, as those in the examples, will not be a drawback, since simple geometries
are frequently used on the micro- and mesoscale and more complex geometries could be
embedded into simple ones for the solution of the Fredholm integral equation.
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