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This paper investigates how to change the disassortativity of the whole network by connecting
nodes of different types in two communities. A model connecting two multi-center networks is
studied to see if analytical results are achievable. There are three main methods to connect two
multi-center subnetworks depending on whether the connecting nodes are centers: (1) connect the
centers of one sub-network to noncenter nodes of the other sub-network, (2) connect the centers
of the two sub-networks together, and (3) connect non-center nodes of the two sub-networks. The
results show that the disassortative property of a single multicenter network can be maintained
in scenarios (1) and (2) above, but the disassortativity is changed in (3). In conclusion, either
assortativity or disassortativity is achievable by connecting nodes with different degree properties
in an ideal network constructed from two communities with similar network topology.

1. Introduction

The study of complex networks originated from the paper “Collective Dynamics of “Small
World” Networks” [1] on Journal Nature 1998 by Watts and Strogatz, which unveils the
small world effect. Small-world networks exhibit both the highly clustered property as in
regular lattices as well as having small characteristic path length as in random graphs. In 1999
Barabasi and Albert published the paper “Emergence of Scaling in RandomNetworks” [2] in
the journal Science. Because the emergence of scaling does not have apparent characteristic
length, this type of networks is also called scale-free networks. Since then, a lot of researches
have been focused on the “scale-free” property of real-world networks, such as power-law
degree distributions. Subsequently, other aspects of complex networks including mechanism
of epidemic spreading [3–6], synchronization property [7–11], cascading failure [12–14] have
also been studied.
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Besides those generally acknowledged properties, mixing pattern is one of the
important research subjects of complex networks as well. The characteristic property of
nodes in a network preferentially connecting to those which are similar to themselves
is called assortative mixing. On the contrary, the phenomenon that nodes in a network
preferentially connect to others unlike themselves most is called disassortative mixing. A lot
of research shows that technological and biological networks generally possess disassortative
characteristic while social networks usually possess assortative characteristic.

In realistic applications [15], assortative networks (such as the social network of film
actors) tend to percolate more easily than their disassortative counterparts (such as the
Internet topology [16]), and they are also more robust to vertex removal.

The recent research on disassortativity is based on the following two main methods:
(1) Assortativity coefficient r is simply the Pearson correlation coefficient of the

degrees at either ends of an edge

r =
M−1 ∑

i jiki −
[
M−1 ∑

i(1/2)
(
ji + ki

)]2

M−1 ∑
i(1/2)

(
ji
2 + ki

2
)
− [

M−1 ∑
i(1/2)

(
ji + ki

)]2
, (1.1)

where ji, ki are the degrees of the nodes at the ends of the ith edge, with i = 1, 2, . . . ,M.
Assortativity coefficient r lies in the range −1 ≤ r ≤ 1. And if r > 0, the network is

assortative. On the contrary, if r < 0, the network is disassortative [15].
(2) knn(k) is defined to be the average neighbor connectivity of a node with degree k.

knn(k) =
kmax∑

k′=1

k′P
(
k′/k

)
, (1.2)

where P(k′/k) is used to describe the conditional probability that my network neighbor is of
degree k′ given that I am of degree k [16].

This degree-degree correlation knn(k) gives a one-parameter curve. if knn(k) increases
as the degree k increases, the network has assortative property. Otherwise, if knn(k) decreases
with k, the network is disassortative [17].

This paper will focus on finding why a network shows assortativity or disassortativity,
which has not been discussed extensively. It is known that complex networks also have
community structure, which brings up a natural question: how does the interconnection
between communities affect the assortative property of the whole network? In general this
kind of questions can only be solved by numerical method, but in this paper we will try to
give analytical explanations. Based on our previous work of multi-center networks, in this
paper a multi-center network with the number of nodes N and centers l is considered as a
community in a larger network. Thus, the impact of the interconnection on assortativity can
be analytically discussed.

The rest of the paper is organized as follows. In Section 2, the model of multi-center
network structure and three ways of interconnection between two multi-center networks
will be introduced. From Section 3 to Section 5, we will present the study on networks via
connecting centers to non-center nodes, centers to centers, non-center nodes to non-center
nodes, respectively. The analytical conclusion will be discussed in Section 6.
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2. Models

Firstly, we will introduce the concept of multi-center network. In this paper, a multi-center
network [7] is defined as a network with N nodes if the following conditions are satisfied:

(i) There are l (l � N) nodes, any of which connects to the other N − 1 nodes, and

(ii) any of the remaining N − l nodes only connects to the above l nodes, and there is
no edge between the remaining N − l nodes.

In this multi-center network model, the l nodes are called center nodes. The degree
of the centers is N − 1 due to condition (1.1), while the degree of non-center nodes is l due
to condition (1.2). And a single multi-center network is obviously disassortative by degree
under the presupposition l � N.

A new ideal network is defined as two interconnected multi-center sub-networks.
They are denoted as I and II. The number ofnodes isN1 andN2 respectively. And the number
of centers is l1 and l2. To connect sub-networks I and II means connecting m1 nodes of I to
m2 nodes of II such that a more complex network is constructed. These m1 + m2 nodes are
called connecting nodes. Depending on whether they are center nodes or not, there are four
possible ways of interconnection [8, 9]:

(i) connect centers of I to centers of II;

(ii) connect non-center nodes of I to non-center nodes of II;

(iii) connect centers of I to non-center nodes of II or connect centers of II to non-center
nodes of I; and

(iv) connect any arbitrary nodes of I to arbitrary nodes of II.

The simplified ideal network model studied in this paper assumes either that one of
the two communities is a multi-center network in which the number of nodes is N and the
number of centers is l, or that both communities have the exactly same structure. We will
discuss the assortative property by the degree of the new ideal network constructed by the
previous three ways of interconnections. The fourth method in the enumeration will not be
consideredfor the moment, as it is a bit more complex to discuss and goes beyond our topic
in this paper.

3. The Ideal Network Connecting Centers to Non-Center Nodes

To connect sub-networks I and II means to connect m1 centers of I to m2 non-center nodes of
II, and so 0 < m1 ≤ l, 0 < m2 ≤ N − l.

The whole set of nodes in the network can be categorized into four types by the degree
property:

Type 1. If the connecting nodes are excluded, non-center nodes in sub-networks are of degree
l, and there are 2N − 2l − m2 nodes of this type in the whole network. The number of links
belonging to nodes of Type 1 is l(2N − 2l −m2), where

(1) the number of links to non-center nodes with connecting nodes excluded (i.e.,
which have degree l) is 0,

(2) the number of links to connecting nodes of sub-network II (i.e., which have degree
l +m1) is 0
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(3) the number of links to centers with connecting nodes excluded (i.e., which have
degree N − 1) is (l −m1)(N − l) + l(N − l −m2)

(4) the number of links to connecting nodes of sub-network I (i.e., which have degree
N − 1 +m2) is m1(N − l)

Therefore,

p(l/l) = 0, p(l +m1/l) = 0,

p(N − 1/l) = 1 − m1(N − l)
l(2N − 2l −m2)

, p(N − 1 +m2/l) =
m1(N − l)

l(2N − 2l −m2)
.

(3.1)

Type 2. Connecting nodes of sub-network II have degree l + m1, and there are m2 nodes of
this type in the whole network. The number of links belong to nodes of Type 2 is m2(l +m1),
where

(1) the number of links to non-center nodes with connecting nodes excluded (i.e.,
which have degree l) is 0

(2) the number of links to connecting nodes of sub-network II (i.e., which have degree
l +m1) is 0

(3) the number of links to centers with connecting nodes excluded (i.e., which have
degree N − 1) is l ·m2

(4) the number of links to connecting nodes of sub-network I (i.e., which have degree
N − 1 +m2) is m1 ·m2

Therefore,

p(l/l +m1) = 0, p(l +m1/l +m1) = 0,

p(N − 1/l +m1) =
l

l +m1
, p(N − 1 +m2/l +m1) =

m1

l +m1
.

(3.2)

Type 3. Centers but not connecting nodes of sub-networks have degree N − 1, and there are
2l−m1 nodes of this type in the whole network. The number of links belong to nodes of Type
3 is Δ1 = (N − l)(l −m1) + (N − 1)l − (1/2)m1(m1 − 1), where

(1) the number of links to non-center nodes with connecting nodes excluded (i.e.,
which have degree l) is (l −m1)(N − l) + l(N − l −m2)

(2) the number of links to connecting nodes of sub-network II (i.e., which have degree
l +m1) ism2 · l

(3) the number of links to centers with connecting nodes excluded (i.e., which have
degree N − 1) is (l −m1)(l −m1 − 1)/2 + l(l − 1)/2

(4) the number of links to connecting nodes of sub-network I (i.e., which have degree
N − 1 +m2) is m1(l −m1)
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Therefore,

p(l/N − 1) =
(l −m1)(N − l) + l(N − l −m2)

Δ1
, p(l +m1/N − 1) =

m2l

Δ1
,

p(N − 1/N − 1) =
(l −m1)(l −m1 − 1) + l(l − 1)

2Δ1
, p(N − 1 +m2/N − 1) =

m1(l −m1)
Δ1

.

(3.3)

Type 4. Connecting nodes of sub-network I (i.e., which have degree N − 1 +m2) are not only
centers but also connecting nodes of sub-networks, and there arem1 nodes of this type in the
whole network. The number of links to nodes of Type 4 is m1(N +m2 − (1/2)m1 − 1/2), and
let Δ2 = N +m2 − (1/2)m1 − (1/2), where

(1) the number of links to non-center nodes with connecting nodes excluded (i.e.,
which have degree l) ism1(N − l)

(2) the number of links to connecting nodes of sub-network II (i.e., which have degree
l +m1) ism1 ·m2

(3) the number of links to centers with connecting nodes excluded (i.e., which have
degree N − 1) ism1(l −m1)

(4) the number of links to connecting nodes of sub-network I (i.e., which have degree
N − 1 +m2) is (1/2)m1(m1 − 1)

Therefore,

p(l/N − 1 +m2) =
N − l

Δ2
, p(l +m1/N − 1 +m2) =

m2

Δ2
,

p(N − 1/N − 1 +m2) =
l −m1

Δ2
, p(N − 1 +m2/N − 1 +m2) =

m1 − 1
2Δ2

.

(3.4)

There are four kinds of degrees in the network, which are l, l +m1, N − 1, N − 1 +m2.
Thus matrix {p(k′/k)} is as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 − m1(N − l)
l(2N − 2l −m2)

m1(N − l)
l(2N − 2l −m2)

0 0
l

l +m1

m1

l +m1

(l −m1)(N − l) + l(N − l −m2)
Δ1

m2l

Δ1

(l −m1)(l −m1 − 1) + l(l − 1)
2Δ1

m1(l −m1)
Δ1

N − l

Δ2

m2

Δ2

l −m1

Δ2

m1 − 1
2Δ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.5)



6 Mathematical Problems in Engineering

Then we can obtain the expressions of average neighbor connectivity to nodes with
the degree l, l +m1, N − 1, N − 1 +m2 respectively, which can be listed as follows:

knn(l) =
[

1− m1(N−l)
l(2N − 2l−m2)

]

(N−1)+ m1(N − l)
l(2N − 2l −m2)

(N−1+m2)=(N−1)+ m1m2(N − l)
l(2N − 2l −m2)

,

knn(l +m1) = (N−1)+m1m2

l +m1
,

knn(N − 1) =
1
Δ1

[

(N−1)
(

l2−l+ 1
2
m1− 1

2
m2

1

)

+(N−l)
(
2l2−lm1

)
−m2

1m2+2lm1m2

]

,

knn(N − 1 +m2) =
1
Δ2

[

(N − 1)
(

2l − 1
2
m1 − 1

2

)

+
(
3
2
m1 − 1

2
+ l

)

m2 + l − l2
]

.

(3.6)

Firstly, from (1.1), the expression of assortativity coefficient r of this ideal network can
be obtained. It is evaluated from the estimates of the number links connecting different nodes
(cases Type 1 to Type 4). Since the expression is complex and irregular, it will not be listed
here. Secondly, based on (1.2), the projection of the degree-degree correlation can apply to
this ideal network step by step as shown above.

It is difficult to analyze variation range of r and the varying trend of knn(k) with k
due to the complexity with their expressions. Instead, we introduce numerical methods for
analysis. Assume thatN = 1000, l = 20,m1 = αl,m2 = β(N − l), where α shows the proportion
of connecting nodes in centers of sub-network I, and β shows the proportion of connecting
nodes in non-center nodes of sub-network II and α, β ∈ (0, 1]. The relationships between r,
knn(k) and m1,m2 can be studied in the three-dimensional space.

In this way, we can study how assortativity coefficient r and degree-degree correlation
knn(k) vary along with the variety of α,β. Not only the research is further simplified, but also
the values of α, β are more practical and meaningful.

Under this assumption, the assortativity coefficient of single multi-center network has
a perfect value to show its disassortative property, where r = −0.9810. Figure 1 is a three-
dimensional graph of the relationship between r and α, β under the assumption that N =
1000, l = 20. The trend how r varies along with α, β can easily be observed.

It can be obtained that assortativity coefficient r varies between −0.9810 and −0.7853
along with α, β in the ideal network connecting centers of sub-network I with non-center
nodes of sub-network II. In addition, the range of variety is finite. Besides, r in this case
almost exceeds the value of single multi-center network (r = −0.9810). It shows that although
the ideal network is disassortative, it is already more assortative, to some extent, than the
single multi-center network.

The reason is that some of nodes with low degree (i.e., part of non-center nodes in
sub-network II) increase their links, which increases the average degree of these nodes that
connect to centers with high degree. Subsequently, the disassortativity becomes lower. But
meanwhile the average degree level of centers in sub-networks increases. When taking both
situations into account, the whole network is still constructed by connecting nodes with high
degree and nodes with low degree. Therefore, the network is disassortative overall.

Similarly under the assumption that N = 1000, l = 20, Figure 2 shows two types of
relationship between knn(k) and degree k in the ideal network with this connecting way.
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Figure 1: Relationship between r and α, β when N = 1000, l = 20 (x = α, y = β).
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Figure 2: (a) knn(l) > knn(l + m1) > knn(N − 1) > knn(N − 1 + m2). (b) knn(l) < knn(l + m1), knn(N − 1) <
knn(N − 1 +m2), but knn(l) � knn(N − 1 +m2).

In the ideal network connecting centers of sub-network I with non-center nodes of
sub-network II, nodes with the degree l, l +m1,N − 1,N − 1 +m2 have the average neighbor
connectivity knn(l), knn(l +m1), knn(N − 1), knn(N − 1+m2), respectively. There are two types
of scenarios on average neighbor connectivity as described below.

One type is knn(l) > knn(l +m1) > knn(N − 1) > knn(N − 1 +m2), which is the scenario
of most of the cases belonging to and matching our prediction that knn(k) decreases when
degree k is increasing.

The 2nd type is knn(l) < knn(l + m1), knn(N − 1) < knn(N − 1 + m2), but knn(l) �
knn(N−1+m2), which is different fromwhat we predicted. However, the overall trend is that
knn(k) decreases when degree k is increasing while nodes with degree l +m1 andN − 1 +m2

have minor positive variation.

4. The Ideal Network Connecting Centers of Two Sub-Networks

For the 2nd connecting method, that is, connecting sub-networks I and II through connecting
m1 centers of I to m2 centers of II, we can also let 0 < m1 ≤ m2 ≤ l and m1 = αl, m2 = βl
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where α shows the proportion of connecting nodes in centers of sub-network I, β shows the
proportion of connecting nodes in centers of sub-network I, α, β ∈ (0, 1], and α ≤ β.

Similarly as the first situation, all nodes of the network can be divided into four types
based on the degree property, which are nodes with degree l, N − 1, N − 1 +m1, N − 1 +m2.
And then we can obtain matrix {p(k′/k)} as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
2l−m2−m1

2l
m2

2l
m1

2l

(2l−m2−m1)(N−l)
Δ1

(l−m1)(l−m1 −1)+(l−m2)(l−m2−1)
2Δ1

(l−m2)m2

Δ1

(l−m1)m1

Δ1

N−l
Δ2

l −m2

Δ2

m2−1
2Δ2

m1

Δ2

N−l
Δ3

l −m1

Δ3

m2

Δ3

m1 − 1
2Δ3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.1)

where

Δ1 = (l −m2 −m1)(N − l) + (N − 1)l − 1
2
m1(m1 − 1) − 1

2
m2(m2 − 1),

Δ2 = N − 1
2
m2 − 1

2
+m1, Δ3 = N − 1

2
m1 − 1

2
+m2.

(4.2)

Subsequently we can derive the expressions of avrage neighbor connectivity to nodes
with the degree l,N − 1, N − 1 +m1,N − 1 +m2, respectively, which are listed follows:

knn(l) = (N − 1) +
m1m2

l
,

knn(N − 1) = l
(2l −m2 −m1)(N − l)

Δ1
+ (N − 1)

(l −m1)(l −m1 − 1) + (l −m2)(l −m2 − 1)
2Δ1

+ (N − 1 +m1)
(l −m2)m2

Δ1
+ (N − 1 +m2)

(l −m1)m1

Δ1
,

knn(N − 1 +m1) = l
N − l

Δ2
+ (N − 1)

l −m2

Δ2
+ (N − 1 +m1)

m2 − 1
2Δ2

+ (N − 1 +m2)
m1

Δ2
,

knn(N − 1 +m2) = l
N − l

Δ3
+ (N − 1)

l −m1

Δ3
+ (N − 1 +m2)

m1 − 1
2Δ3

+ (N − 1 +m1)
m2

Δ3
.

(4.3)

Figure 3 is a three-dimensional graph of relationship between r and α, β under the
assumption that N = 1000, l = 20. The trend how r varies with α, β can easily be observed.

Assortativity coefficient r varies between −0.9810 and −0.9597 across α, β in the ideal
network connecting centers of sub-network I and sub-network II. the range of the variation
is very limited. It appears that this network is disassortative. In most cases r is slightly
greater than that of single multi-center network (r = −0.9810). It shows that this network
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Figure 4: knn(N − 1) < knn(N − 1 +m1) < knn(N − 1 +m2), but knn(l) � knn(N − 1 +m2).

is relatively less disassortative than the single multi-center network, which correlates to the
connecting method. Connecting centers of sub-network I and sub-network II increases the
average degree level of centers in sub-networks while the degree of non-center nodes does
not change. The whole network is constructed by connecting a few nodes with high degree
to a lot of nodes with low degree. Therefore, the network is disassortative.

Under the same assumption that N = 1000, l = 20, Figure 4 illustrates the relationship
between knn(k) and degree k in the ideal network with this connecting method.

In the ideal network connecting centers of sub-network I and sub-network II, nodes
with the degree l,N −1,N −1+m1,N −1+m2 have the average neighbor connectivity knn(l),
knn(N−1), knn(N−1+m1), knn(N−1+m2), respectively. The relationship between the average
neighbor connectivity can be described as follows

knn(N − 1) < knn(N − 1 +m1) < knn(N − 1 +m2), but

knn(l) � knn(N − 1 +m2). (4.4)

The above expression does not correlate to our prediction that knn(k) should
monotonically decrease with degree k. However, values of knn(N − 1), knn(N − 1 + m1),
knn(N −1+m2) are much smaller than knn(l), and the value differences among these three are
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also much smaller than knn(l). Even though the nodes with degreeN − 1+m1 andN − 1+m2

do not agree with the disassortativity, the overall trend is that knn(k) decreases as degree k is
increasing.

5. The Ideal Network Connecting NonCenter Nodes of
Two Sub-Networks

To connect sub-networks I and II in the third situation means to connectm1 non-center nodes
of I to m2 non-center nodes of II. We can also let 0 < m1 < m2 < N − l and m1 = α(N − l),
m2 = β(N − l)where α shows the proportion of connecting nodes in non-center nodes of sub-
network I, β shows the proportion of connecting nodes in non-center nodes of sub-network
II, α, β ∈ (0, 1] and α ≤ β.

Similar to the first and second situations, all nodes of the network can be divided into
four types based on the degree property, which are nodes with degree l, l +m1, l +m2,N − 1.
And then we can obtain matrix {p(k′/k)} as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1

0 0
m1

m1 + l

l

m1 + l

0
m2

m2 + l
0

l

m2 + l

2N − 2l −m1 −m2

2N − l − 1
m2

2N − l − 1
m1

2N − l − 1
l − 1

2N − l − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.1)

Subsequently we can derive the expressions of average neighbor connectivity to nodes
with the degree l, l +m1, l +m2, N − 1, respectively, which can be listed as follows:

knn(l) = N − 1,

knn(l +m1) = (l +m2)
m1

m1 + l
+ (N − 1)

l

m1 + l
,

knn(l +m2) = (l +m1)
m2

m2 + l
+ (N − 1)

l

m2 + l
,

knn(N − 1) = l
2N − 2l −m1 −m2

2N − l − 1
+(l +m1)

m2

2N − l − 1
+(l +m2)

m1

2N−l−1+(N−1) l−1
2N−l −1 .

(5.2)

Figure 5 is a three-dimensional graph of the relationship between r and α, β under
the assumption that N = 1000, l = 20. The trend how r varies along with α, β can easily be
observed.

Assortativity coefficient r varies in wide range across α, β in the ideal network
connecting non-center nodes of sub-network I and sub-network II (−0.9810∼0.7122). The
values of r are mostly negative. It is obvious that the network is disassortative with a few
exceptions, which correlates to the connecting method of this network.
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Figure 5: Relation between r and α, β whenN = 1000, l = 20 (x = α, y = β).
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Figure 6: (a) knn(l) > knn(l+m1) > knn(l+m2) > knn(N−1). (b) knn(l) < knn(l+m1) < knn(l+m2) < knn(N−1).

After connecting non-center nodes of sub-network I and sub-network II, the average
degree level of non-center nodes in sub-networks increases. Even when a large number of
non-center nodes with low degree (as long as the quantity is belowN − l) become connecting
nodes, the degree of this kind of nodes increases greatly such that they become nodes with
high degree. The whole network is constructed by connecting nodes with high degree.
Therefore, the network is assortative, even though its two sub-networks are disassortative.
And it is obvious that assortativity shows up when values of α, β are both close to 1.

Similarly, under the assumption thatN = 1000, l = 20, Figure 6 shows the relationship
between knn(k) and degree k in the ideal network with this connecting method.

In the ideal network of connecting non-center nodes of sub-network I and sub-network
II, nodes with the degree l, l + m1, l + m2, N − 1 have the average neighbor connectivity
knn(l), knn(l +m1), knn(l +m2), knn(N − 1), respectively. The relationship of average neighbor
connectivity can be expressed as:

knn(l) > knn(l +m1) > knn(l +m2) > knn(N − 1). (5.3)

But knn(l + m1), knn(l + m2) and knn(N − 1) increase as α, β are increasing, which
are gradually close to knn(l) then finally exceed knn(l) slightly as shown in Figure 6(b). The
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network owns assortative property in these few examples, which is different from what we
have predicted. This means that knn(k) increases as degree k is increasing in these examples.

6. Discussions

This paper has studied three ways of connecting two multi-center sub-networks. Based on
the analysis of the three scenarios, it can be summarized that disassortative properties can be
changed by changing the connecting ways between communities. For a network consisting of
two disassortative multi-center sub-networks, connecting hub and nodes with lower degree
can still generate a disassortative network, but the disassortativity is weakened; connecting
hubs can maintain the disassortativity to a great extent; connecting nodes with lower degree
can even change disassortativity to assortativity.

Based on the analytical study of the impact of interconnection on disassortativity,
it can be concluded that two communities (taking a network with disassortativity as an
example) with basically the same structure form a new larger network. Different connecting
ways between two communities lead to different levels of disassortativity of the whole
network. Connecting nodes with mixed high and low degrees can still form disassortative
network with weakened disassortativity; connecting nodes with high degree can maintain
the disassortativity; connecting nodes with low degree can even change disassortativity to
assortativity when the number of connections reaches certain amount.

We also conclude that the assortativity coefficient r can be used to evaluate
assortativity or disassortativity of networks in whole. If the degree-degree correlation knn(k)
is also used to evaluate assortativity or disassortativity, using its overall trend is sufficient
and the curve does not have to be monotonic.

In addition, once going deep into the analytical conclusion above, we find that this
assortativity/disassortativity is just a parameter and cannot describe a network by itself. This
is apparent as a complex network is a high-dimensional object, it is impossible to use a single
parameter—a one—dimensional line, to fully describe it. Under certain circumstance, when
one property is dominant for a certain application, one can neglect the other properties, and
then it becomes a 1D problem, as in this paper.
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