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We first consider the following inverse eigenvalue problem: given X € C" and a diagonal matrix
A € C"™™" find nxn Hermite-Hamilton matrices K and M such that KX = MXA. We then consider
an optimal approximation problem: given n x n Hermitian matrices K, and M,, find a solution
(K, M) of the above inverse problem such that || K — K,|[>+ || M — M,||> = min. By using the Moore-
Penrose generalized inverse and the singular value decompositions, the solvability conditions and
the representations of the general solution for the first problem are derived. The expression of the
solution to the second problem is presented.

1. Introduction

Throughout this paper, we will adopt the following notations. Let C"™", HC™", and UC™"
stand for the set of all 1 x n matrices, n x n Hermitian matrices, and unitary matrices over the
complex field C, respectively. By || - || we denote the Frobenius norm of a matrix. The symbols
AT, A*, A, and AT denote the transpose, conjugate transpose, inverse, and Moore-Penrose
generalized inverse of A, respectively.

Ix

L, o)m=2kand A€ C"If A= A" and J,AJ, = A", then the
matrix A is called Hermite-Hamilton matrix.

Definition 1.1. Let J, = ( 0
k

We denote by HHC™" the set of all n x n Hermite-Hamilton matrices.

Vibrating structures such as bridges, highways, buildings, and automobiles are
modeled using finite element techniques. These techniques generate structured matrix
second-order differential equations:

Mz(t) = Kaz(t), (L.1)
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where M,, K, are analytical mass and stiffness matrices. It is well known that all solutions
of the above differential equation can be obtained via the algebraic equation K,x = AM,x.
But such finite element model is rarely available in practice, because its natural frequencies
and mode shapes often do not match very well with experimentally measured ones obtained
from a real-life vibration test [1]. It becomes necessary to update the original model to attain
consistency with empirical results. The most common approach is to modify K, and M, to
satisfy the dynamic equation with the measured model data. Let X € C™™ be the measured
model matrix and A = diag(61,6,,...,6,) € C™ the measured natural frequencies matrix,
where n > m. The measured mode shapes and frequencies are assumed correct and have to
satisfy

KX = MXA, (1.2)

where M, K € C™" are the mass and stiffness matrices to be corrected. To date, many
techniques for model updating have been proposed. For undamped systems, various
techniques have been discussed by Berman [2] and Wei [3]. Theory and computation
of damped systems were proposed by authors of [4, 5]. Another line of thought is to
update damping and stiffness matrices with symmetric low-rank correction [6]. The system
matrices are adjusted globally in these methods. As model errors can be localized by using
sensitivity analysis [7], residual force approach [8], least squares approach [9], and assigned
eigenstructure [10], it is usual practice to adjust partial elements of the system matrices using
measured response data.

The model updating problem can be regarded as a special case of the inverse
eigenvalue problem which occurs in the design and modification of mass-spring systems
and dynamic structures. The symmetric inverse eigenvalue problem and generalized inverse
eigenvalue problem with submatrix constraint in structural dynamic model updating have
been studied in [11] and [12], respectively. Hamiltonian matrices usually arise in the analysis
of dynamic structures [13]. However, the inverse eigenvalue problem for Hermite-Hamilton
matrices has not been discussed. In this paper, we will consider the following inverse
eigenvalue problem and an associated optimal approximation problem.

Problem 1. Given that X € C"™™ and a diagonal matrix A € C"™", find nxn Hermite-Hamilton
matrices K and M such that

KX = MXA. (1.3)

Problem 2. Given that K,, M, € HC™", let Sg be the solution set of Problem 1. Find (12 , ]/\/I\) €
Sk such that

2

||K—Ka 2+”A71—Ma

_ : _ 2 _ 2
= min (IIK = Kall* + M = Mq|?). (14)

We observe that, when M = I, Problem 1 can be reduced to the following inverse
eigenproblem:

KX = XA, (1.5)
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which has been solved for different classes of structured matrices. For example, Xie et al.
considered the problem for the case of symmetric, antipersymmetric, antisymmetric, and
persymmetric matrices in [14, 15]. Bai and Chan studied the problem for the case of
centrosymmetric and centroskew matrices in [16]. Trench investigated the case of generalized
symmetry or skew symmetry matrices for the problem in [17] and Yuan studied R-symmetric
matrices for the problem in [18].

The paper is organized as follows. In Section 2, using the Moore-Penrose generalized
inverse and the singular value decompositions of matrices, we give explicit expressions of
the solution for Problem 1. In Section 3, the expressions of the unique solution for Problem 2
are given and a numerical example is provided.

2. Solution of Problem 1

Let

1 [/ I I
U=— . 2.1
V2 <—i1k iIk> e

Lemma 2.1. Let A € C™". Then A € HHC™™" if and only if there exists a matrix N € C** such
that

0 N
A=U U*, (2.2)
N* 0

where U is the same as in (2.1).

An An

Proof. Let A = (qu o
can be easily proved. O

>, and let each block of A be square. From Definition 1.1 and (2.1), it

Lemma 2.2 (see [19]). Let A € C"™", B € CP*,and E € C"™9. Then the matrix equation AXB = E
has a solution X € C™? ifand only if AATEB'B = E; in this case the general solution of the equation
can be expressed as X = ATEBT +Y — ATAYBBY!, where Y € C™P is arbitrary.

Let the partition of the matrix U*X be
X4 L
ux = , X1, Xp e CP, (2.3)
X

where U is defined as in (2.1).
We assume that the singular value decompositions of the matrices X; and X are

D 0 S0
X; =R S, Xp=W v, (2.4)
00 00



4 Mathematical Problems in Engineering

where R = (R|,R;) € UCKk, S = (5,,S,) € UC™™, D = diag(dy,...,d;)) > 0,1 =
rank(X;), Ry € C*, Sy € C™!, and W = (W, W,) € UCK*k, V = (V},V,) € UC™™,
3 =diag(oy,...,05) >0, s =rank(Xy), Wy € CF*¢, V; € C™<s,

Let the singular value decompositions of the matrices X, AV, and X;AS, be

Q0 A0
X,AV; = P Q, XiAS; =T H*, (2.5)
00 00

where P = (Py, P,) € UCK*, Q = (Q1,Q) € UCHM)xm=9) Q = diag(wy,...,w;) > 0, t
rank(XoAV,), Pr € Ckt, Q; € Cm=9%t and T = (Ty,T») € UCK*, H e UCm-Dx(m-D) A =
diag(ay, ..., ag) >0, g =rank(X;AS;), Ty € CF8,

Theorem 2.3. Suppose that X € C™" and A € C™™ is a diagonal matrix. Let the partition of U*X
be (2.3), and let the singular value decompositions of X1, Xo, X2AVa, and X1AS» be given in (2.4)
and (2.5), respectively. Then (1.3) is solvable and its general solution can be expressed as

0 F 0 FXoAX] + GW}
M=U u, K=U . us,  (26)
F* 0 (FXoAX] +GW;) 0

where

F=TJP;, G-= (XlAX})*sz + Ry, 2.7)

with J € Ck=8)xk=) 'y e C*-Dx(k=9) peing arbitrary matrices, and U is the same as in (2.1).

Proof. By Lemma 2.1, we know that (K, M) is a solution to Problem 1 if and only if there exist
matrices N, F € C¥*k such that

0 N 0 F
K=U u-, M=U u-,
N* 0 F* 0

(2.8)
N 0
u Ux=u U*XA
N* 0 F*
Using (2.3), the above equation is equivalent to the following two equations:
NX, = FXoA, (2.9)
N*X; =F'XiA, 1ie, X]N = (X;A)'F. (2.10)
By the singular value decomposition of X5, then the relation (2.9) becomes
0=FX,AV,, (2.11)

NW;.S = FXoAV. (2.12)
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Clearly, (2.11) with respect to unknown matrix F is always solvable. By Lemma 2.2
and (2.5), we get

F=LP;, (2.13)
where L € C** is an arbitrary matrix. Substituting F = LP} into (2.12), we get
NW; = (LP)XoAViE7 (2.14)

Since Wj is of full column rank, then the above equation with respect to unknown matrix N
is always solvable, and the general solution can be expressed as

N = (LPXAViE )W + GW3

(2.15)
= LP} X, AX] + GWj,
where G € Ck*=9) i an arbitrary matrix.
Substituting F = LP; and (2.15) into (2.10), we get

X (LP;XZAX; + GW;) = (X1A)*LP;. (2.16)

By the singular value decomposition of Xj, then the relation (2.16) becomes
0= S5(X1A)'LP;, (2.17)
DR (LP;XZAxg + GW§> = S1(X1A)*LP;. (2.18)

Clearly, (2.17) with respect to unknown matrix L is always solvable. From Lemma 2.2
and (2.5), we have

L =] - (X1ASy)(X1ASy) 1 Py Py
= 1 - (X1ASy) (X1ASy)TTh (2.19)

=T2],
where J € C*=8** ) ig arbitrary. Substituting L = T, ] into (2.18), we get
DRIGW; = (X1AS1)'TyJ P} - DRIT,J P X, AX), (2.20)
Then, we have

RIGW; = D™ (X1AS:) To P — RiToJ Py X, AXS. (2.21)
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Since R] is of full row rank, then the above equation with respect to GW; is always solvable.
By Lemma 2.2, we have

GW; = <X1 ij)*n JP; -~ RiRiToJP;XoAX] + (I - RiRY)Y;, (2.22)
where Y; € CK*¥ is arbitrary. Then, we get

G = (XaAX]) T ;W2 = RiIR T2 J PyXoAXIW, + (I = RiR}) YiW3,

) (2.23)
= (X:AX]) TP W, + RyY,
where Y € C*-D*(k=9) ig arbitrary.
Finally, we have
F=ToJP;, N =FXAX]+GWj, (2.24)
where G = (XlAX;r )*FW, + RyY. The proof is completed. O

From Lemma 2.1, we have that if the mass matrix M € HHC™", then M is not positive
definite. If M is symmetric positive definite and K is a symmetric matrix, then (1.3) can be
reformulated as the following form:

AX = XA, (2.25)

where A = M'K. From [20, Theorem 7.6.3], we know that A is a diagonalizable matrix, all
of whose eigenvalues are real. Thus, A € R"™™ and X is of full column rank. Assume that X
is a real n x m matrix. Let the singular value decomposition of X be

T\~ =~ -
X = u<O>VT, U e OR™", V € OR™™, T =diag(y1,...,Ym) >0, (2.26)

where OR™" denotes the set of all orthogonal matrices. The solution of (2.25) can be
expressed as

~ (TVTAVI Zpp\ ~.
A=U ur, (2.27)
0 Zy»

where Z;; € R™™ js an arbitrary matrix and Zyp € R®™*(m) g5 an arbitrary
diagonalizable matrix (see [21, Theorem 3.1]).

Let A = diag()q[kl,...,)tqlkq) with Ay < Ay < --+ < Ay. Choose Zy; = EAZE_l, where
G € R=mx(n=m) js an arbitrary nonsingular matrix and Ay = diag(AgaI*, ..., A, I%) with
Ap > -+ > Agi1 > Ay The solutions to (1.3) with respect to unknown matrices M > 0 and
K = KT are presented in the following theorem.
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Theorem 2.4 (see [21]). Given that X € R™™, rank(X) = m, and A = diag(MI",..., \;I%) €
R™™  let the singular value decomposition of X be (2.26). Then the symmetric positive-definite
solution M and symmetric solution K to (1.3) can be expressed as

M =UF'FU", K=UFTAFU’, (2.28)

Fi1 Fia

where A = diag(A, Ay), F = (0 v
22

), Fy = diag(Ly,...,L,)VT™! € R™™ and Fp =

diag(LqH,...,Lp)a_1 € RO=mx(n=m) “qwhere L; € Rk is an arbitrary nonsingular matrix
(i=1,2,...,p). The matrix Fy, satisfies the equation AF,G - F1,GA, = F11Z1,G.

3. Solution of Problem 2
Lemma 3.1 (see [22]). Given that A € C™", B € CP*9, C € C*", D € CP*, E € C™4, and
H e C™, et

S = {Z | ZeC™, |[AZB - E,CZD - H]|]* = min},
(3.1)
S, ={Z|ZeC™, A" AZBB" + C*CZDD" = A'EB" + C*"HD"}.
Then Z € S, if and only if Z € Sy,

For the given matrices K,, M, € HC™", let

C1 Cz Kl K2
u*mM,U = ,  U'K,U = ) (3.2)
C; Cs K; K3

From Theorem 2.3, we know that Sgp#@. The following theorem is for the best
approximation solution of Problem 2.

Theorem 3.2. Given that X € C™™, A € C"™™, gnd K,, M, € HC™", then Problem 2 has a
unique solution and the solution can be expressed as

_ 0 F _ 0 FXoAXT + KW W2
M=u( __ Ju, K=u( . . ur,
Fr o (FXAX] + Ko Wa W) 0

(3.3)

where

*y —1

F=(Co+ Kao(%0x1) ) (1+ (XonX]) (x28x0)) (3.4)
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Proof. 1t is easy to verify that Sg is a closed convex subset of HHC™" x HHC™". From the
best approximation theorem, we know that there exists a unique solution (K, M) in Sg such
that (1.4) holds. From Theorem 2.3 and the unitary invariant of the Frobenius norm, we have

2
+

where G = (XlAXI)*sz + RyY. Hence, ||[M, - M||* + ||K, — K|> = min is equivalent to

IMa - M|]* + ||K, - K]|?

C G 0 F
I\c ¢ F* 0

2
<I<1 K2> 0 FX,AX) + GW;
K; Ks (FXoAX + GW3)* 0 ’

(3.5)

IF - Cy|® + ||PX2AX§ + <X1AX}>*FW2W§ + RYWS - K2”2 = min. (3.6)

Let

f=IF -Gl + || PXonX] + (XlAXD*Fszg + ROYW; - KZHZ. (37)

Then from the unitary invariant of the Frobenius norm, we have

f=IIF-CJ?
+ ||FX2AX; (Wi, Wa) + (XlAX{)*szwg(wl,Wz) + Ry YW (Wi, W) — Ka(Wh, W) ”2
= |F-Ca|? + || (FXaAXiW,0) + (o, (XlAX}“)*FWz) +(0,RY) - (K2W1,K2W2)H2
2 * 2
= |F-G?+ ||FX2AX§W1 ~KaW, || + || (X:AXT) FWs + RyY - K2W2|| :
(3.8)

Leth = ||(X1AXI)*FW2 + RyY — KoWh |2, Tt is not difficult to see that, when

RoY = KoWs = (X1 AX! >*FW2, (3.9)
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thatis, Y = RJK; W, - R; (XlAXir )"FW,, we have h = 0. In other words, we can always find Y
such that h = 0. Let

g = IF - Call + | FXaAXIW, - Ko, ||2 = |[F - 2 Fxonxiw, - ko] ||2 (3.10)

Then, we have that f = min is equivalent to g = min. According to Lemma 3.1 and (3.10), we
get the following matrix equation:

F+ F(XAXIW) (XoAXIW: ) = G + oW (XoAXIW: ), (3.11)

and its solution is F = (C, + KZ(XZAXE)*)(I + (XzAX;r)(XzAX;r)*)_l. Again from Lemma 3.1,
we have that, when F = f, g attains its minimum, which gives Y = RIKoW, —
Ry(XiAX]) FW,, and G = (X3AX])"FW, + RY = K,W,. Then, the unique solution of
Problem 2 given by (3.3) is obtained. O

Now, we give an algorithm to compute the optimal approximate solution of Problem
2.

Algorithm.
(1) Input K,, M,, X, A, and U.
(2) Compute X, according to (2.3).
(3) Find the singular value decomposition of X, according to (2.4).
(4) Calculate F by (3.4).
(5) Compute (M, K) by (3.3).

Example 1. Letn =6, m =3, and the matrices M,, K,, X, and A be given by

/156 066 054 039 0 0 \
066 036 039 -027 0 0
054 039 312 0 054 —0.39
1039 027 0 072 039 —0.27
0 0 054 039 312 0
\ 0 o0 -039 -027 0 072/

/2323 0 0\
36 33 0 0
2340 23
3 3 012 -3 3
0 0 234 0
\o 0 3 3 0 12/
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/ 0.0347 + 0.1507i —-0.6975i 0.0003 + 0.0858i \
0.6715i 0.0277 + 0.0760i —0.0846 — 0.0101:
—0.0009 + 0.1587i —0.0814 + 0.0196i 0.6967
x= —0.1507 + 0.0347i 0.6975 —0.0858 + 0.0003i
-0.6715 —-0.0760 + 0.0277i  0.0101 - 0.0846i
\—0.1587 —0.0009i —0.0196 — 0.0814i 0.6967i /
A = diag(0.3848 + 0.0126i,2.5545 + 0.4802i,2.5607). (3.12)

From the Algorithm, we obtain the unique solution of Problem 2 as follows:

-1.4080 + 1.1828i 1.0322 + 0.4732i -0.8111 —0.0874i
F=| 09537 +0.2935i -0.7529 — 0.0137i —0.6596 — 0.3106i
—0.6624 + 0.1982i —0.3566 — 0.0051i —1.0958 + 1.0040i

-4.3706 +2.1344i 1.6264 —0.3128i -2.2882 —0.3290i
N=| 24251+1.2137i -0.5229 +0.0005i —1.4620 — 0.7688i (3.13)
-1.6669 + 0.1663i 0.6991 — 0.6057i —2.6437 + 2.5190i

_ 0 F R 0 N
M=u( _ u, K=u _ u,
F* 0 N 0

where U = (1/\@)( ) > It is easy to calculate KX - MXA| = 2.1121e - 015, and ||[M -

I; I
R —il3 il3
M,, K - K,]|| = 19.7467.
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