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An approach to analyzing structures by using beam elements is developed with adaptive
displacement interpolation functions. First, the element stiffness matrix and equivalent nodal
loads are derived on the basis of the equilibrium between nodal forces and section forces rather
than the compatibility between nodal deformations and section deformations, which avoids
discretization errors caused by the limitation of conventional polynomial interpolation functions.
Then, six adaptive element displacement interpolation functions are derived and extended to
include several cases, such as beams with variable cross-section, variable material properties, and
many different steps in cross-section and/or material properties. To make the element usable in
dynamic analyses, consistent mass matrix (CMM) and diagonally lumpedmass matrix (LMM) are
constructed using the presented adaptive displacement interpolation functions. All these features
have made the element elegant, which is tested with a number of simple static, vibration, and
dynamic examples to show its accuracy.

1. Introduction

Beams with variable cross-section and/or material properties are frequently used in
aeronautical engineering (e.g., rotor shafts and functionally graded beams), mechanical
engineering (e.g., robot arms and crane booms), and civil engineering (e.g., beams, columns,
and steel composite floor slabs in the single direction loading case). This paper tries to look
for a simple but general approach to tackling the static and dynamic responses of such beams.
A brief review of prior researches follows.

The beam with variable cross-section is often modeled by a large number of small
uniform elements, replacing the continuous changes with a step law. This scheme is accurate
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for a stepped beam but approximated for a beam with continuously changed cross-section.
Although in this way, it is always possible to reduce errors as much as desired and obtain
acceptable results by refining meshes, the modeling and computational efforts can become
excessive. Sapountzakis and coworkers [1, 2] developed boundary elementmethods for static
torsion and torsional vibration analyses of bars with variable cross-section. Banerjee et al.
[3] used the dynamic stiffness method to investigate the free bending vibration of rotating
beams with linearly changed cross-section. Gimena et al. [4] investigated the static responses
of curved beam with variable cross-section, in which the stiffness matrix and the equivalent
nodal loads of the curved beam elementwere presented. Carrera and coworkers [5, 6] derived
the Carrera Unified Formulation, and under that framework, they presented a method to
analyze beams with arbitrary cross-sectional geometries. Firouz-Abadi et al. [7] presented
a Wentzel, Kramers, Brillouin approximation-based analytical solution to free transverse
vibration of a class of varied cross-section beams. Ece et al. [8] presented solutions of the
vibration of beams with exponentially varying cross-section width for three different types of
boundary conditions associated with simply supported, clamped, and free ends. Shin et al.
[9] applied the generalized differential quadrature method and differential transformation
method to vibration analysis of circular arches with variable cross-section, stating that
these two methods showed fast convergence and accuracy. Exact displacement interpolation
functions to beams with linearly changed cross-section were solved and then used to derive
the accurate stiffness matrix [10, 11]. The use of exact displacement interpolation functions
to solve varied cross-section beam problems is a straightforward way; however, they [10, 11]
only focused on the beam with linearly and continuously changed cross-section.

A special case is the stepped beam, a beam with abrupt changes of cross-section
and/or material properties. Several works about stepped beams had been published.
Naguleswaran [12] presented an analytical approach to calculating the frequencies of beams
on elastic end supports and with up to three step changes in cross-section. Maurini et al. [13]
presented an enhancement of assumed mode method by introducing special jump functions
to catch the curvature discontinuities of the mode shapes. Kisa and Gurel [14] presented a
technique to solve the free vibration problems of stepped beam with circular cross-section
and an existing crack. In [15, 16], solutions to the free vibration problem of stepped beams
were presented by using the properties of Green’s function.

Jaworski and Dowell [17] conducted an experiment of free vibration analysis of
a stepped cantilevered beam and compared the experiment results with the classical
Rayleigh-Ritz method, component modal analysis, and commercial finite element software
ANSYS, the local boundary conditions and nonbeam effects were discussed. Lu et al.
[18] used the composite element method to analyze free and forced vibrations of stepped
beams and compared with experimental results. Mao and Pietrzko [19] used the Adomian
decomposition method to investigate the free vibrations of a two-stepped beam, considering
different boundary conditions, step locations, and step ratios. Most recently, Zheng and Ji [20]
presented an equivalent representation of a stepped beam with a uniform beam to simplify
the calculation of static deformations and frequencies. The methods to analyze the stepped
beams and the beams with continuously changed cross-section are generally not unified.

In addition to cross-sectional geometry, other parameters such as material properties
(e.g., modulus, mass density, etc.) are also changeable, which belong to the researches on
beams made of functionally graded materials. For functionally graded beams, continuous
material gradient variation may be orientated in the cross-section and/or in the axial
direction. For the former, there have been many researches devoted to static and vibration
analyses (e.g., [21–25]). For the axially functionally graded beams, few solutions are yet
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found for arbitrary gradient changes. Alsorbagy et al. [26] studied the free vibration
characteristics of a functionally graded beam with material graduation in the axial direction
by finite element method, in this method fixed displacement interpolation functions were
used, leading to only an approximate representation of the effect of material graduation. To
the authors’ knowledge, the research done by Huang and Li [27] may be the only available
publication on axially functionally graded beams coupled with variable cross-section. In their
work, high-order differential equations were solved by converting them to Fredhplm integral
equations. The axially functionally graded beam is somewhat similar to material nonlinear
beams in that the effect of variation of material properties can be represented by integration
along an element. However, the conventional displacement interpolation functions usually
used in material nonlinear beam elements are not accurate for axially functionally graded
beam.

The solution to structural static and dynamic problems (e.g., eigenvalue problems,
time integration methods, etc.) can be more accurately computed if certain vectors and
matrixes (e.g., equivalent nodal loads and mass matrices) are well established. If there
are internal loads applying on an element, the equivalent nodal load is usually obtained
by integrating the product of displacement interpolation functions and the applying loads
along the element. Hence, the process sensitively relies on the accuracy of the displacement
interpolation functions. Two schemes for construction of mass matrix are well known and
widely used, leading to consistent and diagonally lumped forms. The consistent ones can be
used in frequency and common dynamic analyses, and the lumped ones are usually used in
explicit finite element analyses especially for impact-like problems. Archer and Whalen [28]
presented a new diagonalization technique for mass matrix of beam element which contains
both translational and rotational degrees of freedom (DOFs). Fried and Leong [29] treated the
mass matrix as a linear matrix function,M(γ) = M1 + γM2, of parameter γ such thatM(γ = 0)
is the consistent mass matrix (CMM) and M(γ = 1) is the diagonally lumped mass matrix
(LMM). And a linear combination of mass matrixes obtained by different methods was also
investigated in [28, 30] to achieve better frequency analysis results. Felippa [31] presented
a historical notes and comments on mass matrixes. It seems that there were fewer research
works on CMM for dynamic response analyses and on LMM for both frequency and dynamic
response analyses, which had been performed on varied cross-section beam and functionally
graded beam.

So far, numerical methods such as finite element, finite difference and differential
quadrature, Rayleigh-Ritz method, and analytical methods which are based on fourth-
order differential equations have been used to solve problems of beams with cross-sectional
geometric ormaterial variations. Among thesemethods, finite elementmay be a better choice,
because it is easy to treat boundary conditions and implement the formulas to an existed
finite element framework resulting to a potential to solve large and complex problems. In
the present study, a simple and unified approach is derived using Euler-Bernoulli beam
theory to analyze beams with variable cross-section, variable material properties, and many
different steps in cross-section and/or material properties. The paper is organized as follows.
The defects of the fixed displacement interpolation functions are presented in Section 2. The
element stiffness matrix and equivalent nodal loads are studied in Section 3. The adaptive
element displacement interpolation functions are derived in Section 4. The new element
consistent and diagonally lumped mass matrixes are presented in Section 5. Numerical
examples are presented to assess the performance of the presented element in Section 6. Some
concluding remarks complete the study.
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2. Defects of Fixed Element Interpolation Functions

Considering a planar Euler-Bernoulli beam with internal loads, its governing differential
equations are given by

− ∂

∂x

[
E(x)A(x)

∂u(x)
∂x

]
= qx(x),

∂2

∂x2

[
E(x)I(x)

∂2v(x)
∂x2

]
= qy(x),

(2.1)

where x is the element reference axis connecting two element nodes; qx(x) and qy(x) are the
axial and transversal internal element loads, respectively; E(x) is the material modulus;A(x)
is the cross-sectional area; I(x) is the moment of inertia of cross-section; u(x) and v(x) are the
axial and transversal displacements of the element, respectively.

The most commonly used displacement interpolation functions for beam elements are
as follows, which can be found in many textbooks [32, 33]:

N1(x) = 1 − x

L
, N2(x) =

1
L3

(
L3 − 3Lx2 + 2x3

)
, N3(x) =

1
L2

(
L2x − 2Lx2 + x3

)
,

N4(x) =
x

L
, N5(x) =

1
L3

(
3Lx2 − 2x3

)
, N6(x) =

1
L2

(
x3 − Lx2

)
,

(2.2)

where L is the element length. These functions are linear Lagrangian polynomials and
three-order Hermitian polynomials for axial and transversal displacements, respectively. The
functions predefine a law that governs the variation pattern of displacements in an element.
Elements adopt (2.2) all belong to the catalog of so-called three-order beam element.

The functions expressed by (2.2) are fixed in shape and lead to the cross-sectional
geometry and material independent displacement interpolation functions. It is well known
that (2.2) are derived by (2.1) under the conditions: (1) E(x) is constant; (2) A(x) is constant;
(3) I(x) is constant; and (4) qx(x) and qy(x) equal to zero. If any of these conditions is
not met, (2.2) will not give accurate representations of the relationships between nodal
and internal displacements. The discretization error, characterized by discrepancies between
the displacements of the element and the real member, is introduced due to utilization
of the inaccurate displacement patterns to approximate the real ones. Higher-order beam
elements [34, 35] may be employed to improve the accuracy; however, in most cases, the
discretization error also exists, computational effort increases, and the formula become
more complex. Figure 1 is an example to illustrate the defects of the fixed displacement
interpolation functions, in which a cantilever two-stepped beam with material modulus
of E1 and E2 is subject to nodal loads. One element is used to model the beam, and the
element stiffness matrix is obtained by integrating along the element to consider the effect of
two stepped material properties. Considering the element state determination procedure in
which the nodal displacements are obtained after a structural analysis step, we want to solve
the element internal deformation field (i.e., derivatives of displacement field). The results,
calculated by the known nodal displacements and (2.2), show large disparities between
calculated strain and curvature (εc, κc) and real ones (εr , κr). Equation (2.2), actually, can
only rationally represent the deformation with constant axial strain and linear curvature. The
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Figure 1: Comparisons of axial strain and curvature distributions. (a) Axial strain under nodal force N,
(b) Curvature under nodal forceM.
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Figure 2: Coordinate frame and element forces.

displacement interpolation functions are important for beam elements to derive the element
equivalent nodal loads and consistent mass matrix.

3. Element Stiffness Matrix and Equivalent Nodal Loads

3.1. Equilibrium Relationship in an Element

The adopted coordinate frame is presented in Figure 2. It is a generalized coordinate system
so that only three deformation DOFs (i.e., axial elongation and rotation deformations at the
two elemental nodes) and their corresponding nodal forces are considered for the planar
beam element. ox (I → J) is the axis connected geometric centroids of sections at nodes I
and J . Within the element equilibrium framework, equilibrium is stated in the form

N(x) = Q1,

M(x) =
(x
L
− 1
)
Q2 +

x

L
Q3,

(3.1)

whereQ = [Q1 Q2 Q3]
� are the nodal forces, in which the superscript � denotes the transpose;

N(x) andM(x) are the section axial force and moment with respect to coordinate x.
Because the equilibrium relationship presented by (3.1) is unchanged when the cross-

sectional geometry and material change, the variation pattern of forces in the element is
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Figure 3: Comparisons of axial force and moment distributions. (a) Axial forces under nodal force N, (b)
Moment under nodal forceM.

accurate. The relationship in (3.1) is employed to replace the displacement interpolation
functions as discretization functions, hence the discretization error is avoided. For example,
reconsidering the problem in Figure 1, Figure 3 shows that the calculated axial force and
moment (Nc,Mc) by known nodal forces and (3.1) are same as real ones (Nr,Mr). The
discretization approach directly predefines element equilibrium relationship within the
generalized coordinate system rather than compatibility relationship by (2.2). Rewriting the
section forces in a vector form as S(x) = [N(x)M(x)]�, we can get the equilibrium matrix

e(x) =

[
1 0 0

0
x

L
− 1

x

L

]
, (3.2)

which connects the element nodal forces and section forces as S(x) = e(x)Q.

3.2. Element Stiffness Matrix

The section deformations of the beam element are

d(x) =
[
ε(x) κ(x)

]�
=

[
∂u(x)
∂x

∂2v(x)
∂x2

]�
, (3.3)

where ε(x) is the axial strain with respect to coordinate x; κ(x) is the section curvature with
respect to coordinate x.

The weak integration form of (3.3) along the beam element is

∫L

0

[
δN(x)

(
∂u(x)
∂x

− ε(x)
)
+ δM(x)

(
∂2v(x)
∂x2

− κ(x)

)]
dx = 0, (3.4)

where δ stands the virtual variation.
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Integration of two derivatives in (3.4) by parts, yielding

∫L

0
δN(x)

∂u(x)
∂x

dx = δN(x)u(x)

∣∣∣∣∣
L

0

−
∫L

0

∂δN(x)
∂x

u(x)dx, (3.5)

∫L

0
δM(x)

∂2v(x)
∂x2

dx = δM(x)
∂v(x)
∂x

∣∣∣∣
L

0
−
∫L

0

∂δM(x)
∂x

∂v(x)
∂x

dx. (3.6)

Furthermore, we repeat to integrate the second term at the right side of (3.6), yielding

∫L

0

∂δM(x)
∂x

∂v(x)
∂x

dx =
∂δM(x)

∂x
v(x)

∣∣∣∣
L

0
−
∫L

0

∂2δM(x)
∂x2

v(x)dx. (3.7)

As shown in Figure 2, there are three nodal forces in the beam generalized coordinate
system. And corresponding deformation DOFs are the axial elongation and rotation
deformations at the two elemental nodes. Therefore, the pattern of nodal forces and the
deformations of a beam in the generalized coordinate system are the same as in a simply
supported beam system. Thus, we have boundary conditions

u(0) = v(0) = v(L) = 0,

u(L) = D1,
∂v(0)
∂x

= D2,
∂v(L)
∂x

= D3,

δN(L) = δQ1, δM(0) = −δQ2, δM(L) = δQ3,

(3.8)

where D = [D1 D2 D3]
� are generalized nodal displacements (i.e., axial elongation and

rotations at nodes I and J); δ stands the virtual variation.
Substituting ((3.5), (3.6)), (3.7), and (3.8) into (3.4) leads to

∫L

0
[δN(x)ε(x) + δM(x)κ(x)]dx +

∫L

0

[
∂δN(x)

∂x
u(x) − ∂2δM(x)

∂x2
v(x)

]
dx

= δQ1D1 + δQ2D2 + δQ3D3.

(3.9)

According to the principle of virtual force, u(x) and v(x) are impossibly equal to zero
with respect to all x, and one gets

∂δN(x)
∂x

= 0,
∂2δM(x)

∂x2
= 0. (3.10)

Integration of (3.10) and application of the boundary conditions in (3.8), rewritten in
vector form, the relationship between section force increments and generalized nodal force
increments can be expressed as

δS(x) = e(x)δQ. (3.11)
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Substituting (3.10) and (3.11) into (3.9) and considering the arbitrary of δQ, we have

D =
∫L

0
e(x)�d(x)dx. (3.12)

The element flexibility matrix in the generalized coordinate system can be obtained
by the common finite element formula that differentiates D with respect to Q. The stiffness
matrix is then represented in the inversion form of the flexibility matrix F

K = F−1 =
(
∂D
∂Q

)−1
. (3.13)

The explicit form of element stiffness matrix in the generalized coordinate system is
expressed as follows:

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
a1

0 0

0
a2

a2a3 − a2
4

− a4

a2a3 − a2
4

0 − a4

a2a3 − a2
4

a2

a2a3 − a2
4

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.14)

where

a1 =
∫L

0

1
E(x)A(x)

dx, a2 =
∫L

0

1
E(x)I(x)

(x
L

)2
dx,

a3 =
∫L

0

1
E(x)I(x)

(
1 − x

L

)2
dx, a4 = −

∫L

0

1
E(x)I(x)

x

L

(
1 − x

L

)
dx.

(3.15)

Equation (3.15) can be directly integrated to get analytical solutions or be calculated by
numerical integration approaches such as Gauss quadrature formula. For the cases of beams
with many different steps in cross-section and/or material properties, the integration needs
to be processed in each piecewise section and then be summed up. Note that (3.15) considers
variable parameters of cross-sectional geometry and material so that K is accurate for these
cases if the error of numerical integration is neglected.Kwill be transformed to a 6 × 6 matrix
in the local element coordinate system by transformmatrixes before used in the finite element
calculated process.

3.3. Internal Element Loads and Equivalent Nodal Loads

The equilibrium relationship S(x) = e(x)Q, which is related to (3.2), is corresponding to the
case without internal element loads and can be rewritten in the following form when there
are internal element loads:

S(x) = e(x)Q + e(x)q, (3.16)
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Table 1: The ē(x)matrixes and q for commonly used load patterns.

Load pattern e(x) q

Fy

Fx
a

e(x) =

[
1 0

0 −
(L − a)x

L

]
, x < a

q = [Fx Fy]
�

e(x) =

[
0 0

0 −
a(L − x)

L

]
, x > a

a

M
e(x) =

[ 0 0

0
x

L

]
, x < a

q = [0 M]�

e(x) =

[
0 0

0 −
L − x

L

]
, x > a

a

qy

qx

b

e(x) =

[
b−a 0

0 −
(b − a)(2L − a − b)x

2L

]
, x < a

e(x) =

[
b−x 0

0
a2(L − x) + x(b2 − 2Lb + Lx)

2L

]
, a <

x < b
q = [qx qy]

�

e(x) =

⎡
⎣

0 0

0 −
(b2 − a2)(L − x)

2L

⎤
⎦, x > b

a

b

m e(x) =

[
0 0

0
(b − a)x

L

]
, x < a

e(x) =

[
0 0

0
a(L − x) − (L − b)x

L

]
, a < x < b q = [0 m]�

e(x) =

[
0 0

0 −
(b − a)(L − x)

L

]
, x > b

where q is the internal element loads; e(x)q is the additional section forces caused by q. The
e(x) and q for several common cases are given in Table 1.

The second term in (3.16) leads to additional section deformations with f(x)e(x)q.
Then, the additional nodal deformations can be obtained by principle of virtual force as

D =
∫L

0
e(x)�f(x)e(x)qdx, (3.17)

where f(x) is the section flexibility matrix. Multiplying K by D, we have the element
equivalent nodal loads as follows:

Q = K
∫L

0
e(x)�f(x)e(x)qdx. (3.18)
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Figure 4: Beam virtual and real deformation states. (a) With unit virtual loads, (b) With real nodal forces.
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Figure 5: Transform between generalized and local coordinate system.

4. Adaptive Element Displacement Interpolation Functions

Keep in mind that boundary conditions of the beam element in the generalized coordinate
system, which expressed by (3.8), are the same as those of a simply supported beam.
The internal elemental axis displacement u(x) and transverse displacement v(x) in the
generalized coordinate system can be obtained by dummy unit force method [36]. A beam
with an axial load Fx and transversal load Fy is shown in Figure 4(a). When using the dummy
unit force method, Fx and Fy are set with one to calculate the section forces. For giving amore
clear description to the element deformation pattern, simply supported beam like supports
are also plotted in Figure 4 and later in Figure 5.

Considering the equilibrium relationship, we can get the section axial force N(x0, x)
and moment M(x0, x) with respect to coordinate x0 in Figure 4(a):

N(x0, x) = H(x − x0), (4.1)

M(x0, x) =
(
−1 + x

L

)
x0H(x − x0) +

(
−1 + x0

L

)
xH(−x + x0), (4.2)

where H(·) is the Heaviside step function. Because H(0) = 1, (4.2) has a discontinuity at
x0 = x, equals to two times as its real value. So, the definition ofM(x0, x)|x0=x = M(x, x)/2 is
employed to get a rational value at the point x0 = x. This definition is only to get a continuous
expression of M(x0, x) and has no influences on the following integrations.
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Consider the beamwith nodal forcesQ = [Q1 Q2 Q3] shown in Figure 4(b). According
to the dummy unit force method, the element axial and transversal displacements with
respect to coordinate x are calculated by the following formulas:

u(x) =
∫L

0

N(x0, x)N(x0)
E(x0)A(x0)

dx0, v(x) =
∫L

0

M(x0, x)M(x0)
E(x0)I(x0)

dx0, (4.3)

whereN(x0) andM(x0) are the section axial force and moment with respect to coordinate x0

under real nodal loads in Figure 4(b).
Replace Q by K ·D and consider (3.1) and (4.3), yielding

u(x) =

[∫L

0

N(x0, x)e1(x0)
E(x0)A(x0)

dx0K

]
D, v(x) =

[∫L

0

M(x0, x)e2(x0)
E(x0)I(x0)

dx0K

]
D, (4.4)

where e1(x0) and e2(x0) are the first and second rows of (3.2), respectively.
The element axial and transversal displacements can also be defined with respect

to local element coordinate system. Assuming that the displacement and rotation between
the generalized and local coordinate systems are small, according to Figure 5, the geometric
transform relationship can be obtained as

ue(x) =

[∫L

0

N(x0, x)e1(x0)
E(x0)A(x0)

dx0K · T
]
De +De

1,

ve(x) =

[∫L

0

M(x0, x)e2(x0)
E(x0)I(x0)

dx0K · T
]
De +

De
5 −De

2

L
x +De

2,

(4.5)

where De = [De
1 De

2 De
3 De

4 De
5 De

6]
� is the nodal displacements in the local element

coordinate system, in whichDe
i are the axial, transversal, and rotation displacements at nodes

I and J; T · De = D, where T is a transform matrix as follows. And T is also the matrix that
used to transform (3.14) and (3.18) into the local element coordinate system

T =

⎡
⎢⎢⎢⎢⎣

−1 0 0 1 0 0

0
1
L

1 0 − 1
L

0

0
1
L

0 0 − 1
L

1

⎤
⎥⎥⎥⎥⎦. (4.6)

Equation (4.5) can be rewritten in the following form:

ue(x) = N1(x)De
1 +N4(x)De

4,

ve(x) = N2(x)De
2 +N3(x)De

3 +N5(x)De
5 +N6(x)De

6,
(4.7)
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where

N1(x) = 1 −K(1, 1)γ1(x),

N2(x) = 1 − x

L
+ [K(2, 2) +K(2, 3)]γ2(x) + [K(3, 2) +K(3, 3)]γ3(x),

N3(x) = K(2, 2)γ2(x) +K(3, 2)γ3(x),

N4(x) = 1 −N1(x),

N5(x) = 1 −N2(x),

N6(x) = K(2, 3)γ2(x) +K(3, 3)γ3(x),

(4.8)

γ1(x) =
∫L

0

H(x − x0)
E(x0)A(x0)

dx0,

γ2(x) =
∫L

0

(1 − x0/L)[x0/L(1 − x/L)H(x − x0) + x/L(1 − x0/L)H(−x + x0)]
E(x0)I(x0)

dx0,

γ3(x) =
∫L

0

−x0/L[x0/L(1 − x/L)H(x − x0) + x/L(1 − x0/L)H(−x + x0)]
E(x0)I(x0)

dx0.

(4.9)

It can be easily seen that the six functions in (4.8), which present the relationships
between element nodal and internal displacements, have functions similar to the element
displacement interpolation functions shown in (2.2). However, (4.8) has some superior
performance. Compared with the fixed functions, (4.8) are adaptive element displacement
interpolation functions. The functions are accurate for beams with variable cross-section,
variable material properties, and many different steps in cross-section and/or material
properties.

5. Consistent and Lumped Mass Matrixes

Here, we use the presented adaptive displacement interpolation functions to derive a CMM
that can cope with the beams with variable cross-sectional geometry and material properties.
The element mass matrix in local element coordinate system is given by the common finite
element formula

M =
∫L

0
ρ(x)A(x)N(x)N(x)�dx, (5.1)

where ρ(x) is the material mass density;N(x) is the interpolation function matrix as follows,
in which N1(x) toN6(x) are expressed by (4.8):

N(x) =
[
N1(x) 0 0 N4(x) 0 0

0 N2(x) N3(x) 0 N5(x) N6(x)

]�
. (5.2)
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It is worth noting the equivalent nodal loads in local element coordinate system can
also be derived by the adaptive displacement interpolation functions. The expression given
by (5.3) is the same as the result presented by (3.18) when they are transformed to the local
element coordinate system

Q =
∫L

0
N(x)qdx +

∑
m

N(xm)Fm +
∑
n

dN(xn)
dxn

Mn, (5.3)

where q is the element axial and transversal distribution loads; Fm is the element axial and
transversal concentrated loads with respect to coordinate xm;Mn is the concentrated moment
with respect to coordinate xn. The q, Fm and Mn are expressed as

q =
[
qx qy

]�
, Fm =

[
Fmx Fmy

]�
, Mn = [0 Mn]�. (5.4)

The explicit finite element method has been extensively developed for dynamic
analyses to meet the special demands of engineering applications. In this case, the LMM
is preferable. The LMM can be created from the CMM. One suggestion, called row sum
approach, is to calculate the LMM from diagonalization by adding the off-diagonal entries
in each row to diagonal entry and setting the rotational mass terms with zero [28]. An
alternative, called diagonal scaling approach, is to ignore the off-diagonal terms of consistent
mass matrix and scale the diagonal entries to satisfy the conservation requirement [33].
The third approach uses a numerical integration to obtain a diagonal matrix in which the
integration points coincide with the element nodes [33]. These three approaches make sense
when all DOFs of the problem have the same physical interpretation; that is, the element
has only translational DOFs. Assuming that the total rotational inertia of the diagonal
rotational mass terms is same the as the consistent one, [28, 34] developed rotationally
consistent lumped mass matrixes for beam element in which the rotational mass terms are
−MbeamL

2/24. In [28], a value of −11MbeamL
2/156, which is the average of −MbeamL

2/24
and the rotational mass term obtained from diagonal scaling approach, had also been used
to get more accurate vibration frequencies. The drawback of mass matrixes in [28, 34] is the
introduction of negative mass entries to rotational DOFs and negative definite mass matrix.
In practice, shifting and condensation approaches have to be usually used to overcome the
numerical convergence problem. In this study, a simple approach is presented which uses the
row sum approach, and the rotational mass terms are calculated by scale factors determined
for the conservation requirement of translational mass. The presented LMM is

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1,1 +m1,4 0 0 0 0 0
0 m2,2 +m2,5 0 0 0 0
0 0 α1m3,3 0 0 0
0 0 0 m4,1 +m4,4 0 0
0 0 0 0 m5,2 +m5,5 0
0 0 0 0 0 α2m6,6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5.5)

wheremi, j is the elements in (5.1) at the position i, j. α1 and α2 are scale factors which can be
calculated by the diagonal scaling approach according to mass conservation [28]. Here, we
modify them as α1 = α2 = 1. Some verifications had shown that the modification can be a little
more accurate than directly using the factors calculated by the diagonal scaling approach.



14 Mathematical Problems in Engineering

x

y

q = 200 kN/m

0.5 m

10 m

Figure 6: Cantilever beam under the distributed load.

Equation (5.5) is rational for a uniform beam element and gives good results for
frequency and dynamic analyses. However, for nonuniform beam the two translational terms
at one node are not equal, leading to a nondiagonal mass matrix when transforming it to
global coordinate system. Hence, a scheme to average the two translational terms at one node
is used to form a new LMM as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1,1 0 0 0 0 0
0 m2,2 0 0 0 0
0 0 m3,3 0 0 0
0 0 0 m4,4 0 0
0 0 0 0 m5,5 0
0 0 0 0 0 m6,6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5.6)

where

m1,1 = m2,2 =
m1,1 +m1,4 +m2,2 +m2,5

2
, m4,4 = m5,5 =

m4,1 +m4,4 +m5,2 +m5,5

2
. (5.7)

The presented LMM can also consider the variation of cross-sectional geometry and
material properties, because it is created from the presented LMM. Furthermore, the matrix
has better convergence performance than commonly used ones which set the rotational mass
terms with zero or negative values.

6. Numerical Results

The objective of the numerical applications in this section is to assess the performance of the
presented element. The examples illustrate superior performance of the presented element
than conventional beam elements in several cases.

6.1. Linearly Tapered Cantilever Beam

A cantilever beam shown in Figure 6 is taken, with section width of 0.5m and the section
height varies as h(x) = h0 − 2x/25, where h0 = 1m is the section height at the fixed
end. The material modulus E is 210GPa. The mass density ρ is 7.8 × 103 kg/m3. ANSYS
beam54 element [37] (belongs to three-order beam element) is used for comparison. The
beam54 element can model both beam with uniform and variable cross-section (denoted
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Figure 7: Comparison of the displacement interpolation functions between one presented element and one
three-order beam element.

as ANSYS-1 and ANSYS-2 in Table 2). Figure 7 shows the comparison of the displacement
interpolation functions between one presented element (4.8) and one three-order beam
element (2.2). As seen in Figure 7, the presented displacement interpolation functions give
a more accurate representation to the deformations of the beam (e.g., considering rotation
DOFs, the section height of the beam is larger at the left end and unit rotation results in
larger beam deformation. However, three-order beam element gives the same deformations
at the two ends). Figure 8 shows the comparison of CMM and LMM between one presented
element and one three-order beam element. The LMM of the three-order beam element is
calculated by the common method in the textbook [32, 33], in which LMM = Mbeam/2 ×
diag[1 1 0 1 1 0]. Similar to the observation from comparison of displacement interpolation
functions, the presented mass matrixes can also represent the effect of the varied cross-
section. The calculated equivalent nodal loads by one presented element and one three-order
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Figure 8: Comparison of the mass matrixes between one presented element and one three-order beam
element. (a) CMM of this paper, (b) CMM of three-order beam, (c) LMM of this paper, and (d) LMM of
three-order beam.

beam element are [0 1307 3587 0 693 − 518] and [0 1000 1667 0 1000 − 1667], respectively,
(Units: kN, kN/m). It is obvious that the three-order beam element gives irrational element
equivalent nodal loads, because the loads are independent of cross-sectional geometry and
material which have the same values at the two nodes. Table 2 shows the static displacement,
rotation, and frequency results. It can be seen that to achieve comparable accuracy, many
more ANSYS elements are required than the presented beam elements. It is seen that when
5 elements are used to calculate the frequency, the presented LMM only has an error of
1.86% relative to the presented CMM. For the dynamic analysis, a 0.1 s (about 1/10 of 1st
natural period) pulse loads with amplitudes of the equivalent nodal loads are applied to the
free end. Figure 9 illustrates that the presented CMM and LMM are more accurate than the
conventional method. Only the results of ANSYS-2 and the presented element are plotted in
Figure 9 for brevity.

6.2. Stepped Beam with Multiple Sectional Geometry

In [17], a free vibration test of an aluminum stepped beam (ρ = 2664 kg/m3, E =
60.6GPa)with dimensions of 463.55mm × 25.4mm × 3.175mmwas conducted. The detailed
dimensions are shown in Figure 10. The experimental (EXP.) frequencies in x-y plane (in-
plane) and x-z plane (out-of-plane) are given in Table 3 together with the calculated solutions,
including the Rayleigh-Ritz (RR) method and component modal analysis (CMA), analytical
method which is based on the Euler-Bernoulli beammodel, FEMwith the Euler beammodel,
Timoshenko beam model, 2D shell, 3D solid model, and the presented beam model. The
results of the presented beam element are obtained by one element and the results of beam
elements in [17] are obtained by 500 elements. The error 10.8% is due to the nonbeam effects
[17] of the test beam in its x-y plane. However, from the results in Table 3, it can be observed
that using only one presented element can give acceptable accurate results compared with
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Figure 10: Stepped aluminum beam test in [17]. (Unit: mm).
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Figure 11: Functionally graded beam under the nodal load.
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Figure 12: Comparison of the displacement interpolation functions between one presented element and
one three-order beam element.
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Figure 13: Comparison of the mass matrixes between one presented element and one three-order beam
element. (a) CMM of this paper, (b) CMM of three-order beam, (c) LMM of this paper, and (d) LMM of
three-order beam.

other beam elements. Another advantage of the presented element is that it can model the
stepped beam with only one element rather than ANSYS which cannot model the stepped
beam until 13 elements are used.

6.3. Functionally Graded Beam with Continuous Variable Material and
Density

An axially functionally graded cantilever beam shown in Figure 11 (ρ = 5.7 × 103 ×
e5(1−x) kg/m3, E = 200 × e5(1−x) GPa) with dimensions of 1m × 0.04m × 0.04m is analyzed.
The ANSYS beam 54 element [36] is used for comparison. Figure 12 shows the comparison
of the displacement interpolation functions between one presented element and one three-
order beam element. Figure 13 shows the comparison of CMM and LMM between one
presented element and one three-order beam element. Similar to the example in Section 6.1,
the Figures 12 and 13 illustrate that the presented element can represent the effects of the
variable material modulus and mass density. Table 4 shows the static displacement, rotation,
and frequency results. It can be seen that many ANSYS elements are required to achieve
comparable accuracy, while only a few of presented beam elements are needed. The presented
LMM only has an error of 2.73% relative to the presented CMM to calculate the frequency
when 5 elements are used. The results of frequency by the presented element in Table 4, and
also in Table 2, demonstrate some known knowledge observed by previous researches; for
example, the rate is same of using CMM and LMM to achieve a nearly convergence solution.
An observation in the paper is that although the same element meshes are used to achieve
a nearly convergence frequency solution, the CMM is more accurate when less element
meshes are used, because its convergence gradient is smaller than the LMM. For the dynamic
analysis, a 0.007 s (about 1/10 of 1st natural period) pulse load with an amplitude of the
nodal load is applied to the free end. Figure 14 illustrates that the presented CMM and LMM
are more accurate than the conventional method. It should be noted that the ANSYS software
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Table 4: The tip displacement, tip rotation, and 1st natural vibration frequency.

Ele.
Tip disp. (×10−3m) Tip rotation (×10−3 rad) 1st-freq. (Hz)
This
paper ANSYS This

paper ANSYS Presented
CMM

ANSYS
CMM

Presented
LMM

ANSYS
LMM

1 16.41 32.03 44.98 48.02 153.11 17.16 81.25 38.45
2 22.03 52.25 142.95 64.88 120.38 94.04
3 18.87 49.32 142.18 95.92 131.68 117.28
4 17.77 47.67 142.04 112.62 136.03 127.25
5 17.27 46.77 142.01 122.00 138.13 132.28

10 16.64 45.42 136.62
20 16.48 45.05 140.73
40 16.45 44.96 141.79
80 16.44 142.05

120 16.43

gives a poor modeling to this example. The CMM of each ANSYS beam element mesh is
calculated by the software itself, in which the midpoint material modulus and mass density
of the each mesh are inputted for the calculation. This means that constant material modulus
andmass density are used for each element and the exponential variations of themwithin the
element cannot be considered by the software. The LMM of each ANSYS beam element mesh
is calculated by Mbeam/2 × diag [1 1 0 1 1 0] and then inputted into the software as
nodal lumped masses, in which Mbeam is manually calculated to consider the variation of
material mass density within the element. These lead to that, as shown in Table 4, ANSYS
presents inaccurate static responses and even lower accuracy of the frequencies obtained
using CMM (compared with LMM) when a small number of element meshes are used.

7. Conclusions

In the paper, an approach has been presented to solve structural static, vibration, and
dynamic problems by beam element. The main feature of the approach is the use of adaptive
element displacement interpolation functions, which makes the approach quite suitable to
solve the responses of varied cross-section beam and functionally graded beam, such as
beams with variable cross-section, variable material properties, many different steps in cross-
section and/or material properties, and their coupled problems. The element stiffness matrix
and equivalent nodal loads are derived. A consistent mass matrix is constructed using
the presented adaptive displacement interpolation functions. Then, a diagonally lumped
mass scheme which considers the rotational terms is presented by the condensation of the
consistent mass matrix. Compared with previously published research works, especially on
functionally graded beam, the presented formula is simpler. The accuracy and convergence
of this approach has been compared satisfactorily with the existing methods and the
experimental results with a number of simple static, eigenvalue, and dynamic examples. One
advantage of the presented approach is that the element is of a one-element-one-member
configuration, modeling with this type of element would not need to take into account the
variation and discontinuity between different parts of the member. Another advantage of the
approach is that it is more accurate than conventional finite beam elements in most cases.
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Figure 14:Dynamic responses of the beam at right end. (a)Nodal displacement in y direction using CMM,
(b)Nodal displacement in y direction using LMM, (c)Nodal rotation using CMM, and (d)Nodal rotation
using LMM.
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