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Dispersion curves of elastic guided waves in plates can be efficiently computed by the Strip-
Element Method. This method is based on a finite-element discretization in the thickness direction
of the plate and leads to an eigenvalue problem relating frequencies to wavenumbers of the wave
modes. In this paper we present a rigorous mathematical background of the Strip-Element Method
for anisotropic media including a thorough analysis of the corresponding infinite-dimensional
eigenvalue problem as well as a proof of the existence of eigenvalues.

1. Introduction

In recent years there has been considerable interest in the study of the behaviour of elastic
guided waves in plates due to their potential use in Nondestructive Evaluation (NDE)
and Structural Health Monitoring (SHM); see, for example, the comprehensive books of
Giurgiutiu [1] or Rose [2]. Already in isotropic plates Lamb waves are dispersive and
the dispersion relations expressed by the Rayleigh-Lamb equations must be computed
numerically; see, the study by Achenbach in [3]. Elastic wave propagation in layered and
anisotropic media is an even more complex problem, and efficient numerical methods are
required to obtain dispersion curves. Among those methods are the Transfer Matrix Method
and the Global Matrix Method and we refer to the study by Lowe in [4] for an overview.
One of the most efficient and flexible methods is based on a finite-element discretization in
the thickness direction of the plate and leads to a generalized eigenvalue problem relating
frequencies to wavenumbers of the Lamb wave modes. This method is known, amongst
others, as the strip-element method (SEM) or layer-element method or semianalytic finite-
element-method; see, for example, the early works of Dong and Nelson [5] and Aalami [6],
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or Kausel [7], Galán and Abascal [8], the excellent book of Liu and Xi [9], and the many
references therein. Also the works of Gavrić [10], Bartoli et al. [11], Marzani et al. [12], and
Treyssède [13] could be of interest.

So far, there seems to be no strict mathematical analysis of the underlying infinite-
dimensional eigenvalue problem in the anisotropic case. For the isotropic case we recommend
reading the paper by Bouhennache in [14], who also uses a more abstract setting. Since the
SEM has been successfully applied in practice for several years, we think that it is worthwhile
to start such an analysis and give here a mathematical proof of the existence of eigenvalues.

In the next section we recall some basic facts about generalized eigenvalue problems in
Hilbert spaces. The differential equation governing the wave propagation in laminated plates
is formulated in Section 3. In the main Section 4 we analyse the weak form of those equations
for the elementary Lamb wave modes, show that weak and strong solutions coincide and
are layerwise C∞, and prove existence of weak solutions and eigenvalues of the related
eigenvalue problem. Finally we present some numerical results illustrating the increasingly
direction-dependent behaviour of transversely isotropic material with an increasing degree
of anisotropy.

2. Generalized Eigenvalue Problems in Hilbert Spaces

Although the results of this section are wellknown, they might not always be explicitly found
in the given form and therefore we prove some of them for the convenience of the reader. For
further reading we suggest the books of Lax [15] and Conway [16].

Let H,H1,H2 be real or complex Hilbert spaces with scalar products 〈· | ·〉. By
L(H1,H2) we denote the space of continuous linear operators from H1 to H2 and set
L(H) := L(H,H). For T ∈ L(H1,H2) we denote by T ∗ ∈ L(H2,H1) the adjoint operator
defined by

〈Tv | u〉H2
= 〈v | T ∗u〉H1

, ∀v ∈ H1, u ∈ H2. (2.1)

Range and nullspace are denoted by R(T) andN(T), respectively. We say that T ∈ L(H) is
self-adjoint if T ∗ = T , and positive if

〈u | Tu〉H ≥ 0, ∀u ∈ H. (2.2)

Lemma 2.1. Let T ∈ L(H) be self-adjoint. If T is injective and has closed range, then it is bijective
and hence continuously invertible.

Proof. For X ⊂ H, let X⊥ = {x ∈ H | 〈x | y〉 = 0, for all y ∈ H} be the orthogonal
complement ofX. The assertion follows from

R(T) = R(T) =N(T ∗)⊥ =N(T)⊥ = {0}⊥ =H, (2.3)

which means that T is also surjective.
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Lemma 2.2. An operator T ∈ L(H1,H2) is injective and has closed range if and only if there exists
some constant c > 0 such that

‖Tu‖H2
≥ c‖u‖H1

, ∀u ∈ H1. (2.4)

Proof. See, for example, the study by Schröder in [17].

We obtain the following.

Corollary 2.3. An operator T ∈ L(H) is injective and has closed range if there exists some constant
c > 0 such that

〈u | Tu〉H ≥ c‖u‖
2
H, ∀u ∈ H. (2.5)

Proof. Together with the Cauchy-Schwartz inequality, we obtain from (2.5)

‖u‖H‖Tu‖H ≥ 〈u | Tu〉H ≥ c‖u‖
2
H, ∀u ∈ H. (2.6)

With Lemma 2.2, we can conclude the assertion.

For M,S ∈ L(H), consider the generalized eigenvalue problem

Mu = λSu. (2.7)

That is, “for which λ ∈ R,C do nontrivial solutions u ∈ H to (2.7) exist?” In case S is bijective,
(2.7) is equivalent to the standard eigenvalue problem

S−1Mu = λu, (2.8)

and we readily obtain the following proposition which we state for the case dimH = ∞. It
applies accordingly to the finite-dimensional case with finite sequences λn, un.

Proposition 2.4. Let M,S ∈ L(H) be self-adjoint and positive. Assume that M is compact and
injective and that S is bijective. Then there exists a decreasing sequence 0 < λn → 0 (counted with
multiplicity) and a sequence un ∈ H such that

Mun = λnSun, (2.9)

1
λn
〈un |Mum〉H = δn,m = 〈un | Sum〉H, (2.10)

and each u ∈ H can be uniquely represented by anH-convergent series

u =
∞∑

n=1

αnun, (2.11)
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with an �2-sequence αn = 〈u | Sun〉H. Especially, 〈v | u〉S := 〈v | Su〉H defines a scalar product on
H which induces an equivalent norm onH, and un is an orthonormal basis with respect to this scalar
product.

Proof. Since S is self-adjoint, bijective, and positive, 〈v | u〉S := 〈v | Su〉H indeed defines a
scalar product on H which induces an equivalent norm on H. With respect to this scalar
product, the injective and compact operator M̃ := S−1M is self-adjoint and positive. Therefore
(2.9) is equivalent to the standard eigenvalue problem M̃un = λnun for the injective, compact,
self-adjoint, and positive operator M̃ ∈ L{H, 〈· | ·〉S}.

3. Differential Equations in Matrix Notation

We recall some relations of elasticity theory in matrix notation which is especially suited
for the finite-element formulation [9]. For a profound study of the mathematical theory of
elasticity in tensor notation, we refer to the book of Marsden and Hughes in [18].

(i) Differential operator matrix L is given as,

L = Lx∂x + Ly∂y + Lz∂z, (3.1)

with the constant matrices

Lx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Ly =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Lz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.2)

(ii) Displacement vector u is given as

u = u
(
x, y, z, t

)
=
(
ux, uy, uz

)T
. (3.3)

(iii) Strain vector ε is given as

ε =
(
εx, εy, εz, γyz, γxz, γxy

)T
. (3.4)

(iv) Strain-displacement relation is given as

ε = Lu. (3.5)

(v) Stress vector σ is given as

σ =
(
σx, σy, σz, τyz, τxz, τxy

)T
. (3.6)
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Figure 1: Laminate and coordinate systems.

(vi) And the generalized Hooke Law is given as

σ = Cε, (3.7)

with C = (Cij)i,j=1,...,6 being the matrix of material constants. In the following, C
is supposed to be real, symmetric, and positive definite (spd). For an isotropic
material we have, for example,

Cisotropic =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ + 2μ λ λ 0 0 0
λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.8)

with Lamé’s constants λ, μ.

Now consider a laminated plate of thickness 2H in direction of the z-axis (middle
z = 0, top z = +H, bottom z = −H) and infinite in the x-y plane; see Figure 1. The plate
consists of N layers. Layer l = 1, . . . ,N has thickness hl = Hl −Hl−1 with −H = H0 < H1 <
· · · < HN = +H and is supposed to consist of homogenous, anisotropic, elastic material with
density ρl and material constants Cl.

Let u = (ux, uy, uz)
T = u(x, y, z, t) be the displacement vector of a wave travelling in

the plate in the absence of external forces. In each layer the elastic wave equation in matrix
notation is

ρlü = LTClLu, ∀x, y, t and all z ∈ (Hl−1,Hl). (3.9)

The traction-free boundary conditions on the top and bottom surfaces are

LTzCNLu|z=+H = LTzC1Lu|z=−H = 0. (3.10)
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Besides continuity of the displacement vector, the following interface conditions concerning
continuity of the stresses are supposed to hold:

LTzClLu|z=Hl = L
T
zCl+1Lu|z=Hl , ∀l = 1, . . . ,N − 1. (3.11)

As ansatz for a wave mode, we take a plane harmonic wave travelling in the x-y plane

u
(
x, y, z, t

)
= û(z)ei(kxx + kyy ± ωt), (3.12)

with z-dependent amplitude vector û(z) = (ûx(z), ûy(z), ûz(z))
T , real circular frequency ω,

and real wave vector k = (kx, ky)
T . For such a wave mode, the wave equation (3.9), boundary

(3.10) and interface conditions (3.11) reduce to

−ρlω2û = LTkClLkû, ∀z ∈ (Hl−1,Hl), l = 1, . . . ,N, (3.13)

LTzCNLkû|z=+H = LTzC1Lkû|z=−H = 0, (3.14)

LTzClLkû|z=Hl = L
T
zCl+1Lkû|z=Hl , ∀l = 1, . . . ,N − 1, (3.15)

with the differential operator matrix Lk given as

Lk = ikxLx + ikyLy + Lz∂z. (3.16)

Obviously for complex conjugation we have

Lk = −ikxLx − ikyLy + Lz∂z. (3.17)

The question is “for which combinations of circular frequencies ω and wave vectors k do
nontrivial solutions û of (3.13), (3.14), and (3.15) exist?” The answer leads to the dispersion
relations ω(k) and is given in the next section. For better readability we will write ω instead
of ω(k) in the following.

4. Weak Form of the Reduced Wave Equation and
Related Eigenvalue Problem

We define the piecewise constant functions of density ρ and matrix of material constants C as

ρ(z) = ρl, C(z) = Cl, ∀z ∈ (Hl−1,Hl), l = 1, . . . ,N. (4.1)

For suitable virtual displacements v̂ = v̂(z), which we define later, the weak form of (3.13),
(3.14), and (3.15) can then be written as

ω2
∫+H

−H
v̂
T
ρû dz =

∫+H

−H

(
Lkv̂
)T
C(Lkû)dz. (4.2)
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The next proposition shows that strong and weak solutions coincide for smooth
enough functions.

Proposition 4.1. Suppose that û = û(z) is continuous and layerwise C2; that is, û ∈ C([−H,+H])
and û|(Hl−1,Hl) ∈ C2([Hl−1,Hl]), l = 1, . . . ,N. Then û fulfills (4.2) for all v̂ ∈ C1([−H,+H]) if and
only if û is a solution of (3.13), (3.14), and (3.15).

Proof. Note that we shortly write û|(Hl−1,Hl) ∈ C2([Hl−1,Hl]) meaning that there is a function
ũ ∈ C2([Hl−1,Hl]) such that û|(Hl−1,Hl) = ũ|(Hl−1,Hl). By the smoothness assumptions on û,
relation (3.17), and layerwise partial integration on the right-hand side of (4.2), we see that
for all v̂ ∈ C1([−H,+H]) (4.2) is equivalent to

ω2
∫+H

−H
v̂
T
ρû dz = −

∫+H

−H
v̂
T
LTkCLkû dz +

N∑

l=1

[
v̂
T
LTzClLkû

]Hl

Hl−1

. (4.3)

Let û fulfill this equation for all v̂ ∈ C1([−H,+H]). At first we fix a layer l = 1, . . . ,N and
choose arbitrary functions v̂ that have compact support in the interior (Hl−1,Hl) of the layer.
For such functions, (4.3) reduces to

ω2
∫Hl

Hl−1

v̂
T
ρlû dz = −

∫Hl

Hl−1

v̂
T
LTkClLkû dz (4.4)

from which we infer that û fulfills (3.13). Repeating this for all layers, we conclude that the
integrals on the left- and right-hand side of (4.3) coincide and hence (4.3) reduces to

0 =
N∑

l=1

[
v̂
T
LTzClLkû

]Hl

Hl−1

. (4.5)

Now by successively choosing functions v̂ that equal 1 in a vicinity of one of the points −H =
H0,H1, . . . ,HN = +H and that are 0 everywhere else, we see that û also fulfills (3.14) and
(3.15).

The converse assertion is obvious.

To prove existence of nontrivial weak solutions, we will transform (4.2) into a
generalized eigenvalue problem in a suitable Hilbert space. Let H1 = H1(−H,+H) be
the Sobolev space of all complex-valued square integrable functions on (−H,+H) whose
distributional first derivative can also be identified with a square integrable function; see,
the study by Adams in [19]. For simplicity in the following we use the same symbol H1

also for (H1)3 = H1 × H1 × H1, (H1)6
, . . . , and likewise for other spaces like the spaces

of square integrable functions L2 = L2(−H,+H) and continuously differentiable functions
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C1 = C1([−H,+H]), . . . , since it will become clear from the context how many components
the vector-valued functions have. Endowed with the scalar product

〈v̂ | û〉H1 = 〈v̂ | û〉L2 + 〈∂zv̂ | ∂zû〉L2

=
∫+H

−H
v̂(z)

T
û(z)dz +

∫+H

−H
∂zv̂(z)

T
∂zû(z)dz,

(4.6)

the spaceH1 is a complex Hilbert space. The space C1 is continuously embedded and dense in
H1 and the inclusions H1 ↪→ C and J : H1 ↪→ L2 are compact. See, for example, the study by
Maz’ja in [20]. Multiplications with the piecewise constant function ρ > 0 and the piecewise
constant spd-matrix C, respectively, define bijective, positive, self-adjoint, continuous linear
operators on the respective L2-spaces. Furthermore, the differential operator matrix Lk (3.16)
defines a continuous linear operator Lk : H1 → L2. For functions û, v̂ ∈ H1, which we
assume in the following, the left-hand side of (4.2) can then be written as

ω2
∫+H

−H
v̂
T
ρû dz = ω2〈Jv̂ | ρJû

〉
L2 = ω2〈v̂ | J∗ρJû

〉
H1 = ω2〈v̂ |Mû〉H1 (4.7)

with the compact, injective, positive, and self-adjoint operator M := J∗ρJ , and the right-hand
side can be written as

∫+H

−H

(
Lkv̂
)T
C(Lkû)dz = 〈Lkv̂ | CLkû〉L2 =

〈
v̂ | L∗kCLkû

〉
H1 = 〈v̂ | Skû〉H1 (4.8)

with the positive and self-adjoint operator Sk := L∗kCLk. Thus, a function û ∈ H1 fulfills (4.2)
for all v̂ ∈ H1 if and only if

ω2〈v̂ |Mû〉H1 = 〈v̂ | Skû〉H1 , ∀v̂ ∈ H1, (4.9)

which is equivalent to the generalized eigenvalue problem

ω2Mû = Skû⇐⇒
(
γ +ω2

)
Mû =

(
γM + Sk

)
û⇐⇒ λMû = Sγ û (4.10)

with λ := γ + ω2 and the positive and self-adjoint operator Sγ := γM + Sk for an arbitrary
γ > 0. We will need this disturbance with γM to prove that the operator Sγ is also bijective
and hence can apply Proposition 2.4 to guarantee nontrivial solutions. By Lemma 2.1 and
Corollary 2.3, bijectivity of Sγ follows by showing that there exists some constant c > 0 such
that

〈
û | Sγ û

〉
H1 ≥ c‖û‖2

H1 , ∀û ∈ H1. (4.11)
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To show this, we write

〈
û | Sγ û

〉
H1 = γ〈û |Mû〉H1 + 〈û | Skû〉H1

=
∫+H

−H
γ û

T
ρû +

(
Lkû
)T
C(Lkû)dz.

(4.12)

Since layerwise C is an spd-matrix and ρ > 0, there is a constant c1 > 0 such that pointwise
a.e.

γ û
T
ρû +

(
Lkû
)T
C(Lkû) ≥ c1

(
γ û

T
û +
(
Lkû
)T

(Lkû)
)
, (4.13)

and thus we have

〈
û | Sγ û

〉
H1 ≥ c1

∫+H

−H
γ û

T
û +
(
Lkû
)T

(Lkû)dz = c1

∫+H

−H
ũ
T
Qkũ dz, (4.14)

with

ũ =
(
ûx, ûy, ûz, ∂zûx, ∂zûy, ∂zûz

)T (4.15)

and the Hermitian matrix

Qk :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

|k|2 + γ kxky 0 0 0 0
kxky |k|2 + γ 0 0 0 0

0 0 |k|2 + γ −ikx −iky 0
0 0 ikx 1 0 0
0 0 iky 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.16)

where |k|2 = k2
x + k

2
y ≥ 0. For all real k = (kx, ky), the matrix Qk is positive definite since for

γ > 0 all eigenvalues

λ1,2 = 1, λ3,4 = |k|2 + γ ± kxky, λ5,6 =
1
2

(
1 + |k|2 + γ ±

√(
1 + |k|2 + γ

)2
− 4γ

)

(4.17)

are strictly positive. Hence there is a constant c2 > 0 such that pointwise a.e.

ũ
T
Qkũ ≥ c2 ũ

T
ũ, (4.18)
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and by the definition of the scalar product (4.6) we arrive at

〈
û | Sγ û

〉
H1 ≥ c1c2

∫+H

−H
ũ
T
ũ dz = c1c2‖û‖2

H1 . (4.19)

Now we can apply Proposition 2.4 to the pair M, Sγ and get the following.

Proposition 4.2. There exists an increasing sequence 0 ≤ ω2
n → ∞ and a sequence ûn ∈ H1 such

that

ω2
n Mûn = Skûn, (4.20)

(
γ +ω2

n

)
〈ûn |Mûm〉H1 = δn,m =

γ +ω2
n

ω2
n

〈ûn | Skûm〉H1 , (4.21)

and each û ∈ H1 can be uniquely represented by anH1-convergent series

û =
∞∑

n=0

αn ûn, (4.22)

with an �2-sequence αn = ((γ +ω2
n)/ω

2
n)〈û | Skûn〉H1 .

Proof. Let the assertions of Proposition 2.4 appropriately hold for the pair M, Sγ . At first we
observe that by (2.10) we have

λ1 =

〈
û1 | Sγ û1

〉
H1

〈û1 |Mû1〉H1
= γ +

〈û1 | Skû1〉H1

〈û1 |Mû1〉H1
≥ γ, (4.23)

and henceω2
n := λn−γ ≥ 0 andω2

n → ∞ increasingly. By (2.10), on one hand, we then trivially
have

(
γ +ω2

n

)
〈ûn |Mûm〉H1 = λn〈ûn |Mûm〉H1 = δn,m, (4.24)

and, on the other hand, we further conclude that

δn,m =
〈
ûn | Sγ ûm

〉
H1 = γ〈ûn |Mûm〉H1 + 〈ûn | Skûm〉H1 =

γ

γ +ω2
n

δn,m + 〈ûn | Skûm〉H1 .

(4.25)

Finally each û ∈ H1 can be uniquely represented by an H1-convergent series

û =
∞∑

n=0

αnûn, (4.26)
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with an �2-sequence αn = 〈û | Sγ ûn〉H1 . Evaluating the scalar product of both sides of the
above equation with Skûm, we get

〈û | Skûm〉H1 =
∞∑

n=0

αn〈ûn | Skûm〉H1 = αm
ω2
m

γ +ω2
m

. (4.27)

The next proposition together with Proposition 4.1 finally shows that all these weak
H1-solutions are indeed strong solutions.

Proposition 4.3. If û ∈ H1 fulfills (4.2) for all v̂ ∈ H1, then û is continuous and layerwise C∞.

Proof. We inductively show that the distributional derivatives of û can be identified with
smooth functions. Expanding the operator L according to its definition and rearranging (4.2)
give

∫+H

−H
∂zv̂

T
LTzCLz∂zû dz =

∫+H

−H
v̂
T(
ω2ρ +

(
ikxLx + ikyLy

)T
CLk
)
û dz

−
∫+H

−H
∂zv̂

T
LTzC

(
ikxLx + ikyLy

)
û dz.

(4.28)

We fix a layer l and take an arbitrary C∞-function v̂ with compact support in (Hl−1,Hl). As
Cl is symmetric, for those v̂ the left-hand side can be written as

∫Hl

Hl−1

∂z
(
LTzClLz

)
v̂
T
∂zû dz. (4.29)

We integrate by parts on the right-hand side to get

∫Hl

Hl−1

∂z
(
LTzClLz

)
v̂
T
∂zû dz =

∫Hl

Hl−1

v̂
T(
ω2ρ +

(
ikxLx + ikyLy

)T
ClLk

)
û dz

+
∫Hl

Hl−1

v̂
T
LTzCl

(
ikxLx + ikyLy

)
∂zû dz.

(4.30)

The operator LTzClLz is invertible since Cl is positive definite and Lz is injective; hence the
previous equation for all v̂ is equivalent to

∫Hl

Hl−1

∂zv̂
T
∂zû dz = −

∫Hl

Hl−1

v̂
T
Alû dz, (4.31)

where

Alû := −
(
LTzClLz

)−1(
ω2ρ +

(
ikxLx + ikyLy

)T
ClLk + LTzCl

(
ikxLx + ikyLy

)
∂z
)
û. (4.32)
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Figure 2: Direction dependence of circular frequencyω(k, φ)[s−1] at circular wavenumber k = 1000 m−1 for
different ratios E2/E1. As one can see, each mode has its own individual anisotropic behaviour; even the
sequence of the wave modes ordered by their frequencies is angle dependant.
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Figure 3: Components of the displacement vector u = (ux, uy, uz) over the thickness of the plate at
φ = 70◦ of S0- and SH1-modes for different ratios E2/E1. Here ux and uy are the in-plane components in
longitudinal and transversal directions, respectively. Obviously the distinction between shear-horizontal
and in-plane Lamb-waves becomes less clear in an anisotropic material. This means especially that
common measuring techniques quantifying the z component will detect also the SH-modes.

Equation (4.31) states that the second distributional derivative ∂2
zû|(Hl−1,Hl) of û restricted

to (Hl−1,Hl) can be identified with Alû|(Hl−1,Hl). Since û ∈ H1, we have Alû|(Hl−1,Hl) ∈
L2(Hl−1,Hl). Consequently, we may assume that û|(Hl−1,Hl) ∈ H2(Hl−1,Hl) and hence
û|(Hl−1,Hl) ∈ C1([Hl−1,Hl]). From this we in turn infer that Alû|(Hl−1,Hl) ∈ C([Hl−1,Hl]), and
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(4.31) ensures that ∂2
zû|(Hl−1,Hl) ∈ C([Hl−1,Hl]); that is, û|(Hl−1,Hl) ∈ C2([Hl−1,Hl]). Repeating

this argument proves the assertion.

We conclude this section by deriving a mode decomposition of general waves
travelling in the plate. For a function u = u(x, y), we denote by û = û(kx, ky) its Fourier
transform in the wavenumber domain

û
(
kx, ky

)
=

1

(2π)2

∫∫

R2
u
(
x, y
)
e−i(kxx+kyy)dx dy. (4.33)

Let again u = (ux, uy, uz)
T = u(x, y, z, t) be the displacement vector of a wave travelling in

the plate in the absence of external forces (e.g., as a result of an initial excitation which now
has stopped) such that it fulfills (3.9), (3.10), and (3.11). By formally applying the Fourier
transform with respect to (x, y) to these equations, we see that û = û(k, z, t) = û(kx, ky, z, t)
then fulfills

ρl ¨̂u = LTkClLkû, ∀z ∈ (Hl−1,Hl), l = 1, . . . ,N (4.34)

and the boundary and interface conditions (3.14) and (3.15). Suppose that for all k and t
(or at least for the ones of interest) the functions z �→ û(k, z, t) and z �→ ¨̂u(k, z, t) are in H1.
Analogously to the previous considerations, the weak form of (4.34), (3.14), and (3.15) is then
equivalent to

M ¨̂u = −Skû. (4.35)

According to Proposition 4.2 and (2.11), we can represent û(k, z, t) by a series with the
eigenvectors ûn(k, z) as basis functions

û(k, z, t) =
∞∑

n=0

αn(k, t)ûn(k, z), ¨̂u(k, z, t) =
∞∑

n=0

α̈n(k, t) ûn(k, z). (4.36)

We remark that for different k we have different basis functions ûn = ûn(k), hence the
dependence αn = αn(k); but for fixed k we fix this basis for all times t, hence the dependence
αn = αn(k, t). Furthermore we assume that ¨̂u can indeed be represented with α̈n; that is,
summation and time derivation commute. Applying the orthogonality relations in (4.21) to
(4.35), we get for fixed k the decoupled system of ordinary differential equations in t:

α̈n(k, t)
1

γ +ωn(k)
2
= −αn(k, t)

ωn(k)
2

γ +ωn(k)
2
⇐⇒ α̈n(k, t) +ωn(k)

2 αn(k, t) = 0, (4.37)

with general solutions

αn(k, t) = an(k) eiωn(k)t + bn(k) e−iωn(k)t. (4.38)
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Assuming that the following operations are valid, we get the mode decomposition

u
(
x, y, z, t

)
=
∫∫

R2
û
(
kx, ky, z, t

)
ei(kxx+kyy)dkxdky

=
∞∑

n=0

∫∫

R2

(
an(k) ûn(k, z) eiωn(k)t + bn(k)ûn(k, z) e−iωn(k)t

)

× ei(kxx+kyy)dkxdky.

(4.39)

5. Numerical Results

The generalized eigenvalue problem can efficiently be solved by a suitable finite-element
discretization, leading to a finite-dimensional generalized eigenvalue problem of the same
form of (4.10) with mass matrix M and stiffness matrix Sk; see [7–9]. A comprehensive
treatment of the mathematical theory and practice of FEM can be found in the study by
Ern and Guermond in [21]. For theoretical results concerning order-preserving convergence
of the eigenvalues of the discretized problem to the eigenvalues of the infinite-dimensional
problem, we refer to the studies by Yang and Chen in [22].

As an application we want to examine how dispersion curves vary with an increasing
degree of anisotropy. To do so, we consider a transversely isotropic material with y-axis as
the axis of rotational symmetry. We note that unidirectional fibre-reinforced composites can
often be approximately modelled by transversely isotropic material so that symmetry-axis
and fibre direction coincide. For a description of the elastic material constants in this case
we refer to the studies by Ambartsumyan in [23] and Altenbach et al. in [24]. We used as
Young’s moduli E1 = E3 = 70 GPa, E2 = θE1, as Poisson’s ratios ν32 = ν31 = ν13 = ν12 = 0.3,
ν23 = ν21 = ν32/θ, and as shear moduli G23 = G12 = G13 = E1/(2(1 + ν23)), where the ratio
θ = E2/E1 determines the degree of anisotropy. The material behaves isotropic for θ = 1 while
for θ > 1 it becomes transversely isotropic with rotational symmetry around the y-axis. In this
case the matrix C of material constants can be written as

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1 − ν2

32/θ
)
E1

Δ

(
ν32 + ν2

32

)
E1

Δ

(
ν32 + ν2

32/θ
)
E1

Δ
0 0 0

(
1 − ν2

32

)
θE1

Δ

(
ν32 + ν2

32

)
E1

Δ
0 0 0

(
1 − ν2

32/θ
)
E1

Δ
0 0 0
E1

2 + 2ν32
0 0

symmetric
E1

2 + 2ν32
0

E1

2 + 2ν32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.1)

with

Δ := 1 −
(

2
θ
+ 1
)
ν2

32 −
2
θ
ν3

32. (5.2)
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The plate is assumed to have a thickness of d = 1 mm and a mass density of ρ =
2700 kg ·m−3. We computed the circular frequency ω(k, φ) for a fixed circular wavenumber
in dependence of the propagation direction φ and for different ratios θ = E2/E1. Some results
for the first four modes are displayed in Figure 2 which illustrate the increasingly anisotropic
behaviour. In the strictly transversely isotropic case θ > 1, we labeled the modes according to
their isotropic counterparts, but it becomes clear from Figure 3 that the distinction between
pure SH- and S-modes is growing less obvious as both kinds of modes get components in all
directions.
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