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The unstable equilibrium points of the fractional-order Lorenz chaotic system can be controlled
via fractional-order derivative, and chaos synchronization for the fractional-order Lorenz chaotic
system can be achieved via fractional-order derivative. The control and synchronization technique,
based on stability theory of fractional-order systems, is simple and theoretically rigorous. The
numerical simulations demonstrate the validity and feasibility of the proposed method.

1. Introduction

The theory of fractional-order derivatives can be dated back to the 17th century [1] and
developed comprehensively in the last century due to its application in a wide variety of
scientific and technological fields such as thermal, viscoelastic, acoustic, electrochemical,
rheological, and polymeric disciplines [1, 2]. On the other hand, it has been shown that
many fractional-order dynamical systems, as some well-known integer-order systems, can
also display complex bifurcation and chaotic phenomena. For example, the fractional-order
Lorenz system, the fractional-order Chen system, the fractional-order Lü system, and the
fractional-order unified system also exhibit chaotic behavior. Due to its potential applications
in secure communication and control processing, the fractional-order chaotic systems have
been studied extensively in recent years in many aspects such as chaotic phenomena, chaotic
control, chaotic synchronization, and other related studies [3–12].

It is verified that the fractional-order controllers can have better disturbance rejection
ratios and less sensitivity to plant parameter variations compared to the traditional



2 Mathematical Problems in Engineering

controllers [13]. A fractional-order controller is presented to stabilize the unstable equilib-
rium points of integer orders chaos systems [13, 14]. But the previously presented in [13, 14]
only discussed the control problem for integer orders chaos systems, not for fractional-
order chaotic systems. Up to now, to the best of our knowledge, amongst all kinds of
chaos control and chaos synchronization for the fractional-order chaotic systems, very few
results on control and synchronization of fractional-order chaotic systems are presented
via fractional-order derivative. Motivated by the above discussion, a novel control method
for the fractional-order Lorenz chaotic system is investigated in this paper. A fractional-
order controller is presented to stabilize the unstable equilibrium points of the fractional-
order Lorenz chaotic system via fractional-order derivative, and a fractional-order controller
is presented to synchronize the fractional-order Lorenz chaotic system via fractional-order
derivative. The control and synchronization technique, based on stability theory of fractional-
order systems, is simple and theoretically rigorous. The numerical simulations demonstrate
the validity and feasibility of the proposed method.

2. The Fractional Derivatives and the Fractional-Order Lorenz
Chaotic System

The Caputo definition of the fractional derivative, which sometimes is called smooth
fractional derivative, is described as

Dqf(t) =
1

Γ
(
m − q

)
∫ t

0

f (m)(τ)

(t − τ)q+1−m
dτ, m − 1 < q < m, (2.1)

where Dq denotes the Caputo definition of the fractional derivative.m is the smallest integer
larger than q, and f (m)(t) is the m-order derivative in the usual sense. Γ(·) is gamma
function.

The Lorenz system, as the first chaotic model, revealed the complex and fundamental
behaviors of the nonlinear dynamical systems. In 2003, I. Grigorenko and E. Grigorenko [4]
pointed out that the fractional-order Lorenz system exhibits chaotic behavior for fractional-
order q ≥ 0.993. The fractional-order Lorenz system is described as follows:

Dqx1 = 10(x2 − x1),

Dqx2 = 28x1 − x2 − x1x3,

Dqx3 = x1x2 − 8x3

3
,

(2.2)

where 0 < q < 1. In this paper, we choose q = 0.995 for the fractional-order Lorenz chaotic
system.

Now, we discuss the numerical solution of fractional differential equations. All the
numerical simulation of fractional-order system in this paper is based on [3]. We can set
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h = T/N, tn = nh (n = 0, 1, 2 . . . ,N), and initial condition (x1(0), x2(0), x3(0)). So, the
fractional-order Lorenz chaotic system (2.2) can be discretized as follows:

x1(n + 1) = x1(0) +
hq

Γ
(
q + 2

)

⎡

⎣10
(
x
p

2(n + 1) − x
p

1(n + 1)
)
+

n∑

j=0

α1,j,n+1 × 10
(
x2
(
j
) − x1

(
j
))
⎤

⎦,

x2(n + 1) = x2(0) +
hq

Γ
(
q + 2

)

⎡

⎣28xp

1(n + 1) − x
p

2(n + 1) − x
p

1(n + 1)xp

3(n + 1)

+
n∑

j=0

α2,j,n+1
(
28x1

(
j
) − x2

(
j
) − x1

(
j
)
x3
(
j
))
⎤

⎦,

x3(n + 1) = x3(0) +
hq

Γ
(
q + 2

)

⎡

⎣x
p

1(n + 1)xp

2(n + 1) − 8xp

3(n + 1)
3

+
n∑

j=0

α3,j,n+1

(

x1
(
j
)
x2
(
j
) − 8x3

(
j
)

3

)⎤

⎦,

(2.3)

where

x
p

1(n + 1) = x1(0) +
1

Γ
(
q
)

n∑

j=0

b1,j,n+1 × 10
(
x2
(
j
) − x1

(
j
))
,

x
p

2(n + 1) = x2(0) +
1

Γ
(
q
)

n∑

j=0

b2,j,n+1
(
28x1

(
j
) − x2

(
j
) − x1

(
j
)
x3
(
j
))
,

x
p

3(n + 1) = x3(0) +
1

Γ
(
q
)

n∑

j=0

b3,j,n+1

(

x1
(
j
)
x2
(
j
) − 8x3

(
j
)

3

)

,

(2.4)

and for i = 1, 2, 3,

αi,j,n+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nq+1 − (n − q
)
(n + 1)q, j = 0,

(
n − j + 2

)q+1 +
(
n − j

)q+1 − 2
(
n − j + 1

)q+1
, 1 ≤ j ≤ n,

1, j = n + 1,

bi,j,n+1 =
hq

q

[(
n − j + 1

)q − (n − j
)q]

, 0 ≤ j ≤ n.

(2.5)

The error of this approximation is described as follows:

|xi(tn) − xi(n)| = o(hp), p = min
(
2, 1 + q

)
. (2.6)
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Figure 1: Chaotic attractors of the fractional-order Lorenz chaotic system (2.2) for q = 0.995.

Using the above numerical solution for fractional-order Lorenz chaotic system (2.2),
the chaotic attractor of fractional-order Lorenz chaotic system (2.2) for q = 0.995 is shown in
Figure 1.

3. Stabilizing the Unstable Equilibrium Points of the Fractional-Order
Lorenz Chaotic System via Fractional-Order Derivative

It is obvious that the fractional-order Lorenz chaotic system (2.2) has three unstable equilib-
rium points. The unstable equilibrium points are p0 = (0, 0, 0) and p± = (±√72,±√72, 27).
In this section, we will discuss how to stabilize the unstable equilibrium points of the
fractional-order Lorenz chaotic system (2.2) via fractional-order derivative. First, let us
present the stability theorem for linear commensurate fractional-order systems and nonlinear
commensurate fractional-order systems.

Lemma 3.1 (see [13, 15]). The following linear commensurate fractional-order autonomous system

Dqx = Ax, x(0) = x0 (3.1)

is asymptotically stable if and only if | argλ| > 0.5πq is satisfied for all eigenvalues (λ) of matrix A.
Also, this system is stable if and only if | argλ| ≥ 0.5πq is satisfied for all eigenvalues of matrix A,
and those critical eigenvalues which satisfy | argλ| = 0.5πq have geometric multiplicity one, where
0 < q < 1, x ∈ Rn and A ∈ Rn×n.
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Lemma 3.2 (see [16, 17]). The fixed points of the following nonlinear commensurate fractional-order
autonomous system:

Dqx = f(x) (3.2)

is asymptotically stable if all eigenvalues (λ) of the Jacobian matrix A = ∂f/∂x evaluated at the fixed
points satisfy | argλ| > 0.5πq, where 0 < q < 1, x ∈ Rn, f : Rn → Rn are continuous nonlinear
vector functions, and the fixed points of this nonlinear commensurate fractional-order system are
calculated by solving equation f(x) = 0.

3.1. Stabilizing the Unstable Equilibrium Point p0 = (0, 0, 0) via
Fractional-Order Derivative

Now, let us design a controller for fractional-order Lorenz chaotic system (2.2) via fractional-
order derivative, and we can obtain the following results.

Theorem 3.3. Let the controlled fractional-order Lorenz chaotic system be

Dqx1 = 10(x2 − x1),

Dqx2 = 28x1 − x2 − x1x3 + u1(x1),

Dqx3 = x1x2 − 8x3

3
,

(3.3)

where u1(x1) = −k11Dqx1 − k12x1 is the fractional-order controller, and k1i (i = 1, 2) is the feedback
coefficient. If k12 = 38 + 10k11 and −10k11 − 11 ≤ 0, then system (3.3) will asymptotically converge
to the unstable equilibrium point p0 = (0, 0, 0).

Proof. The Jacobi matrix of the controlled fractional-order Lorenz chaotic system (3.3) at
equilibrium p0 = (0, 0, 0) is

J =

⎡

⎢⎢⎢
⎣

−10 10 0

28 + 10k11 − k12 −10k11 − 1 0

0 0 −8
3

⎤

⎥⎥⎥
⎦
. (3.4)

Because k12 = 38 + 10k11, so

J =

⎡

⎢⎢⎢
⎣

−10 10 0

−10 −10k11 − 1 0

0 0 −8
3

⎤

⎥⎥⎥
⎦
. (3.5)



6 Mathematical Problems in Engineering

10

−5

5

1 2

0

0

t

x
1

(a)

0

1 20

10

20

−10

t

x
2

(b)

0 1 2 3

10

20

t

0

x
3

(c)

Figure 2: Time evolution of the equilibrium point p0 = (0, 0, 0).

Its characteristic equation is (λ + 8/3)[λ2 + (10k11 + 11)λ + 10(10k11 + 1) + 100] = 0, and the
eigenvalues are

λ1,2 =
−(10k11 + 11) ±

√
(10k11 + 11)2 − 40(10k11 + 11)

2
, λ3 = −8

3
. (3.6)

Because −10k11 − 11 ≤ 0, so

∣∣argλi
∣∣ >

π

2
> 0.5πq, (i = 1, 2, 3). (3.7)

According to Lemma 3.2, it implies that the equilibrium point p0 = (0, 0, 0) of system
(3.3) is asymptotically stable, that is, the unstable equilibrium point p0 = (0, 0, 0) in fractional-
order Lorenz system (2.2) can be stabilized via fractional-order derivative. The proof is
completed.

For example, choose k11 = 0.1, then k12 = 39. The corresponding numerical result is
shown in Figure 2, in which the initial conditions are (10, 15, 20)T in this paper.

Theorem 3.4. Consider the controlled fractional-order Lorenz chaotic system as follows:

Dqx1 = 10(x2 − x1) + u2(x2),

Dqx2 = 28x1 − x2 − x1x3,

Dqx3 = x1x2 − 8x3

3
,

(3.8)
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where u2(x2) = −k21Dqx2 − k22x2 is the fractional-order controller, and k2i (i = 1, 2) is the feedback
coefficient. If k22 = 38 − k21 and −28k21 − 11 ≤ 0, then system (3.8) will gradually converge to the
unstable equilibrium point p0 = (0, 0, 0).

Proof. The Jacobi matrix of the controlled fractional-order Lorenz chaotic system (3.8) at
equilibrium p0 = (0, 0, 0) is

J =

⎡

⎢
⎢
⎢
⎣

−10 − 28k21 10 − k21 − k22 0

28 −1 0

0 0 −8
3

⎤

⎥
⎥
⎥
⎦
. (3.9)

If k22 = 38 − k21, then the Jacobi matrix is

J =

⎡

⎢⎢⎢
⎣

−10 − 28k21 −28 0

28 −1 0

0 0 −8
3

⎤

⎥⎥⎥
⎦
. (3.10)

Its characteristic equation is (λ + 8/3)[λ2 + (28k21 + 11)λ + (28k21 + 10) + 784] = 0, and the
eigenvalues are

λ1,2 =
−(28k21 + 11) ±

√
(28k21 + 11)2 − 4[(28k21 + 10) + 784]

2
, λ3 = −8

3
. (3.11)

Because −28k21 − 11 ≤ 0, so

∣∣argλi
∣∣ >

π

2
> 0.5πq, (i = 1, 2, 3). (3.12)

According to Lemma 3.2, it implies that the equilibrium point p0 = (0, 0, 0) of system
(3.8) is asymptotically stable, that is, the unstable equilibrium point p0 = (0, 0, 0) in fractional-
order Lorenz system (2.2) can be stabilized via fractional-order derivative. The proof is
completed.

For example, choose k21 = 0.1, then k22 = 37.9. The corresponding numerical result is
shown in Figure 3.

3.2. Stabilizing the Unstable Equilibrium Point p± = (±√72,±√72, 27) via
Fractional-Order Derivative

Let us design a fractional-order controller for fractional-order Lorenz chaotic system (2.2),
and we can yield the following results.
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Figure 3: Time evolution of the equilibrium point p0 = (0, 0, 0).

Theorem 3.5. Consider that the controlled fractional-order Lorenz chaotic system is

Dqx1 = 10(x2 − x1),

Dqx2 = 28x1 − x2 − x1x3 +w1(x1),

Dqx3 = x1x2 − 8x3

3
,

(3.13)

where w1(x1) = −k1Dqx1 is the fractional-order controller, and k1 is the feedback coefficient. If k1 >
(−155 +

√
24769)/60, then system (3.13) will gradually converge to the unstable equilibrium point

p+ = (
√
72,

√
72, 27).

Proof. Let x = x1 −
√
72, y = x2 −

√
72, z = x3 − 27, and the controlled fractional-order Lorenz

chaotic system (3.13) can be

Dqx = 10
(
y − x

)
,

Dqy = x − y − xz −
√
72z − k1D

qx,

Dqz = xy +
√
72x +

√
72y − 8z

3
.

(3.14)
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Figure 4: Time evolution of the equilibrium point p+ = (
√
72,

√
72, 27).

The Jacobi matrix of the fractional-order system (3.14) at equilibrium (0, 0, 0) is

J =

⎡

⎢⎢⎢⎢⎢
⎣

−10 10 0

10k1 + 1 −10k1 − 1 −√72

√
72

√
72 −8

3

⎤

⎥⎥⎥⎥⎥
⎦
. (3.15)

Its characteristic equation is λ3 + a1λ
2 + a2λ + a3 = 0, where a1 = 10k1 + 41/3, a2 =

8(10k1 + 11)/3 + 72, and a3 = 1440. If k1 > (−155 +
√
24769)/60, then a1 > 0, a2 > 0, a3 > 0,

and a1a2 − a3 > 0. So,

∣∣argλi
∣∣ >

π

2
> 0.5πq, (i = 1, 2, 3). (3.16)

According to Lemma 3.2, it implies that the equilibrium point p+ = (
√
72,

√
72, 27) of

system (3.13) is asymptotically stable, that is, the unstable equilibrium point p+ = (
√
72,√

72, 27) in fractional-order Lorenz system (2.2) can be stabilized via fractional-order
derivative. The proof is completed.

For example, choose k1 = 1. The corresponding numerical result is shown in Figure 4.
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Theorem 3.6. Consider that the controlled fractional-order Lorenz chaotic system is

Dqx1 = 10(x2 − x1) +w2(x2),

Dqx2 = 28x1 − x2 − x1x3,

Dqx3 = x1x2 − 8x3

3
,

(3.17)

where w2(x2) = −k2Dqx2 is the fractional-order controller, and k2 is the feedback coefficient. If
(−7616−√

56765440)/1248 < k2 < (−7616+√
56765440)/1248, then system (3.17) will gradually

converge to the unstable equilibrium point p+ = (
√
72,

√
72, 27).

Proof. Let x = x1 −
√
72, y = x2 −

√
72, z = x3 − 27, and the controlled fractional-order Lorenz

chaotic system (3.17) can be

Dqx = 10
(
y − x

) − k2D
qy,

Dqy = x − y − xz −
√
72z,

Dqz = xy +
√
72x +

√
72y − 8z

3
.

(3.18)

The Jacobi matrix of the fractional-order system (3.18) at equilibrium (0, 0, 0) is

J =

⎡

⎢⎢⎢
⎣

−10 − k2 10 + k2 k2
√
72

1 −1 −√72
√
72

√
72 −8

3

⎤

⎥⎥⎥
⎦
. (3.19)

Its characteristic equation is λ3 + a1λ
2 + a2λ + a3 = 0, where a1 = k2 + 41/3, a2 =

8(k2 + 11)/3 + 72(1 − k2), and a3 = 1440. If (−7616 − √
56765440)/1248 < k2 < (−7616 +√

56765440)/1248, then a1 > 0, a2 > 0, a3 > 0, and a1a2 − a3 > 0. So,

∣∣argλi
∣∣ >

π

2
> 0.5πq, (i = 1, 2, 3). (3.20)

According to Lemma 3.2, it implies that the equilibrium point p+ = (
√
72,

√
72, 27) of

system (3.17) is asymptotically stable, that is, the unstable equilibrium point p+ = (
√
72,√

72, 27) in fractional-order Lorenz system (2.2) can be stabilized via fractional-order
derivative. The proof is completed.

For example, choose k2 = −2. The corresponding numerical result is shown in
Figure 5.

Similarly, the fractional-order Lorenz chaotic system can be easily controlled to another
unstable equilibrium point p− = (−√72,−√72, 27).
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Figure 5: Time evolution of the equilibrium point p+ = (
√
72,

√
72, 27).

Remark 3.7. In general, there is no universal method to select the controller, and these partic-
ular controllers in our paper depend on the structure of the fractional-order chaotic system.

Remark 3.8. The differences of the present control strategy in our paper are compared to the
result reported by Tavazoei and Haeri [13] as follows. First, we use the scalar controller in
our paper, but they used the vector controller. Second, we discuss the control problem for
fractional-order chaotic systems via fractional-order derivative, but they discussed the control
problem for integer orders chaos systems via fractional-order derivative.

Remark 3.9. The differences of the present control strategy in our paper are compared to
the result reported by Razminia et al. [18] as follows. We discuss the control problem
for fractional-order chaotic systems via fractional-order derivative, but they discussed the
control problem for fractional-order chaotic systems via state feedback, and they did not use
fractional-order derivative.

4. Synchronizing the Fractional-Order Lorenz Chaotic System via
Fractional-Order Derivative

Now, we design a feedback controller for the fractional-order Lorenz chaotic system (2.2) via
fractional-order derivative and obtain the controlled response system (4.1)

Dqy1 = 10
(
y2 − y1

)
,

Dqy2 = 28y1 − y2 − y1y3 + V,

Dqy3 = y1y2 −
8y3

3
,

(4.1)
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where V = k1(Dqy1 −Dqx1) + k2(y1 − x1) + y1y3 − x1x3 is the fractional-order controller, and
ki (i = 1, 2) is the feedback coefficient. Now, we can yield the following theorem.

Theorem 4.1. If the feedback coefficients ki (i = 1, 2) satisfy

28 − 10k1 + k2 = −10, −1 + 10(k1 − 1) < 0, (4.2)

then the fractional-order Lorenz chaotic system (2.2) and the controlled fractional-order Lorenz chaotic
system (4.1) achieved synchronization via fractional-order derivative.

Proof. Define the synchronization error variables as follows:

ei = yi − xi, (i = 1, 2, 3). (4.3)

By subtracting (2.2) from (4.1), we obtain

⎛

⎜⎜
⎝

Dqe1

Dqe2

Dqe3

⎞

⎟⎟
⎠ = A

⎛

⎜⎜
⎝

e1

e2

e3

⎞

⎟⎟
⎠, (4.4)

where

A =

⎡

⎢⎢⎢
⎣

−10 10 0

28 − 10k1 + k2 −1 + 10k1 0

x2 y1 −8
3

⎤

⎥⎥⎥
⎦
. (4.5)

Because 28 − 10k1 + k2 = −10, so

A =

⎡

⎢⎢⎢
⎣

−10 10 0

−10 −1 + 10k1 0

x2 y1 −8
3

⎤

⎥⎥⎥
⎦
. (4.6)

Therefore, the eigenvalues are

λ1,2 =
β ±
√
β2 + 40β

2
, λ3 = −8

3
< 0, (4.7)

where β = −1 + 10(k1 − 1).
Because β = −1+ 10(k1 − 1) < 0, then all the eigenvalues of matrixA have negative real

part. Therefore,

∣∣argλi(A)
∣∣ >

π

2
> 0.5πq, (i = 1, 2, 3). (4.8)
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Figure 6: The time variation of synchronization error.

According to Lemma 3.2, it implies that the equilibrium point (0, 0, 0) of error system
(4.4) is asymptotically stable, that is, limt→+∞ei = 0 (i = 1, 2, 3). So, the fractional-order Lorenz
chaotic system (2.2) and the controlled fractional-order Lorenz chaotic system (4.1) achieved
synchronization via fractional-order derivative. The proof is completed.

Next, in order to verify the effectiveness and feasibility of the proposed synchro-
nization scheme, the corresponding numerical simulations are given. For example, choose
k1 = −0.1 and k2 = −39; the time variation of synchronization error is shown in Figure 6. The
initial conditions are x(0) = (10, 20, 30)T, and y(0) = (20, 35, 50)T respectively.

5. Conclusion

Using fractional-order derivative, we can stabilize the unstable equilibrium points of the
fractional-order Lorenz chaotic system and realize chaos synchronization for the fractional-
order Lorenz chaotic system. The control technique in our paper is simple and theoretically
rigorous. Some examples are also given to illustrate the effectiveness of the theoretical result.
This proposed control method is different from the previous works and can be applied to
other fractional-order chaotic systems.
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active control and synchronization,” Advances in Difference Equations, vol. 2011, no. 1, article 15, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


