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A simplified model of magnetic saturation characteristics is proposed in this paper for transient
calculation of the electric networks including magnetizing branches. The model represents the
magnetic saturation characteristics by the continuous function instead of the piecewise linear
approximation. Based on the proposed model, an efficient transient algorithm is developed. The
nonlinear differential equations describing the transient behavior of the magnetizing branches are
solved by the semiexplicit Runge-Kutta method, in which noniterative computations are involved.
The transient calculation for the remaining linear network is performed in terms of the solution to
the magnetizing branches. A comparison is made between calculated and experimental results to
confirm the validity of the algorithm.

1. Introduction

Electric power systems contain a series of ferromagnetic components, such as power trans-
formers, potential transformers, and shunt reactors. Owing to the presence of the ironcores,
the ferromagnetic components have nonlinear magnetizing characteristics.When a switching
or fault operation occurs in the vicinity of the ferromagnetic components, their magnetic satu-
ration characteristics may exert a significant influence on the transient phenomena. In such a
situation, it is necessary to take account of the magnetic saturation characteristics in transient
calculation. The magnetic saturation characteristics are usually described by the flux linkage-
magnetizing current curves, namely, the saturation curves. The piecewise linear approach
has been widely employed for simulating the saturation curves in the transient solution of
magnetizing branches [1–5]. In fact, this approach can only give a roughly approximate treat-
ment to the nonlinearity of the saturation curves. When a saturation curve is approximated in
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Figure 1: Circuit representation of magnetizing branch.

piecewise linear form, some illegal overshoot conditions are frequently caused at the turning
points of piecewise linear inductances, which may give rise to a numerical error for the tran-
sient calculation [4]. The compensation method has also been used to solve the transient phe-
nomena associatingwith nonlinear elements [4, 5]. However, it leads to an increase in compu-
tational burden due to its iterative solution. In view of these drawbacks, this paper proposes a
simplified model of magnetic saturation characteristics for transient solution of magnetizing
branches. The saturation curves are represented by the continuous function instead of the
piecewise linearization. On the basis of the model, an efficient algorithm is developed for
transient calculation. In the algorithm, the electric network is divided into two parts, that
is, the magnetizing branches and the remaining linear network. The nonlinear differential
equations are formed for describing the transient behavior of the magnetizing branches. The
semiexplicit Runge-Kutta method is used to numerically solve these equations, which can
avoid the iterative computations. The transient calculation for the remaining linear network
can be performed subsequent to the solution to the magnetizing branches. In order to confirm
the validity of the algorithm, the calculated results are compared with the experimental ones.

2. Modeling of Magnetizing Branches

From the point of view of the practical application in transient calculation, a magnetizing
branch can be simplified as a nonlinear inductance in parallel with an appropriate core loss
resistance Rm [6–9], as shown in Figure 1. The constant resistanceRm can be determined from
the manufacturer’s data on the core loss of ferromagnetic components versus applied voltage
[8, 9]. The nonlinear inductance is characterized by the saturation curve, as shown in Figure 2.
In this study, the saturation curve is formulated as

λ = Ai + B tan−1 i

W
, (2.1)

where λ is flux linkage, i is magnetizing current, and A, B, W are the constants which can be
determined from the corresponding measured data by using the least squares curve fitting
method. The dynamic inductance necessary to transient calculation can be derived from (2.1)

Ld =
dλ

di
= A +

BW

W2 + i2
. (2.2)
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Figure 2: Saturation curve.
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Figure 3: An electric network including N magnetizing branches.

In the unsaturation region, the small magnetizing current yields a large linear inductance

Ld0 ≈ A +
B

W
. (2.3)

In the saturation region, the magnetizing current becomes large and the dynamic inductance
is reduced to

Lds ≈ A. (2.4)

It is clear from (2.3) and (2.4) that (2.1) can give a reasonable description to the nonlinear
saturation behavior of practical ferromagnetic components, such as power transformers and
potential transformers.

3. Algorithm for Transient Calculation

An electric network including N magnetizing branches is depicted in Figure 3, where the N
core loss resistances (Rm) have been incorporated into the linear network. Let λ and i denote
the flux linkage and magnetizing current vectors, respectively, that is, λ = [λ1, λ2, . . . , λN]T

and i = [i1, i2, . . . , iN]T. In order to obtain the solution to the N nonlinear inductances,
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a Thevenin equivalent procedure is made for Figure 3 [1, 4]. By removing the N nonlinear
inductances from Figure 3, the opened-circuit voltage vector u0(u0 = [u10,u20, . . . ,uN0]

T)
and input impedance matrix Z0(N × N) associated with the N ports can be conveniently
calculated by the method given in [4, 5], as shown in Figure 4. After obtaining u0 and Z0,
Figure 3 is simplified as a Thevenin equivalent network expressed in matrix form, as shown
in Figure 5. The matrix differential equation can be given for theN nonlinear inductances

dλ

dt
= u0 − Z0i. (3.1)
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The above derivative can be changed into

dλ

dt
=

dλ

di
di
dt

= Ld(i)
di
dt

. (3.2)

The nonlinear dynamic inductance matrix Ld(i) is given as

Ld(i) = diag
[
dλ1

di1
,
dλ2

di2
, . . . ,

dλN

diN

]
, (3.3)

where diag denotes the diagonal matrix and theN nonlinear inductances are considered to be
uncoupling for the real reason. Each diagonal element of the matrix Ld(i) can be determined
by (2.2). Substituting (3.2) into (3.1) leads to

di
dt

= L−1
d (i)(u0 − Z0i). (3.4)

Letting F(i) = L−1
d (i)(u0 − Z0i), this can be rewritten in a simplified form

di
dt

= F(i). (3.5)

Equation (3.5) represents N nonlinear differential equations and may be a system of stiff
differential equations when modeling the real data of the electric networks. This kind of
problem is apparent in numerical solution of power transformer transients. The stiffness
of differential equations makes it difficult for the explicit difference scheme to solve these
equations successfully. The explicit difference scheme, applied to stiff differential equations, is
numerically unstable because this difference scheme results in an increase of truncation error
[10]. The implicit difference scheme, although numerically stable, does increase the solution
time for the magnetizing branches due to its incorporating of the iterative computations
into the numerical solution process. Obviously, a suitable solving technique for (3.5) should
be numerically stable and avoid the iterative computations. The semiexplicit Runge-Kutta
method can accomplish this purpose. A generalized semiexplicit Runge-Kutta difference
scheme is given as follows [11]:

in+1 = in + k1H1 + k2H2 + · · ·
H1 = Δt[F(in) + a1A(in)H1]

H2 = Δt[F(in + b1H1) + a2A(in + c1H1)H2]

...
...,

(3.6)

where A is the Jacobian matrix, A(i) = ∂F(i)/∂i. Through a quite tedious calculation, it is
possible to expand in+1 − in in (3.6) as a power series inΔt and compare this with the Taylor’s
series. The detail was given in [12]. In order to ensure the correspondence between the early
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Figure 6: Completely linear network.

terms of both the series, the following relationships should be satisfied for a truncation error
0[(Δt)4]:

Δt : k1 + k2 − 1 = 0

(Δt)2 : k1a1 + k2(a2 + b1) − 1
2
= 0

(Δt)3 :

⎧⎪⎪⎨
⎪⎪⎩
k1a

2
1 + k2

[
a2
2 + (a1 + a2)b1

] − 1
6
= 0

k2

(
a2c1 +

1
2
b21

)
− 1
6
= 0.

(3.7)

These relationships involve six adjustable constants, k1, k2, a1, a2, b1, and c1. Choosing the
first two constants k1 = 0.75 and k2 = 0.25 [13], the remaining four constants can be
determined as

a1 = a2 =
1
2

⎛
⎝1 +

√
1
3

⎞
⎠ = 0.7886751345 95

b1 = − 2√
3
= −1.1547005383 8

c1 = 0.

(3.8)

Thus, (3.6) is simplified as a two-stage and third-order difference scheme

in+1 = in + 0.75H1 + 0.25H2,

H1 = Δt[1 − 0.7886751345 95ΔtA(in)]−1F(in),

H2 = Δt[1 − 0.7886751345 95ΔtA(in)]−1F(in − 1.1547005383 8H1),

(3.9)

where 1 is unit matrix. Once the magnetizing current vector i is obtained by using the dif-
ference formula (3.9) to solve (3.5), the transient calculation of the linear network in Figure 3
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Figure 7: An electric network containing two groups of magnetizing branches.
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Figure 8: Single phase network taking matrix form.

can be performed easily. By replacing theN nonlinear inductanceswith theN current sources
equal to the N known elements of the magnetizing current vector i, as shown in Figure 6,
Figure 3 is changed into a completely linear network. The transient responses can be
calculated for the linear network by using the algorithm presented in [1, 4, 5].

4. Case Study

An electric network with two groups of magnetizing branches at both ends of transmission
lines is shown in Figure 7, where the group at the sending end corresponds to a transformer
and the other at the receiving end corresponds to a reactor. The core loss resistance of the
reactor is ignored [14]. The network data are given in the following:

e(t) = [1.0 cos(ωt + 180◦), 1.0 cos(ωt + 60◦), 1.0 cos(ωt − 60◦)]T p.u

Zc = diag[606.87, 279.88, 279.88]Ω, τ =
[
1.43 × 10−3, 1.01 × 10−3, 1.01 × 10−3

]T
s,

l = 305 km, L =

⎡
⎢⎢⎣

0.592 −0.149 −0.149
−0.149 0.592 −0.149
−0.149 −0.149 0.592

⎤
⎥⎥⎦H, R =

⎡
⎢⎢⎣
13.08 −3.27 −3.27
−3.27 13.08 −3.27
−3.27 −3.27 13.08

⎤
⎥⎥⎦Ω

λt = 0.015 it + 0.691 tan−1
it

0.142
p.u., Rmt = 83.839 kΩ, λr = 0.31ir + 0.83 tan−1

ir
0.91

p.u.

(4.1)
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Figure 9: (a) Transient equivalent circuit of R–L coupled branches; (b) transient equivalent circuit of trans-
mission lines.
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Figure 10: Equivalent calculation network.

For the sake of convenience, Figure 7 is depicted as a single phase network taking matrix
form, as shown in Figure 8. The R–L coupled branches and the transmission lines are
further represented as their respective transient equivalent circuits, as shown in Figure 9.
In the transient equivalent circuits, RRL and IRL(t) are the equivalent resistance matrix and
current source vector of the R–L coupled branches, and Z, Ils(t) and Ilr(t) are the phase surge
impedance matrix and historical current source vectors of the transmission lines, respectively.
The special formulas for calculating these matrices and vectors have been derived in [5, 15].
By combining Figure 9 with Figure 8, an equivalent calculation network is given in Figure 10.
With the terminals of the transformer and reactor magnetizing branches open-circuited
in Figure 10, two Thevenin equivalent subnetworks can be found, and then the transient
calculation can be performed by following the procedure stated above. The calculated
voltage waveforms at the receiving end of transmission lines are shown in Figure 11,
where the corresponding experimental waveforms obtained from the laboratory-scale model
network are simultaneously given for comparison. It can be seen from Figure 11 that a better
consistency appears between calculated and experimental results. In addition, the receiving
end voltages are calculated by the traditional piecewise linear approach. The nonlinear
saturation curve is simulated as piecewise linear inductances with 3 slopes. The calculated
result shows that sudden jumps occur on the calculated voltage waveforms and make them
unsmoothed, as illustrated in Figure 12. However, such a numerical error is not found on the
voltage waveforms calculated by the proposed algorithm. The voltage peak values calculated
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Figure 11: Calculated and experimental voltage waveforms.

by the proposed algorithm are closer to the experimental values than these by the piecewise
linear approach.

5. Conclusions

An approach to modeling the magnetic saturation characteristics of magnetizing branches
has been presented. It uses a continuous function to represent the saturation curves
instead of the piecewise linearization and is capable of characterizing the saturation
nonlinearity of practical ferromagnetic components. By implementing this approach into
transient calculation, an efficient algorithm has been developed. The transient behavior of
the magnetizing branches is described by a set of nonlinear differential equations, and the
semiexplicit Runge-Kutta method is employed to solve these equations so that the iterative
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Figure 12: Contrast voltage waveforms.

computations can be avoided. Then, the complete network solution can be obtained in terms
of the solution to the magnetizing branches. The algorithm is useful in numerical simulation
of the transients in the electric networks including ferromagnetic components. A better
agreement is shown between calculated and experimental results, which verifies the validity
of the algorithm.
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