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A steady-state dynamic model of a cable in air is put forward by using some tensor relations.
For the dynamic motion of a long-span Cable-Driven Parallel Robot (CDPR) system, a driven
cable deployment and retrieval mathematical model of CDPR is developed by employing lumped
mass method. The effects of cable mass are taken into account. The boundary condition of cable
and initial values of equations is founded. The partial differential governing equation of each
cable is thus transformed into a set of ordinary differential equations, which can be solved by
adaptive Runge-Kutta algorithm. Simulation examples verify the effectiveness of the driven cable
deployment and retrieval mathematical model of CDPR.

1. Introduction

Cable systems arise in many practical applications, such as bridges, underwater systems,
aircraft decoy systems, and tethered satellite systems. When cables are utilized to replace
links to the feed cabin to track radio source in 500m aperture spherical radio telescope, we
get Cable-Driven parallel robot (CDPR), which is developed from parallel and serial cable-
driven robot. Conventional robots with serial or parallel structures are impractical for some
applications since the workspace requirements are higher than what the conventional robots
can provide. CDPR which uses cables instead of links to manipulate objects reduces the
structural weight considerably in [1, 2]. The cables are so light that actuators of CDPR have
only to drive their loads. Furthermore, CDPR gives a wide range of motion, because drums
of the mechanism can wind long cables. For the above reasons, cable-driven mechanisms
have received attention and have been recently studied since the 1980s [3]. Some reported
researches on CDPR are NIST Robocrane [4], ultrahigh speed robot, tendon-driven Stewart
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Figure 1: The 50m scaled model.

platform, parallel wire mechanism for measuring a robot pose, controller designs for CDPR
[5], and wrench-feasible workspace analysis for CDPR [6].

Particularly, dynamical characteristics of this type of mechanism have been well
studied, such as the manipulation problem of load by multiple wires [7, 8], and the cables
are considered to be massless. However, the cable will extend when stretched, and an error
in length of 0.1% can give rise to an error in force of about 50%, thus accurate modeling of the
cables is crucial [9].

Methods for approximating the cable motion and its equilibria have been studied
for many years. Cable-body systems have been modeled using continuum models based on
partial differential equations for strings, as well as lumped mass method in [10]. In complex
applications, the lumped mass method representation is usually the preferred choice for
detailed simulation work [11] and is employed in our work.

In this paper, we present a deployment and retrieval cable mathematical model using
a lumped parameter representation. First, the general representation of the cable model is
given. Then, according to the 50m scaled model (Figure 1), based on the inverse kinematics
analysis, the inverse dynamic formulation of deployment and retrieval CDPR is established.
Finally, numerical simulations illustrate the performance of the proposed method.

2. Mathematical Model for Cable

A simple schematic of the CDPR for 50m scaled model representing the coordinate systems
is shown in Figure 1, and cable coordinate system is showed in Figure 2. The CDPR is
considered that is kinematically and statically determined. In the design, there is a cable
tower/winch pair at each vertex of a regular hexagon of radius α, which actuates six cables
that are linked to a cabin. Therefore, the cabin can translate and rotate in the inertial frame.
Let the origin of the inertial frame OXYZ be the center of the six towers [12].

In this model, the cable is assumed to be idea extensible and uniform in mass and
the torsional deformation is ignored. The cable is approximated through the linear stress-
strain relationship. The section is circle, and the cable is deployed from one end mass only.
A representation of the model, as well as the generalized coordinates used to describe the
motion, is shown in Figure 2. Let (τ ,n, and b) represent the unit vectors of the cable frame.
The rotation matrix oR transforms S from the cable frame to the inertial frame OXYZ. s
represents the length coordinate of the unstretched cable measured form its downstream
end. When the cable is stressed, the length is S(s, t). Cable satisfies the following relation:
dS = (∂S/∂s)ds. According to the mechanics of elasticity relationship between Strain ε and
Stress T, we get: ε = T/EA0 and ε = (dS − ds)/ds ⇒ ∂S/∂s = 1 + ε.
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Figure 2: Fixed and cable coordinate system.

In the above equation, r(s, t) is the position vector of a point on the continuous cable,
E is Young’s modulus, and A0 is the unstressed cross-sectional area. Considering a cable
element located at point P at time t, Its inertial position is given by the vector r(s, t) : [t0,∞)×
[0, L] → R3, which satisfies the relation r(s, t) = [x(s, t), y(s, t), z(s, t)]T .

τ =
∂r
∂S

, (2.1)

τ(s, t) =
∂s
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The axial strain along the curve is approximated by
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Considering a cable element ds moving in a steady state and applying Newton’s law
to this body [13–17], we get:

M
d2r(s, t)

dt2
=

dT
ds

+
∑

F. (2.4)

In the above equation, T is the tension at the right end of cable’s element, M is the
diagonal inertia matrix of the concentrated mass, d2r(s, t)/dt2 is accelerate, and F is the total
external force, both corresponding at the unit of cable length, including gravity, damping
force, and aerodynamic drag forces.
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Starting from the significant operator d/dt = (∂/∂t) + (L̇∂/∂t), the velocity and the
acceleration of the point P of curvilinear coordinate s are

dr
dt

=
∂r
∂t

+
∂r
∂s

L̇, (2.5)

d2r
dt2

=
∂2r
∂t2

+ 2
∂2r
∂s∂t

L̇ +
∂2r
∂s2

L̇2 +
∂r
∂s

L̈, (2.6)

where L̇ = ds/dt is the cable velocity, and L̈ = d2s/dt2 is the cable accelerate when the cable
moves slowly. For the purposes of simplicity, we assume L̇2 ≈ 0 and L̈ ≈ 0 when the cable
moves slowly. Then from (2.6)we get

d2r
dt2

=
∂2r
∂t2

+ 2
∂2r
∂s∂t

L̇. (2.7)

The dynamical equations for the cable are derived from (2.4) and (2.7).
By neglecting inertial force, the bending moments, and torsional moments of the cable

in steady movement, a governing (2.4) for the cable can be expressed as

dT
dS

+ B +D = 0. (2.8)

Note that, T = Tτ, dT/dS = (Tdτ/ds+τdT/ds)(1 + ε)−1 where τ is the intensity of the vector
tension T . Within a slow motion of the cable, in what follows the radial force Tdτ/ds can be
considered as negligible. B is the net gravitational force per unit length, D is aerodynamic
drag forces. Substituting the force [16, 17] in (2.8) and rearranging the terms, we get
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)
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(2.9)

wherem0 is the mass per unit unstressed cable length. d0 is diameter of the unstressed cross-
section. ρa is air density. μ = dr/dt − J, J is wind velocity. μτ is the tangential component of
μ in local cable coordinates. Cd is the cable drag coefficient to the wind. CF is drag coefficient
surface friction factor. CF = CmCd/π , when the cable cross section is circle, Cm = 0.02 ∼
0.05, and Cd = 1.2 [18].

Given conditions, time-domain simulation of the cable dynamics is obtained by
propagating (2.9) in time through the use of a suitable temporal integration algorithm. In
this work, adaptive Runge-Kutta algorithm is used.
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3. A Three-Dimensional Dynamic Model of
Deployment/Retrieval Cable

3.1. A Lumped Mass Method for Cable Dynamic Model

The cable is discretized into a series of N elastic segments joined at nodes, which are
numbered by i from 0 at the downstream end to N at the upper end. The cable length
coordinates satisfy 0 = s0 < s1 < · · · < si < · · · < sN = S. The mass of each segment is
lumped in equal amounts at each of its two boundary nodes, by analogy the external forces
are also lumped in this way. These segments are required to be small enough, so that the
forces acting on them are approximately uniform over their length.

Applying Newton’s second law to the node i, we get the governing equation

Miẍi = F = ΔTi +Wi +Di, (3.1)

where the mass matrix Mi = miI, I represents 3 × 3 unit square matrix, mi = (ρlui−1,j +
ρlui,j+1)/2, ρ is the mass per unit cable length, and lu is the unstressed cable length between
units. The subscript i and i+ 1 denote the physical terms between node i and i+ 1.As a whole
cable, it is x = [x1y1z1 · · ·xiyizi · · ·xn−1yn−1zn−1]

T , where xi = [xi−1yi−1zi−1 · · ·xi+1yi+1zi+1]
T , ẍ

is the acceleration of the node.
The tension ΔTi of the node i is:

ΔTi = Ti,j+1 − Ti−1,j , (3.2)

Ti,j+1 = A0Eεi,j+1τ i,j+1, εi,j+1 = (li,i+1 − lui,i+1)/lui,i+1, where A0 is the area of unstressed cross
section, and li,i+1 = |ri+1 − ri| is the length between node i and i + 1. It can be expressed in
recursive form as [19]. Different methods lead to the same results.

Wi is the gravity of node [20] i:

Wi = −migk, (3.3)

Di [16] is the wind force of node i:

Di =
(Di−1,i +Di,i+1)

2
. (3.4)

3.2. Boundary and Initial Conditions

vd is the velocity of deployment/retrieval cable, and it can be controlled. When the cable is
deployed, vd < 0. When the cable is retrieved, vd > 0. Refer to Figure 3. When the cable is
deployed or retrieved, its length at any time t can be determined by

sid(t) = s0 −
∫ t

0

vd

1 + ε
dτ, (3.5)

where s0 is the initial length of the cable at startup.
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Figure 3: Discrete model of the cable deployment/retrieval.

3.3. Boundary Conditions of Cable Deployment/Retrieval

The cable force at the node 0, which is connected to the cabin, can be calculated in (3.1)

M0ẍ0 = F0 = ΔT0 +W0 +D0 + f0, (3.6)

where M0 = (wlu0,1/2)I, ΔT0 = A0Eε0,1τ0,1, W0 = m0gk, D0 = D0,1/2, and f0 = F0.
Refer to Figure 3. when the velocity of the node connected to pulley is vrp, the cable

length at any time t can be determined by

S =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s −
∫ t

0

vrp

1 + ε
dt, retrieval,

s +
∫ t

0

vrp

1 + ε
dt, deployment,

(3.7)

where the ε is the function of tension of node N and changes with time. Here we ignore the
variations.

The position and velocity of the end node can be expressed as

xN = xpulley,

ẋN = vrpτrp.
(3.8)

The subscript rp is the mark of deployment/retrieval. τrp is the tangent vector of the
cable end node. τN,N−1 is used to the numerical calculation.
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Figure 4: Trace and error of circle path.

The initial condition of the simulation is steady states of the cable movement.
According to the governing equation, we get

dẋi

dt
= Mi

−1(ΔTi +Wi +Di)

dxi

dt
= ẋi

(i = 1 ∼ N − 1). (3.9)

With the boundary condition and the initial condition, the nonlinear equations can be
solved.
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Figure 5: Error in line path.

4. Numerical Results of CDPR

(1) In the first simulation, the cabin tracks a moving target with constant velocity v =
2m/s and constant pose (α = 0, β = 0, γ is not limited). The initial point is (0.0,
0.0, 9135.0, 0.0, 0.0, 0.0)T (mm, rad). The geometric path is a circle with the radius of
2m, parallel to the x-y plane. (0, 1, −1470, 0, 0, 0)T (mm, rad) is the error between
current position and start position. Figure 4 shows the simulation result.

(2) In the second simulation, the cabin moves from the equilibrium position (2.00, 1.00,
16.0, 0.0889, −0.1756, 3.108)T (m, rad) to the end position (2.50, 1.50, 16.2, 0.135,
−0.263, 3.121)T (mm, rad) in 10 s. The trace of each coordinate is line. There is
no error between the equilibrium position and start position. Figure 5 shows the
simulation result.

5. Conclusions

In this study, a computational dynamics model is developed to simulate the dynamics
of variable length cable-driven parallel robot (CDPR) system. Numerical results show the
effectiveness of the model to capture the complex cable dynamics where the cable length
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is varying for it is gradually deployment or retrieval. When there is no error between
current position and start position, the error values attenuate slowly, owing to little damp
of cable system. When there is error between current position and start position, the dynamic
characteristic of cable is significantly increased. We can find the changes of cabin position
under impact loading, and the relevant researches and developing tendency [21] on the error
between current position and start position versus trace errors will be researched.

List of Symbols

i, j,k : Three orthogonal unit vectors of the base frame XYZ
τ ,n,b : The unit vectors of the cable frame
s: The length coordinate of the unstretched cable measured form

its downstream end
S(s, t) : The length of the stressed cable
r(s, t) : The position vector of a point on the continuous cable
T : The tension of at the right end of cable’s element
M : The diagonal inertia matrix of the concentrated mass
d2r(s, t)/dt2 : Accelerate at the unit of cable length
B : Is the net gravitational force per unit length
D : Aerodynamic drag forces
m0 : The mass per unit unstressed cable length
d0 : Diameter of the unstressed cross section
ρa : Air density
μ = dr/dt − J : J is wind velocity
μτ : The tangential component of μ in local cable coordinates
Cd : The cable drag coefficient to the wind
CF : The surface friction factor
ρ : The mass per unit cable length
lu : The unstressed cable length between units
x, ẋ, ẍ : Displacements, velocities and accelerations of the node
ΔTi : The tension of the node i
Wi : The gravity of node i
Di : The wind force of node i
vd : The velocity of deployment/retrieval cable
s0 : The initial length of the cable at startup
vrp : The velocity of the node connected to pulley
ε : Is the function of tension of node N
τrp : Is the tangent vector of the cable end node
τN,N−1 : Is used to the numerical calculation
F : The total external force, corresponding to the unit of cable

length.
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