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We study a kind of nonlinear heat equation with temperature-dependent thermal properties by
the aid of the extended Tanh method and the Exp-function method. We obtain abundant new
exact solutions of the equation. By comparing both of the methods, we find that the Exp-function
method gives more solutions in this problem.

1. Introduction

The classical heat equation

∂u

∂t
=

∂2u

∂x2
, (1.1)

also known as the diffusion equation, describes in typical applications of the evolution in time
of the density u = u(x, t) of some quantities such as heat and chemical concentration [1, page
44]. In this case, the thermal diffusivity and thermal conductivity of the medium are assumed
to be constant. However, in some media such as gases, the parameters are proportional to the
temperature of the medium giving rise to a nonlinear heat equation of the following form [2]:

C(x)
∂u

∂t
= λ

∂

∂x

(
ku

∂u

∂x

)
, (1.2)
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where C = C(x) is the conductivity, k is diffusivity, and λ is a constant. When the diffusivity
is proportional to uα, a more general nonlinear heat equation reads as

C(x)
∂u

∂t
= λ

∂

∂x

(
uα ∂u

∂x

)
. (1.3)

In a recent paper [3], using the Adomian decomposition method, the author discussed the
following nonlinear heat equation with temperature dependent diffusivity:

∂u

∂t
=

∂

∂x

(
f(u)

∂u

∂x

)
, (1.4)

where f(u) = umand m = 2,−2, 1/2.
In this paper we are interested in the following nonlinear heat equation:

∂u

∂t
=

∂

∂x

(
u−1 ∂u

∂x

)
(1.5)

and discuss its traveling wave solutions. As we know, a solution u of the form

u(x, t) = U(ξ), ξ = k(x − ct) (1.6)

is called a traveling wave (with wavefront normal to k, velocity c/|k|, and profileU) [1, page
172].

Here we employ, for the first time, the extended Tanh method and Exp-function
method for solving (1.5), and abundant new exact solutions of (1.5) are presented. We
compare both of the methods and find that the Exp-function method is more efficient than
the extended Tanh method in this problem.

2. The Extended Tanh Method

We now describe the extended Tanh method for the given partial differential equations.
The Tanh method was defined by Malfliet [4] and Fan and Hon [5]. The Tanh method was
successfully applied to nonlinear evolution equations [6, 7], and so on. The extended Tanh
method was presented in [8] to solve breaking solitary equation. Wazwaz summarized the
main steps introduced for using this method as follows [9].

We consider first a general form of nonlinear partial differential equation involving
the two variables t, x

P(u, ut, ux, uxx, . . .) = 0. (2.1)

In this paper we only discuss the traveling wave solutions.
(1) To find the traveling wave solution of (2.1), make the transformation

u(x, t) = U(ξ), ξ = k(x − ct), (2.2)
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where k, c are constants to be determined later. From this reason, we use the following
changes:

∂

∂t
= −kc d

dξ
,

∂

∂x
= −k d

dξ
,

∂2

∂x2
= k2 d2

dξ2
,

∂3

∂x3
= k3 d3

dξ3
, . . . ,

(2.3)

and so on for the other derivates. Using (2.3) changes the NLPDE (2.1) to an ODE

P
(
U,U′, U′′, U′′′, . . .

)
= 0. (2.4)

(2) If all terms of the resulting ODE contain derivatives in ξ, then by integrating this
equation, by considering the constant of integration to be zero, we obtain a simplified ODE.

(3)We then introduce a new independent variable

Y = tanh(ξ) or Y = coth(ξ) (2.5)

that leads to the change of derivates

d

dξ
=
(
1 − Y 2

) d

dY
,

d2

dξ2
=
(
1 − Y 2

)(
−2Y d

dY
+
(
1 − Y 2

) d2

dY 2

)
,

d3

dξ3
=
(
1 − Y 2

)((
6Y 2 − 2

) d

dY
− 6Y

(
1 − Y 2

) d2

dY 2
+
(
1 − Y 2

)2 d3

dY 3

)
,

(2.6)

where other derivatives can be derived in a similar manner. We use a new independent
variable [9]

Y = tan(ξ) or Y = −cot(ξ) (2.7)

that leads to the change of derivates

d

dξ
=
(
1 + Y 2

) d

dY
,

d2

dξ2
=
(
1 + Y 2

)(
−2Y d

dY
+
(
1 + Y 2

) d2

dY 2

)
,

d3

dξ3
=
(
1 + Y 2

)((
6Y 2 + 2

) d

dY
+ 6Y

(
1 + Y 2

) d2

dY 2
+
(
1 + Y 2

)2 d3

dY 3

)
,

(2.8)

where other derivatives can be derived.
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(4) Introduce the ansatz

U(ξ) =
m∑

s=−n
asY

s, (2.9)

wherem,n are nonnegative integers, in most cases, that will be determined. Substituting (2.6)
and (2.7) into the ODE (2.4) yields an equation in powers of Y .

(5) To determine the parameterm,n, we usually balance linear derivative term of the
highest order in the resulting equation with the highest order nonlinear terms [8, 9]. With
m,n determined, equate the coefficients of powers of Y to zero in the resulting equation. This
will give a system of algebraic equations involving theas, (s = −n, . . . , 0, 1, . . . , m). Having
determined these parameters, knowing that it is a positive integer in most cases, using (2.9)
we obtain an analytic solution in a closed form.

It is worthy notice if n = 0 in (2.9), then the extended Tanh method reduces to the Tanh
method, so the Tanh method is a special case of the extended Tanh method.

3. The Exp-Function Method

Recently, He and Wu [10] proposed a straightforward and concise method called Exp-
function method to obtain exact solutions of NLEEs. The Exp-function method leads to both
generalized solitary solutions and periodic solutions [11–14] and was successfully applied
to KdV equation with variable coefficients [15], to the combine KdV-mKdV equations with
variable coefficients [16], to difference-differential equations [17, 18], and so forth. This
paper applies the Exp-function method with the help of Mathematica computation to a kind
of nonlinear heat equation with temperature-dependent thermal properties; abundant new
exact solutions are hereby constructed. We consider a general nonlinear PDE in the form

P(u, ut, ux, uxx, . . .) = 0. (3.1)

Using a transformation

u(x, t) = U(ξ), ξ = α
(
x − βt

)
, (3.2)

where α, β are constants, we can rewrite (3.1) in the following nonlinear ODE:

Q
(
U,U′, U′′, U′′′, . . .

)
= 0, (3.3)

where the prime denotes the derivation with respect to ξ.
According to Exp-function method, we assume that the solution can be expressed in

the form [10]

U(ξ) =
∑d

n=−c an exp(nξ)∑q
m=−p bm exp(mξ)

, (3.4)
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where c, d, p, and q are positive integers which could be freely chosen and an and bm are
unknown constants to be determined. In order to determine the values of c and p, we balance
the linear derivative term of highest order in (3.3)with the highest order nonlinear term [10].
Similarly, to determine the values of d and q, we balance the linear derivative term of lowest
order in (3.3)with the lowest order nonlinear term [10].

4. The Extended Tanh Method to the Nonlinear Heat Equation (1.5)

As described in Section 2, we make the transformation

u(x, t) = U(ξ), ξ = r(x − ct), (4.1)

and (1.5) becomes

−cU2U′ + r
(
U′)2 − rUU′′ = 0. (4.2)

By balancing the nonlinear termsU2U′, (U′)2, UU′′,we have

2m + (m + 1) = 2(m + 1) = m + (m + 2),

−2n − (n + 1) = −2(n + 1) = −n − (n + 1),
(4.3)

which yields m = n = 1. Therefore by the use of the Tanh method, we may choose a solution
of (4.2) in the form

U = U(ξ) = a−1Y−1 + a0 + a1Y, (4.4)

where Y = tanh(ξ) or Y = coth(ξ) and aj (j = −1, 0, 1) are constants to be determined later.
Substituting (4.4) into (4.2)we have

Y−4
(
A0 +A1Y +A2Y

2 +A3Y
3 +A4Y

4 +A5Y
5 +A6Y

6 +A7Y
7 +A8Y

8
)
= 0, (4.5)

where

A0 ≡ −ra2
−1 + ca3

−1, A1 ≡ −2ra−1a0 + 2ca2
−1a0,

A2 ≡ −ca3
−1 + ca−1a2

0 − 4ra−1a1 + ca2
−1a1,

A3 ≡ 2ra−1a0 − 2ca2
−1a0,

A4 ≡ ra2
−1 − ca−1a2

0 + 8ra−1a1 − ca2
−1a1 − ca2

0a1 + ra2
1 − ca−1a2

1,

A5 ≡ 2ra0a1 − 2ca0a
2
1, A6 ≡ −4ra−1a1 + ca2

0a1 + ca−1a2
1 − ca3

1,

A7 ≡ −2ka0a1 + 2ca0a
2
1, A8 = −ka2

1 + ca3
1.

(4.6)
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Solving the following algebraic equation system with the aid of the Mathematica
Package

{A0 = 0, A1 = 0, A2 = 0, A3 = 0, A4 = 0, A5 = 0, A6 = 0, A7 = 0, A8 = 0}, (4.7)

we then get the following results:

(1) {a−1 = (r/c), a0 = −(2r/c), a1 = (r/c)},

(2) {a−1 = (r/c), a0 = (2r/c), a1 = (r/c)},

(3) {a−1 = 0, a0 = −(r/c), a1 = (r/c)},

(4) {a−1 = (r/c), a0 = −(r/c), a1 = 0},

(5) {a−1 = 0, a0 = (r/c), a1 = (r/c)},

(6) {a−1 = (r/c), a0 = (r/c), a1 = 0},

where r, c are nonzero free parameters. Substituting these results into (4.4) and then changing
to exponential form, we obtain the following exact solutions:

u11(x, t) =
r

c
(coth[r(x − ct)] − 2 + tanh[r(x − ct)]) =

4r
c
(−1 + exp[4r(x − ct)]

) ,

u12(x, t) =
r

c
(coth[r(x − ct)] + 2 + tanh[r(x − ct)]) =

4r exp[4r(x − ct)]
c
(−1 + exp[4r(x − ct)]

) ,

u13(x, t) =
r

c
(−1 + tanh[r(x − ct)]) = − 2r

c
(
1 + exp[2r(x − ct)]

) ,

u14(x, t) =
r

c
(−1 + coth[r(x − ct)]) =

2r
c
(−1 + exp[2r(x − ct)]

) ,

u15(x, t) =
r

c
(1 + tanh[r(x − ct)]) =

2r exp[2r(x − ct)]
c
(
1 + exp[2r(x − ct)]

) ,

u16(x, t) =
r

c
(1 + coth[r(x − ct)]) =

2r exp[2r(x − ct)]
c
(−1 + exp[2r(x − ct)]

) .

(4.8)

If we choose the solution forms of (2.7) and insert them into (4.4) and (4.2), we have

Y−4
(
B0 + B1Y + B2Y

2 + B3Y
3 + B4Y

4 + B5Y
5 + B6Y

6 + B7Y
7 + B8Y

8
)
= 0, (4.9)
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where

B0 ≡ −ra2
−1 + ca3

−1, B1 ≡ −2ra−1a0 + 2ca2
−1a0,

B2 ≡ ca3
−1 + ca−1a2

0 − 4ra−1a1 + ca2−1a1, B3 ≡ −2ra−1a0 + 2ca2
−1a0,

B4 ≡ ra2
−1 + ca−1a2

0 − 8ra−1a1 + ca2
−1a1 − ca2

0a1 + ra2
1 − ca−1a2

1,

B5 ≡ −2ra0a1 − 2ca0a
2
1, B6 ≡ −4ra−1a1 − ca2

0a1 − ca−1a2
1 − ca3

1,

B7 ≡ −2ra0a1 − 2ca0a
2
1, B8 ≡ −ra2

1 − ca3
1.

(4.10)

Solving the following algebraic equation system with the aid of the Mathematica
Package

{B0 = 0, B1 = 0, B2 = 0, B3 = 0, B4 = 0, B5 = 0, B6 = 0, B7 = 0, B8 = 0}, (4.11)

we then get the following results:

(1) {a−1 = (r/c), a0 = −(2ir/c), a1 = −(r/c)},
(2) {a−1 = (r/c), a0 = (2ir/c), a1 = −(r/c)},
(3) {a−1 = 0, a0 = −(ir/c), a1 = −(r/c)},
(4) {a−1 = 0, a0 = (ir/c), a1 = −(r/c)},
(5) {a−1 = (r/c), a0 = −(ir/c), a1 = 0},
(6) {a−1 = (r/c), a0 = (ir/c), a1 = 0},

where r, c are nonzero free parameters and i2 = −1. Substituting these results into (4.4) and
changing to exponential form, we obtain the following exact solutions:

u21(x, t) =
r

c
(cot[r(x − ct)] − 2i − tan[r(x − ct)]) =

4ri exp[4ri(x − ct)]
c
(−1 + exp[4ri(x − ct)]

) ,

u22(x, t) =
r

c
(cot[r(x − ct)] + 2i − tan[r(x − ct)]) =

4ri
c
(−1 + exp[4ri(x − ct)]

) ,

u23(x, t) =
r

c
(−i − tan[r(x − ct)]) = − 2ri

c
(
1 + exp[2ri(x − ct)]

) ,

u24(x, t) =
r

c
(i − tan[r(x − ct)]) =

2ri exp[2ri(x − ct)]
c
(
1 + exp[2ri(x − ct)]

) ,

u25(x, t) =
r

c
(−i + cot[r(x − ct)]) =

2ri
c
(−1 + exp[2ri(x − ct)]

) ,

u26(x, t) =
r

c
(i + cot[r(x − ct)]) =

2ri exp[2ri(x − ct)]
c
(−1 + exp[2ri(x − ct)]

) .

(4.12)
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5. The Exp-Function Method to the Nonlinear Heat Equation (1.5)

In this section, the Exp-function method is applied to the nonlinear heat equation (1.5).
Using the transformation

u(x, t) = U(ξ), ξ = k(x − ct), (5.1)

(1.5) becomes

−cU2U′ + k
(
U′)2 − kUU′′ = 0. (5.2)

Here we assume that the solution of (5.2) can be expressed in the following form [10]:

U(ξ) =
∑n

i=−m ai exp(iξ)∑t
j=−s bm exp

(
jξ
) =

a−m exp(−mξ) + · · · + an exp(nξ)
b−s exp(−sξ) + · · · + bt exp(tξ)

, (5.3)

where ai, bj(i, j ∈ Z) are unknown constants and m,n, s, t are nonnegative integers to
be further determined. Here take notice of nonlinear term in (5.2), and we can balance
U2U′, (U′)2 and UU′′ by the idea of the Exp-function method [10] to determine the values
ofm,ns, t. By simple calculation, we have

UU′ =
c1 exp[−(2m + 3s)ξ] + · · · + c2 exp[(2n + 3t)ξ]

d1 exp[−5sξ] + · · · + d2 exp[5tξ]
,

(
U′)2 = c3 exp[−(2m + 3s)ξ] + · · · + c4 exp[(2n + 3t)ξ]

d3 exp[−5sξ] + · · · + d4 exp[5tξ]
,

UU′′ =
c5 exp[−(2m + 3s)ξ] + · · · + c6 exp[(2n + 3t)ξ]

d5 exp[−5sξ] + · · · + d6 exp[5tξ]
.

(5.4)

According to (5.4), we find that m,n, s, t are arbitrary nonnegative integers. This provides
great freedom to choose m,n, s, tand may be get more abundant solutions of (1.5). For
simplicity, we only discuss the following one case, that is m = s = 1 and n = t = 1. In
this case, (5.3) reduces to

U = U(ξ) =
a−1 exp(−ξ) + a0 + a1 exp(ξ)
b−1 exp(−ξ) + b0 + b1 exp(ξ)

. (5.5)

Substituting (5.5) into (5.2) by help of Mathematica package computation yields

A
(
A1e

ξ +A2e
2ξ +A3e

3ξ +A4e
4ξ +A5e

5ξ +A6e
6ξ +A7e

7ξ
)
= 0, (5.6)
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where

A =
(
b−1 + b0e

ξ + b1e
2ξ
)4
,

A1 = −ca2
−1a0b−1 − ka−1a0b

2
−1 + ca3

−1b0 + ka2
−1b−1b0,

A2 = −2ca−1a2
0b−1 − 2ca2

−1a1b−1 − 4ka−1a1b
2
−1 + 2ca2

−1a0b0 + 2ca3
−1b1 + 4ka2

−1b−1b1,

A3 = −ca2
0b−1 − 6ca−1a0a1b−1 − ka0a1b

2
−1 + ca−1a2

0b0 + ca2
−1a1b0

+ ka2
0b−1b0 − 6ka−1a1b−1b0 − ka−1a0b

2
0 + 5ca2

−1a0b1 + 6ka−1a0b−1b1 + ka2
−1b0b1,

A4 = −4ca2
0a1b−1 − 4ca−1a2

1b−1 − 4ka−1a1b
2
0 + 4ca−1a2

0b1 + 4ca2
−1a1b1 + 4ka2

0b−1b1,

A5 = −5ca0a
2
1b−1 − ca2

0a1b0 − ca−1a2
1b0 + ka2

1b−1b0 − ka0a1b
2
0

+ ca3
0b1 + 6ca−1a0a1b1 + 6ka0a1b−1b1 + ka2

0b0b1 − 6ka−1a1b0b1 − ka−1a0b
2
1,

A6 = −2ca3
1b−1 − 2ca0a

2
1b0 + 2ca2

0a1b1 + 2ca−1a2
1b1 + 4ka2

1b−1b1 − 4ka−1a1b
2
1,

A7 = −ca3
1b0 + ca0a

2
1b1 + ka2

1b0b1 − ka0a1b
2
1.

(5.7)

Equating the coefficients of enξ (n = 1, 2, . . . , 7) to zero, we get a set of algebraic
equations

{A1 = 0, A2 = 0, A3 = 0, A4 = 0, A5 = 0, A6 = 0, A7 = 0}. (5.8)

Solving the above system by using Mathematica Package, we can get the solution as follows:

(1) {a−1 = 0, a0 = a0, a1 = 0, b−1 = 0, b0 = −(ca0/k), b1 = b1}.

(2) {a−1 = 0, a0 = 0, a1 = a1, b−1 = 0, b0 = b0, b1 = (ca1/k)}.

(3) {a−1 = a−1, a0 = 0, a1 = 0, b−1 = −(ca−1/k), b0 = b0, b1 = 0}.

(4) {a−1 = a−1, a0 = 0, a1 = 0, b−1 = −(ca−1/2k), b0 = 0, b1 = b1}.

(5) {a−1 = 0, a0 = 0, a1 = a1, b−1 = 0, b0 = 0, b1 = (ca1/2k)}.

(6) {a−1 = 0, a0 = a0, a1 = 0, b−1 = b−1, b0 = (ca0/k), b1 = 0}.

(7) {a−1 = a−1, a0 = a0, a1 = 0, b−1 = −(ca−1/k), b0 = b0, b1 = a0(ca0 + kb0)/ka−1}.

(8) {a−1 = 0, a0 = a0, a1 = a1, b−1 = −(a0(ca0 − kb0)/ka1), b0 = b0, b1 = (ca1/k)}.

(9) {a−1 = a−1, a0 = a0, a1 = 0, b−1 = −(ca−1/k), b0 = −(ca0/2k), b1 = (ca2
0/2ka−1)}.

(10) {a−1 = 0, a0 = a0, a1 = a1, b−1 = −(ca2
0/2ka1), b0 = (ca0/2k), b1 = (ca1/k)}.
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Substituting cases (1)–(10) into (5.5) yields

u31 =
a0

−(ca0/k) + b1 exp(ξ)
=

ka0

−ca0 + kb1 exp(k(x − ct))
.

u32 =
a1 exp(ξ)

(ca1/k) exp(ξ) + b0
=

ka1 exp(k(x − ct))
kb0 + ca1 exp(k(x − ct))

.

u33 =
a−1 exp(−ξ)

−(ca−1/k) exp(−ξ) + b0
=

ka−1 exp[−k(x − ct)]
−ca−1 exp[−k(x − ct)] + kb0

.

u34 =
a−1 exp(−ξ)

−(ca−1/2k) exp(−ξ) + b1 exp(ξ)
=

2ka−1 exp[−k(x − ct)]
−ca−1 exp[−k(x − ct)] + 2kb1 exp[k(x − ct)]

.

u35 =
a1 exp(ξ)

b−1 exp(−ξ) + (ca−1/2k) exp(ξ)
=

2ka1 exp[k(x − ct)]
2kb−1 exp[−k(x − ct)] + ca1 exp[k(x − ct)]

.

u36 =
a0

b−1 exp(−ξ) + (ca0/k)
=

ka0

kb−1 exp[−k(x − ct)] + ca0
.

u37 =
a−1 exp(−ξ) + a0

−(ca−1/k) exp(−ξ) + b0 + (a0(ca0 + kb0)/ka−1) exp(ξ)

=
ka2

−1 exp[−k(x − ct)] + ka−1a0

−ca2
−1 exp[−k(x − ct)] + ka−1b0 + a0(ca0 + kb0) exp[k(x − ct)]

.

u38 =
a0 + a1 exp(ξ)

−(a0(ca0 − kb0)/ka1) exp(−ξ) + b0 + (ca1/k) exp(ξ)

=
ka1a0 + ka2

1 exp[k(x − ct)]

a0(kb0 − ca0) exp[−k(x − ct)] + ka1b0 + ca2
1 exp[k(x − ct)]

.

u39 =
a0 + a−1 exp(−ξ)

−(ca−1/k) exp(−ξ) − (ca0/2k) +
(
ca2

0/2ka−1
)
exp(ξ)

=
2ka−1a0 + 2ka2

−1 exp[−k(x − ct)]

−2ca2
−1 exp[−k(x − ct)] − ca−1a0 + ca2

0 exp[k(x − ct)]
.

u3,10 =
a0 + a1 exp(ξ)

−(ca2
0/2ka1

)
exp(−ξ) + (ca0/2k) + (ca1/k) exp(ξ)

=
2ka1a0 + 2ka2

1 exp[k(x − ct)]

−ca2
0 exp[−k(x − ct)] + ca1a0 + 2ca2

1 exp[k(x − ct)]
.

(5.9)

6. Comparison and Discussion

In this section we make comparison between the Tanh method’s solutions and the Exp-
function method solutions of (1.5). We can obtain the following results.

(1) If we set k = 4r, a0 = 1, b1 = (c/4r) in the equation u31, then u31 = u11,

(2) If we set k = 4r, a1 = 1, b0 = −(c/4r) in the equation u32, then u32 = u12,
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(3) If we set k = 2r, a0 = −1, b1 = −(c/2r) in the equation u31, then u31 = u13,

(4) If we set k = 2r, a0 = 1, b1 = (c/2r) in the equation u31, then u31 = u14,

(5) If we set k = 2r, a1 = 1, b0 = (c/2r) in the equation u32, then u32 = u15,

(6) If we set k = 2r, a1 = 1, b0 = −(c/2r) in the equation u32, then u32 = u16,

(7) If we set k = 4ri, a1 = 1, b0 = −(c/4r) in the equation u32, then u32 = u21,

(8) If we set k = 4ri, a0 = 1, b1 = (c/4ri) in the equation u31, then u31 = u22,

(9) If we set k = 2ri, a0 = 1, b1 = −(c/2ri) in the equation u31, then u31 = u23,

(10) If we set k = 2ri, a1 = 1, b0 = (c/2ri) in the equation u32, then u32 = u24,

(11) If we set k = 2ri, a0 = 1, b1 = (c/2ri) in the equation u31, then u31 = u25,

(12) If we set k = 2ri, a1 = 1, b0 = −(c/2ri) in the equation u32, then u32 = u26.

where i2 = −1. The above obtained results show that the Exp-function method can obtain
more abundant explicit solutions than Tanh method for (1.5). If we use the method of
separation of variables [1, page 167], the rational solution of (1.5) can be constructed as
follows:

u(x, t) =
2a2(kt + b)

k(ax + c)2
, (6.1)

where k, a, b, c are constants.

7. Conclusion

Nonlinear phenomena appear in a wide variety of scientific fields, such as applied
mathematics, physics and engineering problems. However, solving nonlinear differential
equations corresponding to the nonlinear problems are often complicate. Especially,
obtaining their explicit solutions is even more difficult. Up to now, a lot of new methods for
solving nonlinear differential equations are developed, for example, Bäcklund transformation
method, inverse scattering method, Darboux transformation method, Hirota’s bilinear
method, and so forth. But, generally speaking, all of the above methods have their own
advantages and shortcomings, respectively. In this paper, by applying the Exp-function
method and the extended Tanh method with the help of Mathematica computation to
the nonlinear heat equation with temperature-dependent thermal properties, we obtain
abundant exact solutions. The obtained results show that the Exp-function method and
the extended Tanh method are simple and effective methods to solve nonlinear differential
equations. By comparison, we find that the Exp-function method is more effective in finding
exact solutions than the extended Tanh method for (1.5).

Acknowledgment

The author would like to thank the referee for the helpful suggestions which improved the
exposition of this paper.



12 Mathematical Problems in Engineering

References

[1] L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American
Mathematical Society, Providence, RI, USA, 1998.

[2] M. Necati Ozisk, Heat Conduction, John Wiley & Sons, New York, NY, USA, 2nd edition, 1993.
[3] A. H. Bokhari, G. Mohammad, M. T. Mustafa, and F. D. Zaman, “Adomian decomposition method for

a nonlinear heat equation with temperature dependent thermal properties,” Mathematical Problems in
Engineering, vol. 2009, Article ID 926086, 2009.

[4] W. Malfliet, “Solitary wave solutions of nonlinear wave equations,” American Journal of Physics, vol.
60, no. 7, pp. 650–654, 1992.

[5] E. Fan and Y. C. Hon, “Generalized Tanh method extended to special types of nonlinear equations,”
Zeitschrift fur Naturforschung A, vol. 57, no. 8, pp. 692–700, 2002.

[6] H. A. Abdusalam, “On an improved complex Tanh-function method,” International Journal of
Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 99–106, 2005.

[7] M. F. El-Sabbagh and A. T. Ali, “New exact solutions for (3+1)-dimensional Kadomtsev-Petviashvili
equation and generalized (2+1)-dimensional Boussinesq equation,” International Journal of Nonlinear
Sciences and Numerical Simulation, vol. 6, no. 2, pp. 151–162, 2005.

[8] W. Zhang and L. Tian, “An extended Tanh-method and its application to the soliton breaking
equation,” Journal of Physics: Conference Series, vol. 96, no. 1, Article ID 012069, 2008.

[9] A.-M. Wazwaz, “The Tanh method: exact solutions of the Sine-Gordon and the Sinh-Gordon
equations,” Applied Mathematics and Computation, vol. 167, no. 2, pp. 1196–1210, 2005.

[10] J-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons and
Fractals, vol. 30, no. 3, pp. 700–708, 2006.

[11] J.-H. He and M. A. Abdou, “New periodic solutions for nonlinear evolution equations using Exp-
function method,” Chaos, Solitons and Fractals, vol. 34, no. 5, pp. 1421–1429, 2007.

[12] X.-H. Wu and J.-H. He, “EXP-function method and its application to nonlinear equations,” Chaos,
Solitons and Fractals, vol. 38, no. 3, pp. 903–910, 2008.

[13] A. Ebaid, “Exact solitary wave solutions for some nonlinear evolution equations via Exp-function
method,” Physics Letters A, vol. 365, no. 3, pp. 213–219, 2007.

[14] A. Bekir and A. Boz, “Exact solutions for a class of nonlinear partial differential equations using exp-
function method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 4, pp.
505–512, 2007.

[15] S. Zhang, “Application of Exp-function method to a KdV equation with variable coefficients,” Physics
Letters A, vol. 365, no. 5-6, pp. 448–453, 2007.

[16] W. Zhang and L. Tian, “Generalized solitary solution and periodic solution of the combined KdV-
mKdV equation with variable coefficients using the Exp-function method,” International Journal of
Nonlinear Sciences and Numerical Simulation, vol. 10, no. 6, pp. 711–715, 2009.

[17] S.-D. Zhu, “Exp-function method for the Hybrid-Lattice system,” International Journal of Nonlinear
Sciences and Numerical Simulation, vol. 8, no. 3, pp. 461–464, 2007.

[18] S.-D. Zhu, “Exp-function method for the discrete mKdV lattice,” International Journal of Nonlinear
Sciences and Numerical Simulation, vol. 8, no. 3, pp. 465–468, 2007.


