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Spatial baseline determination is a key technology for interferometric synthetic aperture radar
(InSAR) missions. Based on the intersatellite baseline measurement using dual-frequency GPS,
errors induced by InSAR spatial baseline measurement are studied in detail. The classifications
and characters of errors are analyzed, and models for errors are set up. The simulations of single
factor and total error sources are selected to evaluate the impacts of errors on spatial baseline
measurement. Single factor simulations are used to analyze the impact of the error of a single type,
while total error sources simulations are used to analyze the impacts of error sources induced
by GPS measurement, baseline transformation, and the entire spatial baseline measurement,
respectively. Simulation results show that errors related to GPS measurement are the main error
sources for the spatial baseline determination, and carrier phase noise of GPS observation and
fixing error of GPS receiver antenna are main factors of errors related to GPS measurement. In
addition, according to the error values listed in this paper, 1mm level InSAR spatial baseline
determination should be realized.

1. Introduction

Close formation flying satellites equipped with synthetic aperture radar (SAR) antenna
could provide advanced science opportunities, such as generating highly accurate digital
elevation models (DEMs) from Interferometric SAR (InSAR) [1, 2]. Compared to a single
SAR satellite system, the performance of two SAR satellites flying in close formation can be
greatly enhanced. Nowadays, close satellite formation flying has become the focus of space
technology and geodetic surveying.

In order to realize the advanced space mission goal of InSAR mission, the high-
precision determination of inter-satellite interferometric baseline [3] is a fundamental issue.
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Take the TanDEM-X mission for instance. TanDEM-X mission is the first bistatic single-pass
SAR satellite formation, which is formed by adding a second TanDEM-X, almost identical
spacecraft, to TerraSAR-X and flying the two satellites in a closely controlled formation. The
primary mission goal is the derivation of a high-precision global DEM according to high-
resolution terrain information (HRTI) level 3 accuracy [4–6]. The generation of accurate
InSAR-derived DEMs requires a precise knowledge of the interferometric baseline with an
accuracy of 1mm (1D, RMS) [7]. Therefore high-precision determination of inter-satellite
interferometric baseline is a prerequisite for InSAR mission.

The interferometric baseline is defined as the separation between two SAR antennas
that receive echoes of the same ground area [8]. Based on this definition, the interferometric
baseline can be denoted as the resultant vector of temporal baseline and spatial baseline, that
is,

S2(t2) − S1(t1) = S2(t2) − S1(t2) + S1(t2) − S1(t1), (1.1)

where t1, t2 are epochs that two SAR antennas receive echoes of the same ground area, S1(t),
S2(t) represent the positions of SAR antenna phase centers of satellite 1 and satellite 2 at
epoch t in International Terrestrial Reference Frame (ITRF), respectively, S2(t2) − S1(t2) is
the spatial baseline, S1(t2) − S1(t1) is the temporal baseline which is the velocity integral of
satellite 1. For close formation flying (1 km-2 km) with single-pass bistatic acquisitions, the
deviation of epochs that two SAR antennas receive echoes of the same ground area is typically
on the millisecond level. When the velocity is determined on the mm/s level, its influence in
the temporal baseline can be neglected. Therefore, the accuracy of interferometric baseline
is mainly determined by the accuracy of spatial baseline. Note that only spatial baseline is
considered in this paper.

The spaceborne dual-frequency GPS measurement scheme [9–11] is widely used
for inter-satellite baseline determination currently. This scheme for spatial baseline deter-
mination consists of two steps. Firstly, the relative position of two formation satellites is
determined by dual-frequency GPS measurement, and then spatial baseline is transformed
from inter-satellite relative position. The relative position here is the vector that links the
mass centers of two formation satellites.

In our research, impacts of the errors introduced by spatial baseline measurement are
analyzed. This paper starts with a description of spatial baseline measurement using dual-
frequency GPS. The baseline transformation from the relative position to spatial baseline
is given. In a second step, errors are classified into two groups: errors related to GPS
measurement and errors related to baseline transformation. The error characters are studied,
and the impact of each error on spatial baseline determination is analyzed from theoretical
aspect. Then the impacts of each error and total errors on spatial baseline determination are
analyzed by single factor simulations and total error sources simulations. At last, conclusions
are shown.

2. Generation of Spatial Baseline

In preparation for latter description some coordinate systems are introduced at first, which
are illustrated in Figure 1. Coordinate systems employed in this paper contain Conventional
Inertial Reference Frame (CIRF), ITRF, satellite body coordinate system, and satellite orbit
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Figure 1: Definitions of coordinate systems employed in this paper. CIRF, ITRF, satellite body coordinate
system, and satellite orbit coordinate system are denoted as OE-XCIRFYCIRFZCIRF, OE-XITRFYITRFZITRF, OS-
XBodyYBodyZBody, and OS-XOrbitYOrbitZOrbit, respectively. OE is the geocenter, and OS is the mass center of
satellite.
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Figure 2: Geometric relation for spatial baseline determination.G1 andG2 are GPS receiver antenna phase
centers,O1 and O2 are mass centers, and S1 and S2 are SAR antenna phase centers.

coordinate system. CIRF used here is J2000.0 inertial system and ITRF is ITRF2000 system.
The definitions of these coordinate systems can be found in [12].

As the spatial baseline is determined by spaceborne dual-frequency GPSmeasurement
scheme, the entire process of spatial baseline determination consists of relative positioning
and baseline transformation. Figure 2 is the geometric relation for spatial baseline determina-
tion.

Relative positioning is the determination ofO1O2 by dual-frequency GPS observation
data. As the real position of signal reception is the phase center Gi (i = 1, 2) of GPS receiver
antenna, GPS observation data has to be revised to the mass center Oi (i = 1, 2) of satellite
using the phase center data of GPS receiver antenna during relative positioning.

From Figure 2, baseline transformation can be described as follows:

S1S2 = O1O2 +M1 · S1O1 −M2 · S2O2, (2.1)

where S1S2 is the spatial baseline in ITRF, O1O2 is the relative position of two satellites
in ITRF, SiOi (i = 1, 2) is a vector that links SAR antenna phase center to mass center of
satellite in body coordinate system of Satellite i, Mi (i = 1, 2) is a transformation matrix of
Satellite i from satellite body coordinate system to ITRF. The flow chart of spatial baseline
determination is shown in Figure 3.
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Figure 3: Flow chat of spatial baseline determination.

3. Errors of Spatial Baseline Measurement

According to the generation of spatial baseline in Section 2, the errors of spatial baseline
measurement can be classified into two groups: errors related to GPS measurement, which
are introduced by relative positioning using dual-frequency GPS measurement, and errors
related to baseline transformation, which are generated by the transformation from relative
position to spatial baseline.

3.1. Errors Related to GPS Measurement

The relative positions of two satellites are determined by the reduced dynamic carrier
phase differential GPS approach. In this approach, the absolute orbits of one reference
satellite (Satellite 1) are fixed, which are determined by the zero-difference reduced dynamic
batch least squares approach based on GPS measurements of single satellite. Only the
relative positions are estimated by reduced dynamic batch least-squares approach based
on differential GPS measurements. The integer double difference ambiguities for relative
positioning are resolved by estimating wide-lane and narrow-lane combinations [13]. The
well-known Least-Squares Ambiguity Decorrelation Adjustment (LAMBDA) method [14,
15] is implemented for the integer estimate.

By differenced GPS observation, common errors can be eliminated or reduced.
International GNSS Service (IGS) final GPS ephemeris product (orbit product and clock
product) [16] is often adopted for orbit determination based on GPS observation. The
accuracy of GPS final orbit product is presently on the order of 2.5 cm. For 2 km separation of
satellite formation, the impact of GPS ephemeris error on single-difference GPS observation
is about 0.0025mm [17], which can be neglected. The impact of GPS clock error can be
well cancelled out by differential GPS observation. Due to the close separation (1 km-
2 km) and similar materials, configuration, and in-flight environment of formation satellites,
near-field multipath, thermal distortions of satellites, and other external perturbations can
also be effectively reduced by differential GPS observation. In addition, the influence of
differential ionospheric path delay is mainly from the first order, which can be eliminated by
constructing ionosphere free differential GPS observation. Therefore, the errors related to GPS
measurement that have to be considered consist of noise of GPS carrier phase measurement,
ground calibration error of GPS receiver antenna phase center, error of satellite attitude
measurement, and fixing error of GPS receiver antenna.
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3.1.1. Noise of GPS Carrier Phase Measurement

The quality of GPS carrier phase observation data used is of utmost importance for relative
positioning. The noise of GPS carrier phase measurement belongs to random error, which
cannot directly be eliminated by GPS differential observation. Take the BlackJack receiver
and its commercial Integrated GPS and Occultation Receiver (IGOR) version, for example,
which are widely used for geodetic grade space missions and exhibit a representative noise
level of 1mm for L1 and L2 carrier phase measurements [18]. The reduced dynamic relative
positioning approach makes use of dynamical models of the spacecraft motion to constrain
the resulting relative position estimates, which allows an averaging of measurements from
different epochs. The influence of GPS carrier phase noise can be effectively reduced by
reduced dynamic relative positioning approach.

3.1.2. Ground Calibration Error of GPS Receiver Antenna Phase Center

The phase center location accuracy of the GPS receiver antennawill directly affect the veracity
of GPS observationmodeling. GPS receiver antenna phase center is the instantaneous location
of the GPS receiver antenna where the GPS signal is actually received. It depends on intensity,
frequency, azimuth, and elevation of GPS receiving signal.

The phase center locations can be described by the mechanical antenna reference point
(ARP), a phase center offset (PCO) vector, and phase center variations (PCVs). The PCO
vector describes the difference between the mean center of the wave front and the ARP.
PCVs represent direction-dependent distortions of the wave front, which can be modeled
as a consistent function that depends on azimuth and elevation of the observation from
the position indicated by the PCO vector. The position of GPS receiver antenna phase
center can be measured by ground calibration, such as using an anechoic chamber and
using field calibration techniques [18, 19]. Take the SEN67-1575-14+CRG antenna system
for instance. It is a dual-frequency GPS receiver antenna and has been used for TanDEM-
X mission. Its phase center has been measured by automated absolute field calibration [20].
Themean value of calibration result is shown in Figure 4 that the pattern of PCVs has obvious
character of systematic deviation. The maximum value for the mean PCVs on ionosphere-
free combination can reach to 1.5 cm. In addition, there also exist random errors in the same
direction of different receptions. The random errors are similar to the noise of GPS carrier
phase measurement and can also be smoothed by reduced dynamic relative positioning
approach.

As there is a slim difference between the line of sight (LOS) vectors of two satellites
during close formation flying, the common systematic errors of GPS receiver antenna phase
center and near-field multipath can be eliminated by differential GPS observation. Therefore,
the same type of GPS receiver antenna has to be selected for both formation satellites in order
to reduce the impact of these errors.

3.1.3. Error of Satellite Attitude Measurement

Satellite attitude data are obtained from star camera observations and provided as
quaternion. The error of satellite attitude measurement consists of a slowly varying bias and
a random error. Its impact on GPS relative positioning appears on the correction for GPS
observation data of single satellite, that is, the reference point of GPS observation data has to
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Figure 4: Ground calibrated mean PCVs result of SEN67-1575-14+CRG antenna on ionosphere-free
combination.

be corrected from GPS receiver antenna phase center to the mass center of satellite by satellite
attitude data and GPS receiver antenna phase center data. Take Satellite 1 for instance. The
correction in direction of LOS vector ej1 (in CIRF) is given by

δOffset,1 = −
(
ej1
)T ·MBody CIRF ·O1G1,

MBody CIRF = MOrbit CIRF ·MBody Orbit,
(3.1)

where O1G1 is GPS receiver antenna phase center location in body coordinate system of
Satellite 1, MBody CIRF is the transformation matrix from body coordinate system of Satellite
1 to CIRF and can be obtained by attitude quaternion data, MBody Orbit is the transformation
matrix from body coordinate system to orbit coordinate system of Satellite 1, and MOrbit CIRF

is the transformation matrix from orbit coordinate system of Satellite 1 to CIRF.
Assuming that the Euler angles are ϕ, θ, and ψ respectively, we can get

MBody Orbit = RX

(
ϕ
) · RY (θ) · RZ

(
ψ
)
, (3.2)

where RX(ϕ), RY (θ), RZ(ψ) are rotation matrices around roll axis, pitch axis, and yaw axis,
respectively.

Assuming that the errors of Euler angle measurements are εϕ, εθ, and εψ , respectively,
and the corresponding error matrix ofMBody CIRF is εM, the relation between εM and εϕ, εθ, εψ
can be expressed as

εM = MOrbit CIRF ·
(
∂RX

∂ϕ
RYRZ · εϕ + RX

∂RY

∂θ
RZ · εθ + RXRY

∂RZ

∂ψ
· εψ

)
. (3.3)
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Furthermore, the impact of Euler angle errors on MBody CIRF · O1G1 in (3.1) can be
obtained as

εMBody CIRF·O1G1 = MOrbit CIRF

·
(
∂RX

∂ϕ
RYRZ ·O1G1 · εϕ + RX

∂RY

∂θ
RZ ·O1G1 · εθ + RXRY

∂RZ

∂ψ
·O1G1 · εψ

)
.

(3.4)

εMBody CIRF·O1G1 is a three-dimensional random vector and its magnitude can be described
as the mean value of space radius, that is

σ2
MBody CIRF·O1G1

= E
(∣∣∣εMBody CIRF·O1G1

∣∣∣
2
)

= E
(
εTMBody CIRF·O1G1

· εMBody CIRF·O1G1

)
, (3.5)

where |·| denotes themagnitude of a vector, E(·) denotes the expectation of a random variable.
Assuming Euler angle errors of different axes are independent, we can get

σ2
MBody CIRF·O1G1

=
∣∣∣∣MOrbit CIRF · ∂RX

∂ϕ
RYRZ ·O1G1

∣∣∣∣
2

·
(
Var

(
εϕ
)
+
(
E
(
εϕ
))2)

+
∣∣∣∣MOrbit CIRF · RX

∂RY

∂θ
RZ ·O1G1

∣∣∣∣
2

·
(
Var(εθ) + (E(εθ))2

)

+
∣∣∣∣MOrbit CIRF · RXRY

∂RZ

∂ψ
·O1G1

∣∣∣∣
2

·
(
Var

(
εψ
)
+
(
E
(
εψ
))2)

,

(3.6)

where Var (·) denotes the variation of a random variable.
As RX(ϕ), RY (θ), RZ(ψ), and MOrbit CIRF are orthogonal matrices, for any v ∈ R3, we

can get

|RX · v|2 = |v|2,
∣∣∣∣
∂RX

∂ϕ
· v

∣∣∣∣
2

≤ |v|2

|RY · v|2 = |v|2,
∣∣∣∣
∂RY

∂θ
· v

∣∣∣∣
2

≤ |v|2

|RZ · v|2 = |v|2,
∣∣∣∣
∂RZ

∂ψ
· v

∣∣∣∣
2

≤ |v|2

|MOrbit CIRF · v|2 = |v|2.

(3.7)

Taking (3.7) into (3.6), we can get

σ2
MBody CIRF·O1G1

≤ |O1G1|2 ·
[
Var

(
εϕ
)
+
(
E
(
εϕ
))2 +Var(εθ) + (E(εθ))2 +Var

(
εψ
)
+
(
E
(
εψ
))2]

.

(3.8)
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Hence,

σ2
δOffset,1

= E
(
|εδOffset |2

)
= E

(∣∣∣∣
(
ej1
)T · εMBody CIRF·O1G1

∣∣∣∣
2
)

≤ E
(∣∣∣εMBody CIRF·O1G1

∣∣∣
2
)
. (3.9)

For differential GPS observation, the impact of attitude determination error on two
satellites can be given as follows

σΔδOffset ≤
√
σ2
δOffset,1

+ σ2
δOffset,2

. (3.10)

According to the TanDEM-X missions, the attitude determination accuracy has a
slowly varying bias of ±0.005◦ in the yaw, pitch, and roll components plus a 0.003◦ sigma
random error [21]. From (3.8), (3.9), and (3.10), we can get

σΔδOffset ≤
√√√√3 ·

(
|O1G1|2 + |O2G2|2

)
·
[(

0.005
180

π

)2

+
(
0.003
180

π

)2
]
. (3.11)

Take the GPS receiver antenna ARP location of TanDEM-X mission for instance, that
is,

|O1G1| = |O2G2| = 1.8976m, (3.12)

we can get

σΔδOffset ≤ 0.47mm. (3.13)

3.1.4. Fixing Error of GPS Receiver Antenna

The fixing error of GPS receiver antenna is caused by the inaccuracy of the fixed position
of antenna onboard the satellite. This error is a random error for multiple repeated satellite
missions. But for a single launch, it is considered to be a fixed bias vector in satellite body
coordinate system during satellite flying.

The fixing errors of GPS receiver antenna in body coordinate system of two satellites
are assumed as follows:

ΔE1 =
(
Δx1;Δy1;Δz1

)
,

ΔE2 =
(
Δx2;Δy2;Δz2

)
.

(3.14)
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For a mutually observed GPS satellite j, the LOS vectors of two formation satellites
are assumed to be ej1 and ej2. The impact of fixing errors of GPS receiver antenna for both
formation satellites on GPS observation data can be denoted as

Δδj1 =
(
ej1
)T ·MBody CIRF,1 ·ΔE1,

Δδj2 =
(
ej2
)T ·MBody CIRF,2 ·ΔE2.

(3.15)

The impact of fixing error of GPS receiver antenna on differential GPS observation is

Δδj12 =
(
ej2
)T ·MBody CIRF,2 ·ΔE2 −

(
ej1
)T ·MBody CIRF,1 ·ΔE1. (3.16)

Due to the close separation of two satellites, we can assume

ej1 ≈ ej2. (3.17)

From (3.16) and (3.17), we can get

Δδj12 ≈
(
ej2
)T · (MBody CIRF,2 ·ΔE2 −MBody CIRF,1 ·ΔE1

)

=
(
ej2
)T ·MBody CIRF,2 · (ΔE2 −ΔE1) +

(
ej2
)T · (MBody CIRF,2 −MBody CIRF,1

) ·ΔE1.

(3.18)

As the magnitudes of ΔE1 and ΔE2 are small (generally less than 0.5mm) and the

difference betweenMBody CIRF,1 andMBody CIRF,2 is insignificant; therefore, the impact of (ej2)
T ·

(MBody CIRF,2 − MBody CIRF,1) · ΔE1 in (3.18) can be neglected and the main influence is from

(ej2)
T ·MBody CIRF,2 ·(ΔE2−ΔE1). If themagnitude of GPS receiver antenna fixing error is 0.5mm

for each formation satellite, the maximum 3-dimensional impact on relative positioning can
reach to 1mm.

In addition, we can also draw a conclusion from the aforementioned analysis that the
GPS receiver antenna bias caused by thermal distortions of satellites can be cancelled out by
differential GPS observation.

3.2. Errors Related to Baseline Transformation

From (2.1), errors related to baseline transformation consist of two parts: one part is
introduced by transformation matrices M1 and M2, which is mainly caused by the satellite
attitude measurement error; the other part is introduced by S1O1 and S2O2, which is caused
by the inconsistency of two SAR antenna phase centers.
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3.2.1. Error of Satellite Attitude Measurement

TakeM1 for instance,

M1 = MCIRF ITRF ·MBody CIRF, (3.19)

where MCIRF ITRF is a transformation matrix from CIRF to ITRF, MBody ITRF has been defined
in (3.2).

Note that the transformation from CIRF to ITRF is in accordance with IERS 1996
conventions [22] and this transformation error can be neglected. The errors ofM1 andM2 are
also introduced by satellite attitude measurement errors. Similar to the analysis of satellite
attitude measurement error related to GPS measurement, from (3.8), we can obtain

σ2
M1·S1O1

≤ |S1O1|2 ·
[
Var

(
εϕ
)
+
(
E
(
εϕ
))2 +Var(εθ) + (E(εθ))2 +Var

(
εψ
)
+
(
E
(
εψ
))2]

. (3.20)

Hence, the impact of attitude determination errors on baseline transformation is given
as follows:

σAtt ≤
√
σ2
M1·S1O1

+ σ2
M2·S2O2

. (3.21)

Take the attitude determination accuracy of TanDEM-Xmission for instance and select
the magnitudes of S1O1 and S2O2 as follows

|S1O1| = |S2O2| = 2m, (3.22)

we can get

σAtt ≤ 0.50mm. (3.23)

3.2.2. Consistency Error of SAR Antenna Phase Center

Unlike GPS receiver antenna, active phased array antenna is selected for SAR antenna.
The phase center of the SAR antenna describes the variation of the phase curve within the
coverage region against a defined origin, here the origin of the antenna coordinate system
[18]. For two formation satellites of InSAR mission, the same type of SAR antenna should be
selected. As the identical processes of the scheme designing, manufacturing, and testing are
selected for SAR antennas of the same type, theoretically the consistency in configuration
and electric performance of SAR antennas should be well achieved. But factually there
exist the errors during manufacturing, fixing, and deploying of SAR antenna, therefore, the
consistency error of the SAR antenna phase center corresponding to the same beam occurs. It
is mainly caused by two factors:

(1) The inconsistency between receiver channels, which is introduced by manufac-
turing process, such as the instrument difference, machining art level, module
assembling level and the work temperature difference, et al.
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Table 1: Orbit elements of formation satellites.

Parameters of satellites Satellite 1 Satellite 2

Semimajor axis 6886478m 6886478m
Inclination 97.4438◦ 97.4438◦

Eccentricity 0.00117 0.001073
Argument of perigee 90◦ 90◦

Right ascension of ascending node 0◦ 0.01171◦

True anomaly 269.99677◦ 270.00622◦

(2) The inconsistency between the locations of apertures, which is mainly caused
by the fixing flatness difference, relative dislocation difference, the deployment
inconsistency of SAR antennas and the configuration distortions caused by different
thermal circumstances, and others.

According to current ability of engineering, the phase inconsistency between T/R
modules at X-band can be constrained to 15◦ (3σ) and the inconsistency between the
locations of apertures can be constrained to λ/10 (3σ) [23] that equals to 36◦ (3σ) of
phase inconsistency. Assuming that the number of T/R modules of an SAR antenna is

N, the synthetic phase consistency error can be constrained to
√
((15◦)2 + (36◦)2)/N =

39◦/
√
N (3σ). Hence, the consistency error of two SAR antenna phase center locations can

be constrained to

(
39◦/

√
N
)

360◦
·
√
2 · λ = 0.153 · λ√

N
(3σ). (3.24)

Take the TanDEM-X mission, for example. Setting N = 384, λ = 0.032m, the
consistency error of SAR antenna phase center location can be constrained to 0.25mm (3σ).

4. Simulations for InSAR Spatial Baseline Determination

4.1. Simulation Settings

The HELIX satellite formation is selected for the simulations and the orbit elements of two
satellites are shown in Table 1. The spaceborne SAR is assumed to work at X-band with a
wavelength of 0.032m and consist of 384 T/R modules.

The entire simulation consists of GPS measurement simulation and baseline transfor-
mation simulation. The flow chart of GPS observation data simulation is shown in Figure 5.
The International Reference Ionosphere 2007 (IRI2007)model is used to simulate ionospheric
delay, Allan variation is used to simulate the clock offset of GPS receiver, and the ARP data,
PCO data [18] and PCVs data of GPS receiver antenna system SEN67-1575-14+CRG are
used to simulate the GPS receiver antenna phase center locations. The PCVs data contains
the mean values and RMS values corresponding to frequency, azimuth, and elevation of
received signal. The attitude data of formation satellite is generated as follows: at first, a
transformation matrix from CIRF to satellite orbit coordinate system is obtained from orbit
data of a formation satellite in CIRF; second, assuming the real Euler angles are 0◦, that
is, satellite orbit coordinate system and satellite body coordinate system are the same, the
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Figure 5: Flow chart of GPS observation data simulation.

simulating data of Euler angles are generated by attitude measurement error model list in
Table 2; third, the transformation matrix from satellite orbit coordinate system to satellite
body coordinate system can be obtained by the simulating data of Euler angles; at last, the
attitude quaternion is obtained by the transformation matrix from CIRF to satellite body
coordinate system.

Baseline transformation simulation is the process that the spatial baseline in ITRF is
obtained by mass center data of formation satellites in ITRF, attitude simulation data, and
SAR antenna phase center simulation locations in satellite body coordinate system. The
real SAR antenna phase center simulation location in satellite body coordinate system is
(1.2278m, 1.5876m, 0.0223m). The error accuracies and models in the simulations are shown
in Table 2.

4.2. Simulations of Errors Related to GPS Measurement

Each error related to GPS measurement is analyzed by single factor simulation, which is
intended to obtain its impact on relative positioning based on dual-frequency GPS. The
impact of each error is drawn by the comparison residuals between the relative position
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Table 2: Error accuracies and modeling descriptions in simulations.

Error type Error accuracy Modeling description
GPS code measurement
noise 0.5m (1σ) Gaussian white noise model with mean value of

0m and standard deviation of 0.5m
GPS carrier phase
measurement noise 0.002m (1σ) AR(2) model with mean value of 0m and standard

deviation of 0.002m
Ground calibration error
of GPS receiver antenna
phase center

— ARP data, PCO data, and PCVs data (mean value
data and RMS data) of SEN67-1575-14+CRG

Attitude measurement
error

Fixed bias of 0.005◦

in the yaw, pitch,
and roll components
plus a 0.003◦ (1σ)
random error

Gaussian white noise model with mean value of
0.005◦ and standard deviation of 0.003◦ in the yaw,
pitch, and roll components

Fixing error of GPS
receiver antenna 0.5mm (3σ)

A fixed vector with direction randomly drawn in
unit ball and magnitude of 0.5mm in each satellite
body coordinate system

Consistency error of SAR
antenna phase center 0.25mm (3σ)

A fixed vector with direction randomly drawn in
unit ball and magnitude of 0.25mm in body
coordinate system of Satellite 1

solutions determined by GPS observation data and relative positions obtained by standard
orbits of formation satellites. The relative position solutions are implemented in the separate
software tools as part of the NUDT Orbit Determination Software 1.0. The GPS observation
data processing consists of GPS observation data preprocessing [24], reduced dynamic
precise orbit determination for single satellite [25], GPS observation data editing [17, 24], and
reduced dynamic precise relative positioning. The RMS values of KBR comparison residuals
of GRACE relative position solution are about 1-2mm implemented by this software.

4.2.1. Simulations for GPS Carrier Phase Measurement Noise

The noises of GPS carrier phase (L1 and L2) measurements are separately simulated by
second-order autoregressive model (AR(2)) as follows

e
j

L(ti) = e
j

L(ti−1) − 0.67 · ejL(ti−2) + ε
j

L(ti), (4.1)

where εjL(ti) is the noise of carrier phase L measurement for GPS satellite j at epoch ti, ε
j

L(ti)
is the Gaussian white noise.

From the following formula

E
(
e
j

L(ti)
)
= 0m; σ

(
e
j

L(ti)
)
= 0.002m, (4.2)

where σ(·) denotes the standard deviation of a random variable, we can get

E
(
ε
j

L(ti)
)
= 0m; σ

(
ε
j

L(ti)
)
= 0.0012m. (4.3)

One instance of carrier phase noise simulation is shown in Figure 6.
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Figure 6: One instance of carrier phase measurement noise simulation.

50 groups of 24 h GPS observation data (interval of 30 s) for two formation satellites are
simulated by only adding the noises of GPS carrier phase (L1 and L2) measurements. By the
processing of relative positioning, the mean RMS values of comparison residuals of relative
position solutions in ITRF (Figure 7) are 0.340mm of x-axis, 0.333mm of y-axis, 0.288mm of
z-axis, and 0.560mm of 3 dimensions. It is shown by simulation results that the GPS carrier
phase noise can be well smoothed by reduced dynamic relative positioning approach.

4.2.2. Simulations for Ground Calibration Error of GPS Receiver Antenna Phase Center

Ground calibration error of GPS receiver antenna phase center is mainly caused by PCVs.
The PCVs values are described by the mean value and RMS value corresponding to the
direction of received signal. The PCV value corresponding to the direction of received signal
is simulated by Gaussian white noise with mean value and RMS value obtained from ground
calibration result of GPS receiver antenna system SEN67-1575-14+CRG.

The GPS observation data are simulated only considered ground calibration error of
GPS receiver antenna phase center. By the precise orbit determination for single satellite, the
mean RMS values of comparison residuals of orbit solutions in ITRF are 4.018mm of x-axis,
4.154mm of y-axis, 2.427mm of z-axis, and 6.269mm of 3 dimensions. The impacts of PCVs
on single satellite orbit solutions are mainly made by the mean value part of PCVs, while the
impacts of RMS part in ITRF are only 0.119mm of x-axis, 0.094mm of y-axis, 0.116mm of
z-axis, and 0.191mm of 3 dimensions, and the RMS part of PCVs can nearly be smoothed.
By the processing of relative positioning, the mean RMS values of comparison residuals of
relative position solutions in ITRF are 0.067mm of x-axis, 0.070mm of y-axis, 0.056mm of z-
axis, and 0.112mm of 3-dimensions. As the nearly equal models of ground calibration errors
of GPS receiver antenna phase centers for two formation satellites are selected and the LOS
vectors are nearly the same for close satellite formation, the impacts of mean value part of
PCVs can nearly be cancelled out by differential GPS observation and impacts of RMS part
can be well smoothed by the constraints of orbit dynamical models. It is shown by the results
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Figure 7: Simulation results of GPS carrier phase measurement noise for relative positioning.

of single satellite orbit solutions and relative position solutions that the characters of GPS
receiver antenna phase centers onboard two formation satellites must have great consistency.

4.2.3. Simulations of Satellite Attitude Measurement Error for GPS Relative Positioning

The Euler angle errors are simulated by Gaussian white noise with 0.005◦ of mean value and
0.003◦ of standard deviation, and 50 groups of 24 h GPS observation data for two formation
satellites are simulated by only adding the attitude measurement errors. The mean RMS
values of comparison residuals of relative position solutions in ITRF (Figure 8) are 0.069mm
of x-axis, 0.075mm of y-axis, 0.081mm of z-axis, and 0.128mm of 3 dimensions. The 3
dimensional maximum of comparison residuals in these 50 simulations is 0.219mm, which is
less than 0.47mm and is well consistent with aforementioned analysis in Section 3.1.3.

4.2.4. Simulations for Fixing Error of GPS Receiver Antenna

The fixing error of GPS receiver antenna belongs to systematic error and it is a fixed
bias vector in satellite body coordinate system. At first, four representatively “extreme”
circumstances of fixing errors of GPS receiver antennas onboard two formation satellites
are simulated. The so-called “extreme” circumstance is that the directions of two fixed bias
vectors are opposite. Four representatively “extreme” circumstances of fixing errors of GPS
receiver antennas here are directions along X-axis, Y -axis, Z-axis, and diagonal of X-axis,
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Figure 8: Simulation results of satellite attitude measurement error for relative positioning.

Table 3: Relative positioning results for four representatively “extreme” circumstances of fixing errors of
GPS receiver antenna.

x/mm y/mm z/mm 3 dimension/mm

X-axis 0.512 0.499 0.701 1.002
Y-axis 0.677 0.694 0.133 0.979
Z-axis 0.072 0.083 0.081 0.136
Diagonal 0.502 0.503 0.429 0.830

Y -axis, Z-axis in satellite body coordinate system, respectively. All the magnitudes of fixed
bias vectors are selected 0.5mm. 24 h GPS observation data for two formation satellites are
simulated by only considering the four representatively “extreme” circumstances of fixing
errors of GPS receiver antennas. The results of relative positioning are shown in Table 3.

From Table 3, it is shown that the fixing errors of GPS receiver antenna along X-axis
and Y -axis will mainly be absorbed by relative position solutions and the impact can reach
to 1mm, but the error along Z-axis can be smoothed by the constraints of orbit dynamical
models.

In practice, the occurrence of “extreme” circumstances is extremely low and they are
just analyzed as the ultimate circumstances. For multiple repeated satellite missions, the
fixing error of GPS receiver antenna is a random error. So this error can be simulated as a
fixed vector with direction randomly drawn from unit ball and magnitude of 0.5mm in each
satellite body coordinate system. 50 groups of 24 h GPS observation data for two formation
satellites are simulated by only adding the simulations of fixing error of GPS receiver
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Figure 9: Simulation results of fixing error of GPS receiver antenna for relative positioning.

antenna. The mean RMS values of comparison residuals of relative position solutions in ITRF
(Figure 9) are 0.295mm of x-axis, 0.294mm of y-axis, 0.249mm of z-axis, and 0.495mm of 3
dimensions.

From aforementioned simulations of each error related to GPS measurement, it is
shown that the impacts of GPS carrier phase measurement noise and fixing error of GPS
receiver antenna on GPS relative positioning are much bigger than other errors related to GPS
measurement and these two errors are the main factors of errors related to GPSmeasurement.

4.3. Simulations of Errors Related to Baseline Transformation

In this section, the impact of each error on baseline transformation is obtained by single factor
simulation. Each impact is given by the comparison between the spatial baseline solutions
obtained with and without errors.

4.3.1. Simulations of Satellite Attitude Measurement Error for Baseline Transformation

The satellite attitude simulation data used here are the same as Section 4.2.3. By baseline
transformation with attitude simulation data, the mean RMS values of comparison residuals
of spatial baseline solutions in ITRF (Figure 10) are 0.115mm of x-axis, 0.115mm of y-
axis, 0.133mm of z-axis, and 0.210mm of 3 dimensions. The 3 dimensional maximum of



18 Mathematical Problems in Engineering

x
 (m

m
)

0
0 10 20 30 40 50

Number of simulations

Average RMS value = 0.115 mm 

0.1

0.2

(a)

0
0 10 20 30 40 50

Number of simulations

Average RMS value = 0.115 mm 

0.1

0.2

y
 (m

m
)

(b)

0
0 10 20 30 40 50

Number of simulations

Average RMS value = 0.133 mm 

0.1

0.2

z
 (m

m
)

(c)

Figure 10: Simulation results of satellite attitude measurement error for baseline transformation.

comparison residuals in these 50 simulations is 0.213mm, which is less than 0.50mm and is
consistent with aforementioned analysis in Section 3.2.1.

4.3.2. Simulations for Consistency Error of SAR Antenna Phase Center

It is shown by the analysis in Section 3.2.2 that the accuracy of consistency error of SAR
antenna phase center is better than 0.25mm (3σ) in current simulation circumstances. This
error is only added to the SAR antenna phase center of Satellite 1 and can be simulated as
a fixed vector with direction randomly drawn from unit ball and magnitude of 0.25mm in
body coordinate system of satellite 1. By 50 groups of simulations, the mean RMS values of
comparison residuals of spatial baseline solutions in ITRF (Figure 11) are 0.142mm of x-axis,
0.142mm of y-axis, and 0.153mm of z-axis.

4.4. Simulations of Total Error Sources

In this section, all the errors are added to the flow of spatial baseline determination
simulations according to the error models listed in Table 2. By 50 groups of total error sources
simulations, the mean RMS values of comparison residuals of spatial baseline solutions in
ITRF (Figure 12) are 0.500mm of x-axis, 0.500mm of y-axis, 0.452mm of z-axis, and 0.845mm
of 3 dimensions.
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Figure 11: Simulation results of consistency error of SAR antenna phase center for baseline transformation.
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Figure 12: Simulation results of total error sources for spatial baseline determination.
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Figure 13: Simulation results of total errors related to GPS measurement for relative positioning.

In addition, the impact of total errors related to GPS measurement on GPS relative
positioning in ITRF (Figure 13) is 0.454mm of x-axis, 0.452mm of y-axis, 0.388mm of z-
axis, and 0.755mm of 3 dimensions, and the impact of total errors related to baseline
transformation in ITRF (Figure 14) is 0.185mm of x-axis, 0.185mm of y-axis, 0.206mm of
z-axis, and 0.334mm of 3 dimensions.

It is shown by the simulations of total error sources that errors related to GPS
measurement are the main error sources for the spatial baseline determination and 1mm
level InSAR spatial baseline determination can be realized according to current simulation
conditions.

5. Conclusions

In this paper, the errors introduced by spatial baseline measurement for InSAR mission are
deeply studied. The impacts of errors on spatial baseline determination are analyzed by single
factor simulations and total error sources simulations. The main conclusions are drawn as
follows.

(1) The spatial baseline measurement errors can be classified into two groups: errors
related to GPS measurement and errors related to baseline transformation. By
simulations, the three-dimensional impacts of these errors on spatial baseline
determination in ITRF are 0.755mm and 0.334mm, respectively. It is shown that
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Figure 14: Simulation results of total errors related to baseline transformation for baseline transformation.

the errors related to GPS measurement are the main influence on spatial baseline
determination.

(2) By the results of single factor simulations, the three dimensional impacts of GPS
carrier phase measurement noise and the fixing error of GPS receiver antenna on
GPS relative positioning in ITRF are 0.560mm and 0.495mm, respectively. These
two errors are the main factors of errors related to GPS measurement.

(3) It is shown by total error sources simulations that the impact of all the errors on
spatial baseline determination in ITRF is 0.500mm of x-axis, 0.500mm of y-axis,
0.452mm of z-axis, and 0.845mm of 3 dimensions. Therefore, 1mm level InSAR
spatial baseline determination can be realized.
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