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This paper investigates the problem of pth moment exponential stability for a class of stochastic
neural networks with time-varying delays and distributed delays under nonlinear impulsive
perturbations. By means of Lyapunov functionals, stochastic analysis and differential inequality
technique, criteria on pth moment exponential stability of this model are derived. The results of
this paper are completely new and complement and improve some of the previously known results
(Stamova and Ilarionov (2010), Zhang et al. (2005), Li (2010), Ahmed and Stamova (2008), Huang
et al. (2008), Huang et al. (2008), and Stamova (2009)). An example is employed to illustrate our
feasible results.

1. Introduction

The dynamics of neural networks have drawn considerable attention in recent years due to
their extensive applications in many fields such as image processing, associative memories,
classification of patters, and optimization. Since the integration and communication delays
are unavoidably encountered in biological and artificial neural systems, it may result
in oscillation and instability. The stability analysis of delayed neural networks has been

extensively investigated by many researchers, for instance, see [1-30].

In real nervous systems, there are many stochastic perturbations that affect the stability
of neural networks. The result in Mao [24] suggested that one neural network could be
stabilized or destabilized by certain stochastic inputs. It implies that the stability analysis of
stochastic neural networks has primary significance in the design and applications of neural

networks, such as [7, 12-16, 18, 20, 22-24, 26, 27, 30].
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On the other hand, it is noteworthy that the state of electronic networks is often
subjected to some phenomenon or other sudden noises. On that account, the electronic
networks will experience some abrupt changes at certain instants that in turn affect
dynamical behaviors of the systems [5, 6, 17-23, 28, 29]. Therefore, it is necessary to take
both stochastic effects and impulsive perturbations into account on dynamical behaviors of
delayed neural networks [18, 20, 22, 23].

Very recently, Li et al. [22] have employed the properties of M-cone and inequality
technique to investigate the mean square exponential stability of impulsive stochastic neural
networks with bounded delays. Wu et al. [23] studied the exponential stability of the
equilibrium point of bounded discrete-time delayed dynamic systems with linear impulsive
effects by using Razumikhin theorems. To the best of authors” knowledge, however, few
authors have considered the pth moment exponential stability of impulsive stochastic neural
networks with mixed delays.

Motivated by the discussions above, our object in this paper is to present the sufficient
conditions ensuring pth moment exponential stability for a class of stochastic neural networks
with time-varying delays and distributed delays under nonlinear impulsive perturbations
by virtue of Lyapunov method, inequality technique and It6 formula. The results obtained
in this paper generalize and improve some of the existing results [5, 8, 18, 19, 26-28].
The effectiveness and feasibility of the developed results have been shown by a numerical
example.

2. Model Description and Preliminaries

Let R denote the set of real numbers, R" the n-dimensional real space equipped with
the Euclidean norm | - |, Z* the set of nonnegative integral numbers. E(-) stands for the
mathematical expectation operator. £ denotes the well-known £-operator given by the Itd
formula. w(t) = (wi(t), ..., wy(t)) is m-dimensional Brownian motion defined on a complete
probability space (€2, ¥, P) with a natural filtration {¥:},,, generated by {w(s) : 0 < s < t},
where we associate £ with the canonical space generated by w(t) and denote by ¥ the
associated o-algebra generated by w(t) with the probability measure P. Let o(t,x,y) =
(ou(t, xi, Vi) pxn € R™™, and o;(t, xi, y;) be ith row vector of o(t, x, y).

In [5, 6], the researchers investigated the following impulsive neural networks with
time-varying delays:

Xi(t) = —a;(x;(t)) + Zbijfj(xj(t)) + Zcijgj(xj (t-7i(t)) + L, t#tg,
i=1 j=1 (2.1)

xi(te) =pic(x(t))), keZ', ieA

The authors in [7, 26, 27] studied the stochastic recurrent neural networks with time-varying
delays:

dx;(t) = <—a1~(x,-(t)) + D bifi(xj (1) + D cijgi (x; (- 7;(1))) + I,-) dt
j=1 j=1

(2.2)
+ D ou(t, xi(t), xi(t - 7i(t)))dwi (t).

=1
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In this paper, we will study the generalized stochastically perturbed neural network
model with time-varying delays and distributed delays under nonlinear impulses defined by
the state equations:

dxi(t) = [—ﬂi(xi(t)) + Zbijfj(xj(t)) + Zcijg]'(xj (t-7i(t)))
= =

n t
+]§d1~j f B Kij(t—s) - hj(xj(s))ds + I; | dt (23)

+ > oult, xi(t), xi(t = 7i())dwi(t), t#b,
=1
xi(te) = pic(x(ty)), keZ', ieA,

where A = {1,2,...,n}, the time sequence {f;} satisfies 0 = tg < t; <ty < -+ <t < tgs1--+,
limg ootk = o0; x(£) = (x1(£),x2(8),...,x, ()T and xi(f) corresponds to the state of the
ith unit at time t; b;j, c;j, and d;; denote the constant connection weight; 7;(t) is the time-
varying transmission delay and satisfies 0 < 7;(t) < 7, 0 < 7; = infieg+{1 = 7j(t)}, for
j € A fi(-), gi(), hj(-) denote the activation functions of the jth neuron; the delay kernel
K;;(-) is the real-valued nonnegative piecewise continuous functions defined on [0, c0); n
corresponds to the numbers of units in a neural network; I; denotes the external bias on the
ith unit; pix (x(tx)) represents the abrupt change of the state x;(t) at the impulsive moment #.
System (2.3) is supplemented with initial condition given by

xi(s) = pi(s), s€ (-,0], i€ A, (2.4)

where ¢(s) = (1(s), 2(s), ..., ¢u(s))" € PCBY, ((-o0,0],R") = BPCB}, . Denote by PCB, the
family of all bounded $y-measurable, PC((-o0,0], R")-value random variables ¢, satisfying
SUPge(—o00) ElP(O)P < oo, where PC((-o0,0],R") = {¢ : [-o0,0] — R"} is continuous
everywhere except at finite number of points ¢k, at which ¢(t;) and ¢(t,) exist and ¢(t;) =
o (te)-

The norms are defined by the following norms, respectively:

s€(-o0,

n 1/p n 1/p
loll, = sup0]<z|f,oi<s>|"> , nxup=(z|xiw> | 03
i=1 i=1

Throughout this paper, the following standard hypothesis are needed.
(H1) Functions a;(:) : R — R are continuous and monotone increasing, that is, there
exist real numbers a; > 0 such that

ai(u) — ai(v) > a;, (2.6)
u-—-o

forallu,v e R, u#v,i€A.
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(H2) Functions f;, gj, and h; are Lipschitz-continuous on R with Lipschitz constants
L] >0, Lf >0, and L > 0, respectively. That s,

|fi(w) - fi(@)] < L]f|u—v|, |gi(u) = gi()| < Lfju-ol|,  |hj(u) - hj(0)| < L}|u -,

(2.7)
forallu,v e R, i€ A.
(H3) The delay kernels Kj; : [0,00) — R* satisfy
Kij(s) < K(s) Vi,jeA, s€[0,0), L K(s)et'®ds < oo, (2.8)

where X (s) : [0,00) — R* is continuous and integrable, and the constant y denotes some
positive number.
(H4) There exist nonnegative constants e;, l; such that

[oi(t,u',v") — oi(t,u,v)] [oi(t, 1, 0") — 0i(t, u, v)]T <eilu - u|2 +1i|v' -v 2 (2.9)
forall u,v,u',v' eR, i€ A.
(H5) There exist nonnegative matrixes Py = (pfj)nxn such that
|pix (w1, 2, . .., un) = pix(v1,02, ..., vn) |” < Zpl] |uj - v;l”, (2.10)

=1

for any (u1, uy, . ..,un)T, (v1,02,... ,vn)T € R", where p > 1 is an integer.
We end this section by introducing three definitions.

Definition 2.1. A constant vector x* = (x],x3,..., x:)" € R" is said to be an equilibrium point
of system (2.3) if x* is governed by the algebraic system

ai(xl’-‘):ilb,-]-fj<x;f> Zc,,g]< Zdllj Kij(t - s)h( )ds+Ii, (2.11)
p=

where it is assumed that impulse functions pix () satisfy pix(x],x3,...,x;,) = x] foralli € A
and o(t, x}, x}) = 0.

Definition 2.2. The equilibrium x* = (x]‘,xE,...,x,*;)T € R” of system (2.3) is said to be pth
moment exponentially stable if there exist A > 0 and M > 1 such that

E|lx(t) - x*||P < E|jp - x*||"Me™ for t >0, (2.12)

where x(t) is an any solution of system (2.3) with initial value ¢ € PCBbFO ((=o0, 0], R™).
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Definition 2.3 (Forti and Tesi, 1995 [25]). A map H : R — R" is a homeomorphism of R”
onto itself if H is continuous and one-to-one, and its inverse map H -1 s also continuous.

3. Main Result

For convenience, we denote that

n p-1

¢i = pa; - ZZ <|b1] |Pa1,ij L{Pﬂlﬂj + |Cij |PYl,ij L]gp‘slﬂ'f + |d1] |P§1/ij L;lprllrif f JC(S)dS>
j=11=1 0
=SB ™, g = S e,
=1 M j=1 M (3.1)
-1 -1 -2
;= ¢ - P(P2 )ei - (P )2(P )li/ Wi=g¢i+ (P - 1)11"

Hi i 7 hPpij — .
Gy = -1y L, = max{p), g =min{ul,
‘ll]' i — i
where p; are positive constant, ayij, f1ij, Y1,ij, 01j, é1,ij, and m,;; are real numbers and satisfy

p p p p p P
dmi=1 Ypu=1 =1 Xos=1  Yhi=1  Smy=1
=1 =1 =1 =1 =1 =1

(3.2)
Lemma 3.1. If a; (i=1,2,...,p) denote p nonnegative real numbers, then
PP P
a,+a,+---+a
ajay---ap < 12 r (3.3)
14
where p > 1 denotes an integer.
A particular form of (3.3), namely,
_ -1)d]
a’f 1a2§(pr%+?2, forp=1,2,3,.... (3.4)

Lemma 3.2. If H : R* — R" is a continuous function and satisfies the following conditions.

(1) H(x) is injective on R", that is, H(x) # H(y) for all x # y.

2) [H@)[| = oo as [|lx|| — oo.

Then, H(x) is homeomorphism of R™.
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Theorem 3.3. System (2.3) exists a unique equilibrium x* under the assumptions (H1)-(H3) if the
following condition is also satisfied:
(H6) (i)l' > i + Z;‘l:1 gji J-go JC(S)dS

Proof. Defining a map H(x) = (hi(x), ha(x),..., h,(x))T € CO(R", R"), where
n n n t
hi(x) = —ai(xi) + Zbl]f] (x]) + Zcijgj (x]) + Zdl] f Ki]'(t - S)h] (Xj)dS +1;, (35)
j=1 j=1 j=1 e

the map H is a homeomorphism on R" if it is injective on R" and satisfies |H (x)|| — oo as
llxll = oo

In the following, we will prove that H(x) is a homeomorphism.

Firstly, we claim that H(x) is an injective map on R". Otherwise, there exist xT,y” €
R", and xT #yT such that H(x) = H(y), then

ai(x) - ai(yi) = zb i) - ()] + Z [ (x7) - (v,)]

t (3.6)
Xy [ Kyt lhy () = i ()] s
e
It follows from (H1)-(H3) that
ailxi = yil < 3 [by L] | = i + ey | L¥ | -
-1 im1
! (3.7)

n t
+ Z|dl]|L;’|x] - y]| J_ JC(t = S)dS.

=1
Therefore,

> puiailxi - yil”
i=1

n n n n
_ -1
< > pmilbif| L i = wil " g = i | + 2D il | LS i = il | -
i=1 j=1

‘ i=1 j=1

n n t
+ > > prildif | L = il |x - ] f_ K(t-s)ds

i=1 j=1
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< ZZ#i
i=1 j=1

j=

n n p-1 ; . i
+ Z Z i < Z | cij |Pn,i/' L]s_rpﬁz,u | Xi— yi |P i | cij |PYp,x/ L;grﬁm | X; - yj |P>

p-1 paj 7 fPPui P pai ¢ fPPeii p
DN L7 i S E TR L -7 Ll S ETR T

=1

i=1 j=1 1=1
'S t X pzil PéLij p hPMij p
1ij i
+§j§1”ij‘—oo (t_S)dslzlldijl ]L] ]|xi_yi|

n t
+ 3 3w f K(t - s)ds|dy|" L |x; - "
<)

n
i=1j

= Z‘“i <pai —¢i+ i + Zgﬁ fo JC(s)ds> |xl~ - yi|P.
i=1 =1

(3.8)

From (H6), it leads to a contradiction with our assumption. Therefore, H(x) is an injective
map on R".
To demonstrate the property ||H(x)|| — oo as ||x|| — oo, we have

> sgn(xi)ppi(hi(x) = hi(0)) il
i=1

= le sgn(xi)puilxil’ ™! <—ai(xi) + lebiff i (xj) + lec,jg]- (x7)>
i= j= j=

n n t
+ > sgn(x)ppilxlP Y dys f Kij(t = s)hj(x;)ds
i1 i

(3.9)
<= paiplxl + Yo <pai — di+ i+ D i fo JC(S)dS> | [P
i=1 i=1 j=1
=-D i <¢i X f JC(S)dS> | [P
i=0 i Jo
< —w||x|l},
where w = minigicn { i (¢i — ¢5i = X7 G [0 K(s)ds)}. Then, we have
wllx[lp < pr Y, Ihi(x) = hi(0)|x" " (3.10)

i=1
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Using the Holder inequality, we obtain

— 1-1/p s , 1/p
|mms%<§pw> <Zmurwmw> , (311)
i=1 i=1

which leads to
PH
Ixll, < EE (1@l + 1HO),). (312)

From (3.12), we see that |H(x)|] — oo as ||x|| — oo. Thus, the map H(x) is a
homeomorphism on R" under the sufficient condition (H6), and hence it has a unique
fixed point x*. This fixed point is the unique solution of the system (2.3). The proof is now
complete. O

To establish some sufficient conditions ensuring the pth moment exponential stability
of the equilibrium point of x* of system (2.3), we transform x* to the origin by using the
transformation y;(t) = x;(t) —x* for i € A. Then system (2.3) can be rewritten as the following
form:

dyi(t) = l—ﬁi(yi(t)) + 2 bifi(w(0) + ey (t-7(1)

j=1 j=1
n t -
+§d,-,~ f_w Kij(t—s)h;(y;(s))ds | dt (3.13)

+ > Gu(t, yi(t), yi(t = Ti(t))dwi(t), t#t,

I=1

vilke) = pic(y(t,)), keZ', ieA,
where
G(yi(®) = aiy® +x) -ai(x),  Fiw®) = (v +x) - £i(x),
Glyit-70)) =g (v (t-50) +x)) - g(x}),
hi(yi(s)) = b <yj(s) + x}") - h;j (x}‘), (3.14)
5',']' (t,yj(t),yj(t — T](t))> = O'l']'<t,y]'(t) + x}‘,y]- (i’ — T](t)) + x}‘) — O',']' (t,x},x}f),
pi (Y (te)) = pix (y (k) + X*) = pir(x7).

In order to obtain our results, the following assumptions are necessary.
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(H7) When7; 21, @; > Wi + 317 §ji [ K (s)ds for any i € A.
When 0 <7; <1, @; > (¥i/1:) + 274 i [0 £ (s)ds for any i € A.

(H8) There exist constant A € (0, uo) and a € [0, 1), px = maxieA{l,Z;;l (‘u]./‘ui)p;.‘i} <
e®tt1) such that

A<®r Fi e Z@jﬁmgﬁ@
(3.15)

J X(s)e*ssdsgf K(s)et®ds.
0 0

Theorem 3.4. Assume that (H1)-(H5) and (H7)-(H8) hold, then system (2.3) exists a unique
equilibrium x*, and the equilibrium point is pth moment exponentially stable.

Proof. From (H7),if 0 < #; <1, then
¢; > @; S Zg,lf K(s)ds > = l + Zgﬁf K(s)ds > ¢ + ZGjiJ K(s)ds, (3.16)
1 Z ]':1 0 ]':1 0
ifn; 21,

Gi> D> Wi+ Zcﬁf K(s)ds > g + Zcﬁf X(s)ds, (3.17)
EI o

foranyi € A.
Then regardless of cases, (H6) and

®>—+Zgjxgﬁ (3.18)

are satisfied. Therefore, system (2.3) exists a unique equilibrium point x*.
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Now, we define

ui(tby(t) = e plyt)|" =wi(t),  U(tyt) = Dui(t). (3.19)
i=1

For t #ty, k € Z*, we obtain

2U = Uy + %trace [67 (i 0), it = 71D Uy, (£, 9) 5 (8 i (1), it = (1)) ]

+ anuyi< ai(yi(t)) + Zb,,f, (y;(t)) + ch]g] (y; (t—7i() ))>

j=1

non t ~
XU [ K= s (5 (9)ds

i=1j=1

Szn:<)L pai +P(P 1)el>ui(t)

i=1

e“{ZZuflbﬁlL{ |y (O] |y (1)

i=1j=1

: zzui[|cij|L§’|yi<t>|”‘1|yj<t—Tj<t>>|

i=1 j=1

-1 =
+<F’2 Do) 2|yi<t—ri<t>>|2]

3 Dl L7 |y )| j J<<s>|yj<t—s>|ds}

i=1 j=1

1 1 -1 LG _
< Z <)t pa; + P(P ) 1>uz(t) + @th;ﬁlﬂyi(mp 2|yi(t - Ti(t))|2
P

i=1

n n p-1
;i ¢ fPPLi i o FPPpii
e“ZZm( b L |y )P + [y P L ’”|y,~<t>|'”>
i=1

j=1 =1
I o epyii
Z <Z |eif | LET (8 [P + [y LA |yj(f)|p>
i1 j=1 1

I JC(S)< |d |P§11]th’llulyl(t)|l7 |d |P§111th’lrﬂ/|y](t S)|P>
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—1 =

AEXS payi 7 fPPui PYLij 1 8POLj pisii P [
<> |bi "L+ Jey| LT + g |PLY K(s)ds ) [ui(t)
j=1 0

n -1 -1 (p-2 L i (PP
+Z<l—vaf+p(’2 e DG=D, Sty s ,,]>ui(t)

j=1

+ ZZ% |di],|P§p,UL;zP’ln/1 fo JC(S)E)LSuj(t —s)ds

n n .
S (St - Y-

i=1 j=1 11

= A= D) u;(t) + Pie "™ Mu(t — (1)) ) + S n§,~ 00JC(s)e *ui(t - s)ds.
| Ari(h) i 1 !

n
i=1 i=1 j=1

(3.20)

while Lemma 3.1 is used in the second inequality. Let

V(tby®) = Ut y®) + ;qxiem Lr»m %ds

n n [o'e) t
+ 2206 L JC(S)@“I w(r)drds,

i=1 j=1

(3.21)

for t > 0, where ¢;(s) = s — 7;(s), applying Ito formula to (3.21), we can get

_ SR ui(t) Cuit-n()
zv_£U+§qze <1—Ti(qf{1(t)) 70 (t Tl(t))>

F 22k f K(s)e'* (uj(B) ~u;(t = 5))ds (322)
i=1 j=1 0

< - i {q)i LI znlgji J'oo X(S)e“ds}ui(t).
i=1 Ni =1 0

From (H8), we have

2V <0. (3.23)
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On the other hand, we have

EU (e, y (k) = Ee'™ Y uilyi(t)|” < Ee'™ Y i Y pislyi ()17 < peEU (b, y(8)), (3.24)

i1 =1 j=1

BV o) = ) (S [ o)

+E<§n:§n]§”f K(s)e" L suf(r) g ds> (3.25)

i=1 j=1

< peEV(t, y(8)),

for t € [tk_1,tk), k € Z*, by (3.23), (3.25), and (HS8), we have

EU(t,y(t)) <EV(t,y(t)) < EV(tk1,y(t1)) < peaEV (B, y(t,))
< pop1 a1 EV (o, y(tg)) < et et EV (1), y(ty)) < e®EV(0,y(0)),

(3.26)
where py = 1.
On the other hand, we observe that
V(0,y(0)) < En]#-ly(o)l’” + i‘l‘e“’ fo L) U
' 3 o i=1 l 1= (] 1(5))
n o n o 0
+ ZZQ} . K(S)els f ‘L[j (T)drds (327)
i=1 j=1 -s
- < “ As ¥T AT; 4
<D 1+ D% | K(s)e'sds+ ——e'™ ) sup |yi(s)|".
i=1 j=1 0 Ni —00<s<0

It follows that

<Z|yl(t)|p> < Me " sup Z|y,(s)|’” (3.28)

—00<5<0j=1

fort > 0, where

—_
IN
E

= I‘:I

<1 + max{ > fw K(s)e**sds + %eﬂf }> < oo, (3.29)
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which means that
Elx(t) - x*||IP < E|j¢ - x*||F Me™™ " for t > t,. (3.30)

Therefore, the equilibrium point of system (2.3) is pth moment exponentially stable. O

Corollary 3.5. If p > 2, under the assumptions (H1)-(H5), system (2.3) exists a unique equilibrium
point x*, and x* is pth moment exponentially stable if the following two conditions are satisfied:
(H9)

n

par= (p=1) 3 (Ieult] + oyl + a1 [~ ds1as) - 3o Jeil]
j=1

j=1
(3.31)

n [e'e] _1
> 3l + it [ acspas) + 27,
0

j=1

(H10) There exist constant \ € (0, o) and a € [0,1), px = maXieA{LZ;l:l (I/‘j/#i)P;} <
e*tt1) sych that

n @ L p(p-1
1<Pai—(P—1)Z<|bi1‘|L{+ |Cii|LJg+|d"f|L;l_[o JC(S)dS) - DlbilL] - ( 2 e,
j=1

j=1
(3.32)

(P-2)(p-1) < 5 ” s
_fli— ]gllcﬂlng-i_ (p—l)ll e’\ —]§1|d11|Lfl J‘O JC(S)E’)L ds.

Proof. In Theorem 3.4, let ayij = Piij = Y15 = O1ij = &1ij = M1,ij = 1/p, pi = 1 foralli, j,l € A. The
result is obtained directly. O

Remark 3.6. In Corollary 3.5, if p = 2, the conditions (H9) and (H10) are less weak than the
following conditions:

(Ho)

n n n (o)
N — 1t ) - s ) - |k
2r1_r&na1 max <A_1|b”|LJ'> %%X<;|C17|Lj> rg}ee\x<]§|d,,|L]. fo JC(s)ds>

]

n

> ngg\x <|b]~i|L{> + ]er%e}\x <|cj,~|L§> + ;I%%X(ldﬁlm fo X(s)ds) +max I, (3.33)

j=1

n

+ Zmax e;.
" icA
j=1
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(Ho) There exist constant A € (0, p9) and a € [0, A), px = max {1, Z;’:l(yj/yi)p;‘i} <
et such that

u n
i f
A< 21?61/{1 i —max <]§|bij|Lj> T <]§,|Cij|Lf> max <Z|d1]|L f X(S)ds>
n f " . /\
- i - i~ i . T
;%&X |b]l|L,- max e; ]Z:;rggla\x |CJZ|Li + max L e

n oo
- ;r%an |d|L! fo K(s)e'ds,

(3.34)

while (Hy) and (Hyp) were asked in Theorem 3.2 in [18].

Corollary 3.7. Under the assumptions (H2) and (HS8), system (2.1) exists a unique equilibrium point
x*, and x* is globally exponentially stable if 0 < 1; < 1, and the following condition is also satisfied:

n
pai = (p=1) X, (L] [ ™% + L ey [/ 470
i-1
] (3.35)

Hj pO-ai) f o Hij p(-yii) 1 &
- bi; / L / L
]Zl | | 71 ]Zl 0 | |

Proof. In Theorem 3.4, when p > 1, choosing a;;; = a;j/(p - 1), y,j = yij/(p - 1) for I =
1,2,...,p-1,and d;; =0, p;j = 65 = 1/p for all | € A, then the result is obtained. ]

Remark 3.8. If 0 < 1; <1, L{ = Lf = L;, it follows from (3.35) that

n
pos= (p=1) 3 (L oy Ly ey 0) = 3 “ﬂ>L>Z”f|c L,

j=1 j=1
(3.36)
this is less conservative than the following inequality:
n
. ij/ (p— ij/ (p— Hij —aji
S {Pai = (p=1) X, (Ll ™77+ Ly |07 - Z : |b]i|’”(1 "L
1 1k
(3.37)
Hiy o pa=n
L;
> rg;aAX{ %] |<iil

while (3.37) was required in Theorem 3.1 in [5] and in the only theorem in [8].
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Whenp =2, a;j =y;; =1/2, p; = 1, (3.37) is equal to
min 2[11‘ - Z(L]|b1]| + L]|C1]|) - Zlbﬂ'Ll > max ZleilLi ’ (338)
ieA i=1 j=1 €A j=1

while (3.38) was required in Theorem 3.2 in [19].

Similar to Corollaries 3.5 and 3.7, the following results are directly gained from
Theorem 3.4.

Corollary 3.9. Under the assumptions (H2), (H4), and (H8), system (2.2) exists a unique equilibrium
point x*, and x* is pth moment exponentially stable if 0 < 1; < 1, and the following condition is
satisfied:

n

pai— (p - 1)§(|bﬁ|L{ +eylLf) - 3 D, p-Dr-2),

2 2

i 1 - P
— Hi

j=1

> l <&Z|C],|ng + (p - 1)lz> .

rli l’ll j:1

(3.39)

Especially, if p = 2, then the equilibrium x* is exponentially stable in mean square if the following
condition is also satisfied:

n

. n . 94
s (P ) - S
1

=1 j=1
(3.40)
1 [ H< 2-2yji 1 §2-26;i
> —\ — Cii Li + l,' .
m<mgu|
Remark 3.10. If 0 < 7; < 1, it follows from (3.39) that
¢ & B rip-1)  (p-1)(p-2)
pai= (=D 3 (Ioylt] + leg ) = S ] - PP —e - P2y
j=1 j=1
(3.41)

> &Z|C]l|ng + (p - 1)11
Hi j=1
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This is less conservative than the following inequality:

?‘«Eﬂ{*’”i‘<’”—1)i<|bﬁ|L{+|Cii|Lf> Z”’IanLf Zw( + 1)
o -

j=1 j=1
(3.42)
G M Hi < g i
=) —(p-1e ¢ >maxy — ) |cji|L; + =(p-1)Li ¢,
while (3.42) was required in Theorem 3.3 in [26].
Remark 3.11. 1f 0 < n; < 1, it follows from (3.40) that
- 2a;; 1 £ 2Pil 2y 1 g26i o Hj 2-2aj;  f22Pji
= (1P ey P ) - S e
=1 j=1 Hi
(3.43)

F_Z| 2- zy,,ng 26;i L1,
l

this is less conservative than the following inequality:

n s s . .
rn_in{Za,- B Z<|bij|2mjL{2ﬂl/ + |Cij|2YifL]g26i/> _ Z#] |b]1|2 Za,szZ 2p;i _ wei}

1<i<n i i1 Hi Hi

. n . .
] max{ S el g sl }

1<i<n i =1 Hi

(3.44)

while (3.44) was required in Theoerm 3.3 in [27].

4. Illustrative Example

In this section, we will give an example to show that the conditions given in the previous
sections are less weak than those given in some of the earlier literatures, such as [18].
Consider the following stochastic neural networks with mixed time delays

2 2 2
dx;(t) = <—aixz'(t) + > bij fi(x (1) + Deigi (i (E= 7)) + D i
-1 i1 =1
! ! : (4.1)
. J‘t Kij(t = s)hj(xj(s))ds + Ii> dt + o;(t, x;(t), x;(t — 7; (1)) dw; (t),
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wheret#ty, i € A= {1,2}, ty = k, fi(s) = gj(s) = hj(s) = (1/2)[|x + 1| = [x - 1], and Kj;(s) =
e’.

1.7 0.1 0.2 0.2 0.3
(@i)a = < 3 >, (bij) . = <0.4 0_3>' (€i)na = <0.1 0.4)’

(4.2)
- /01 02 N _ (094 N (01(x(t-7(t) - 1.2)
(i) 3.0 = (o.z 0.3>’ ()2 = ( 25 > (01)20 = (0.1(x2(t ~7o(t) - 14) )"
In the following, we introduce the following nonlinear impulsive controllers:
x1(tx) = 0.05 sin(x1 (t;) - 1.2) —0.02x,(tx) +1.48, keZ*,
(4.3)

x2(tk) = —0.03x1 (tx) +0.04 cos(x2(t;) —1.4) +1.72, ke Z'.

In this case, we have Lf Lg Lh =1, K(s)=e® ,ej=0, l]- =0.01forj=1,2,and pp =0.9.
Forp =2, we can compute that

2a1—z[|b1]|Lf eyl + |yl [ " &(s)as] - Z|b,1|Lf—1s
2 o
> Z [|C]1|L§ + |d]1|L?f J((S)ds] + 11 +e1 =0.61,
— 0
2a2—2[|b2]|L + oy | LS + |d2,|th JC(s)ds] Z|b,2|Lf 3.8 (44)

2 &)
> Z[|C]2|L§+ |d]2|L?f JC(s)ds] +12+€2 =1.21,
=1 0

p_ (02 0.08
*=\0.12 016/
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Choosing p; = 1 for i = 1,2, we have px = maxjea {1,212-:1 p;.‘l.} =land A = 0.6 and a =
0.5, then

2 ) 2
0.6=L1< 2a1 — Z [|b1]|L{ + |C1]|L]g + |d1]|L;1J‘ JC(S)dS:I - Z'blllL{ —e1
j=1 0 j=1
2 2 ©
= | Dllep|Lf + 1| '™ = D |dn|LY f K(s)etds =1.05-0.31"? = 0.7,
=1 =1 0

2 ® 2
0.6=A<2a-> [|b2,-|L]f + oy | LS + |d2j|L;?f JC(s)ds] = S |bp|LL — e (4.5)
j=1 0 j=1

2 2 )
- [Z|c,-2|L§ + lz] e\ - Z|dj2|L’2’J K(s)e*ds =2.55-0.71""? = 1.749,
=1 =1 ‘

f K(s)e**sds = 6.25 < ’[ K(s)et*ds = 10.
0 0

Thus, all conditions of Theorem 3.4 in this paper are satisfied; the equilibrium solution is
exponentially stable in mean square. From above discussion, it is easy to see that

2rirg\n a; - max <]i1 |bij |L{> — max <g |cij |L]3> — max <g |d,-]~|L]p.’ J'Ooo JC(s)ds>
N f
- ]Z:;r%x (IbslL]) =1.0 (4.6)
2 2 w 2
< jZlni'é?\x<|cﬁ|L‘ig) + jer%?\x<|dﬁ|Lf’ -[0 JC(s)ds) + rgg\xl,- + j;r%z}lxx e =1.11,

which implies that the condition (Hy) in [18] do not hold for this example. So our results are
less weaker than some previous results.

5. Conclusion

In this paper, we investigate the pth moment exponential stability for stochastic neural
networks with mixed delays under nonlinear impulsive effects. By means of Lyapunov
functionals, stochastic analysis, and differential inequality technique, some sufficient
conditions for the pth moment exponential stability of this system are derived. The results
of this paper are new, and they supplement and improve some of the previously known
results [5, 8, 18, 19, 26, 27]. Moreover, examples are given to illustrate the effectiveness of our
results. Furthermore, the method given in this paper may be extended to study other neural
networks, such as the model in [29] and stochastic Cohen-Grossberg neural networks in [30],
and we can get improved results too.
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