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A human quiet standing stability is discussed in this paper. The model under consideration is
proposed to be a delayed differential equation (DDE)withmultiplicative white noise perturbation.
The method of the center manifold is generalized to reduce a delayed differential equation to
a two-dimensional ordinary differential equation, to study delay-induced instability or Hopf
bifurcation. Then, the stochastic average method is employed to obtain the Itô equation. Thus, the
top Lyapunov exponent is calculated and the necessary and sufficient condition of the asymptotic
stability in views of probability one is obtained. The results show that the exponent is related to
not only the strength of noise but also the delay, namely, the reaction speed of brain. The effect of
the strength of noise on the human quiet standing losing stability is weak for a small delay. With
the delay increasing, such effect becomes stronger and stronger. A small change in the strength
of noise may destabilize the quiet standing for a large delay. It implies that a person with slow
reaction is easy to lose the stability of his/her quiet standing.

1. Introduction

The human quiet standing model is complex neuromuscular control biological system with
time delay. The time delay reflects finite transmission related to the transport or processing
of matter, energy, and signals through the systems [1, 2]. Noise is an immanent property
in biological systems, and such stochasticity may arise from muscle contractions as well
as imperfections, and nervous system operates under the very noisy environment in the
balance control system. Previous experimental studies have shown that the movement of
the pressure center during quiet standing is stochastic and obeys a correlated random
walk [3, 4]. For healthy people, balancing body stability is an easy task. However, older
people or some patients often find walking difficult and need to put more effort in quiet
standing. To help these groups, the principles making quiet standing must be discovered
firstly. As the gravitational force destabilizes the inverted-pendulum-like skeletal system,
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the study of human balance stability is extremely essential. However, serious difficulties
will be encountered because of the combination of delay and stochastic processes when the
qualitative stochastic differential delay system is investigated in human quiet standing.

In recent years, many researchers have studied the postural control system in quiet
standing [5–21]. Experimentally, human quiet standing has most often been investigated
in terms of the center of pressure (COP) trajectories [3, 10]. The time-delayed model is
studied by the measurements of the transfer function which is based on statistical quantities
such as the root mean square of the COP trajectory [9, 11]. In 2004, Verdaasdonk et al.
[12] have computed the branches of fold and Hopf bifurcation by numerical bifurcation
analysis of the inverted pendulum human model indicated that the period of the stable
limit cycles, emerging beyond the Hopf branch, will increase with increasing time delay.
Bottaro et al. [13] have indicated that the control in postural sway during quiet standing
is intermittent, but not continuous. The effects of delay for the human reaction during
balancing system without stochastic perturbation have been studied in [5–7]. In 2002, based
on the investigation of a delayed random walk with an unstable fixed point, it has been
observed that the random walker with delay moves away from the unstable fixed point
more slowly than with the absence of delay [15]. The deterministic Hopf bifurcation has been
qualitatively discussed with the help of stochastic delayed differential equations (DDEs) by
Yao et al., but the stochastic effect was only made by numerical analysis [18]. In [19], a novel
modeling approach to such two-feedback posture control has been proposed using a system
of stochastic delay differential equations with two delays and noise as well as a drifting fixed
point meant to represent the slower fluctuation of the COM. Effects of time delay on the
dynamics behavior of the human quiet standing systems are a subject of many experimental
studies, while the study on simultaneous consideration of time delay and stochastic excitation
is very limited. Most of researches about the time-delay human standing model still with
stochastic perturbation are studied by numerical simulation.

In this paper, we consider the single inverted pendulum model proposed by Eurich
et al. [9, 11, 18, 19]. The single inverted pendulum with an antagonistic muscle pair
represents a person who tries to maintain an upright position by flexing and extending
the ankles. Influence of delay and noise on the Hopf bifurcation and asymptotic stability
will be analyzed theoretically. However, it becomes infinite-dimensional problem due to
considering the time delay in quiet standing system, which increases work difficulty. In
stochastic systems, theoretically studied methods about bifurcation and stability are rare.
Existing research methods are limited, such as the stability of a linearly controlled system
with time delay subjected to Gaussian white noise which has been investigated using the
top Lyapunov exponent calculated from Monte Carlo simulation by Grigoriu [22]. The
asymptotic Lyapunov stability with probability one for quasi-integrable and nonresonant
Hamiltonian systems with time-delayed feedback control has been studied in terms of the
stochastic average method [23]. Asymptotic techniques, such as Taylor series expansion,
integral averaging method, Fourier series, and perturbation methods, are often used under
the assumption of small delays. However, these methods will be invalid for a large delay.
Therefore, we will reduce a stochastic DDE to a stochastic ordinary differential equation
(ODE) on the center manifold by adopting the center manifold method which has been
proved by Arnold and Boxler [24]. The existence of the stochastic center manifold has been
also proved in [24–26]. If a stochastic DDE is reduced to a stochastic ODE, then this ODE on
the centre manifold may be converted into amplitude and phase relations and corresponding
scalar bifurcation equations of amplitude may be obtained in terms of the integral averaging
method [27].
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The paper is organized as follows. In Section 2, the human quiet standing model is
introduced and the conditions of Hopf bifurcation are computed in order to obtain regions
of stability and instability. Section 3 is devoted to effects of time delay and noise on the
asymptotic stability of the human dynamics with stochastic perturbation. Section 4 analyzes
the application to balance. Finally, we draw conclusions.

2. The Model and Linearized Analysis

In this paper, we use a simplified single inverted pendulum model for the human in quiet
standing with stochastic perturbation [6, 8, 16]:

Iθ̈ + γθ̇ −mgL sin θ = ˜f(θ(t − τ)) + c̃η(t)θ(t), (2.1)

where I represents the moment of inertia of human body around the ankle, θ the tilt angle,
g the gravity acceleration, m the body mass, L the distance from the ankle joint to the
body COM (Center of Mass), γ the damping coefficient, f(x(t)) the postural sway feedback
function, τ the time delay, and η(t) a stochastic process of zero mean value Gauss white
noise.

Let q = L sin θ, where x is the transverse displacement of the gravity center. Then (2.1)
can be rewritten as follows:

q̈ =
mgL

I
q − r

I
q̇ + f + ˜˜bη(t)q(t). (2.2)

Then (2.2) can be written as

ẋ(t) = ax(t) + bf(x(t − τ)) + cη(t)x(t), (2.3)

where

x(t) = q + dq̇, a =
mgL

I

⎛

⎝

r

I
+

√

r2

I2
+ 4

mgL

I

⎞

⎠ > 0, d =
r

I
+

√

r2

I2
+ 4

mgL

I
, (2.4)

and b < 0 is the feedback coefficient. The feedback function f(x(t)) should be in the form of a
smoothed on-off switch at some delayed time τ0 for proprioception at the ankles, so we take
f(x(t − τ)) = tanh[x(t − τ)] in this paper. Since tanh[x(t)] = x(t) − (1/3)x3(t) + o(x4) by the
Taylor expansion, then (2.2) becomes

ẋ(t) = ax(t) + bx(t − τ) − b

3
x3(t − τ) + cη(t)x(t) + o

(

x4
)

. (2.5)

The linear part of (2.2) is given by

ẋ(t) = ax(t) + bx(t − τ). (2.6)
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Figure 1: The critical values of τ0 under Hopf bifurcation.

Trial exponential solutions of the form x(t) = eλt, x(t− τ) = eλ(t− τ) yield the transcendental
characteristic equation

Δ(λ, τ) = a + be−λτ − λ = 0. (2.7)

The stability of system (2.3) depends on the real parts sign of the roots in (2.5). Let λ = v + iw
be a root of the characteristic equation (2.7), where v andw take real values. Substituting this
expression into (2.7), and equating the real and imaginary parts to zero, we have a pair of
algebraic equations

v = a + be−vτ coswτ, w = −be−vτ sin wτ. (2.8)

The transversality condition by the implicit function theorem is

Re
(

dv

dτ

)

= be−vτ
(

−∂v
∂τ

τ − v
)

coswτ −wbe−vτ sinwτ /= 0. (2.9)

As a necessary condition for Hopf bifurcation, we have to put v = 0 in (2.8). The following
algebraic equations are obtained:

w = ±
√

b2 − a2, a + b cos τ
√

b2 − a2 = 0. (2.10)

Varying the coefficient a and keeping a = 1.6, one can draw the parametric place (b, τ)
as Figure 1, namely, stability region diagram.

3. Stability of the Hopf Bifurcation

We have obtained the conditions that system (2.3) undergoes a Hopf bifurcation at the
equilibrium point (0, 0) when bifurcation parameter τ passes through the critical value.
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In this section, the bifurcating stability of system (2.3) at τ0 will be presented by employing
the central manifold reduction and stochastic average method.

3.1. The Stochastic ODE

In this section, we derive the center manifold of the nonlinear stochastic ODEs which reduce
the DDE with infinite dimension to ODE with two dimension. To this end, let t = τs, u(t) =
x(tτ). By rescaling the time to normalize the delay, system (2.5) is equivalent to the following
equation

u̇(t) = τ
(

au(t) + bu(t − 1) − b

3
u3(t − 1) + cu(t)η(t)

)

+ o
(

u4(t − 1)
)

. (3.1)

We choose the delay τ as bifurcation parameter, which is subject to a small change εμ from
its critical value τ0, namely, τ = τ0 + εμ. The values of u, c have been rescaled, and we obtain
u → ε1/2u, c → ε1/2c, 0 < ε � 1. Then (3.1) can be rewritten as follows:

u̇t(0) = τ0(aut(0) + but(−1)) + εμ(aut(0) + but(−1)) + g
(

μ, ut(−1)
)

, (3.2)

where ut(θ) = u(t + θ), θ ∈ [−τ, 0].
The linear part of (3.2) is given by

u̇(t) = τ0(au(t) + bu(t − 1)) + εμ(au(t) + bu(t − 1)). (3.3)

Since 0 < ε � 1, the nonlinear part is given by

g
(

μ, ut
)

= −b
3
τu3t (−1) + ε−1/2τcη(t)ut(0). (3.4)

Let Lμ : C[−1, 0] → R, which is a one-parameter family of bounded continuous linear
operator. Then

L(0)ut = τ0(aut(0) + but(−1)), L
(

μ
)

ut = μ(aut(0) + but(−1)). (3.5)

By Riesz representation theorem, there exists a bounded function ζ(θ, μ) in [−1, 0] → R for
any φ ∈ C[−1, 0], such that

L(0)φ =
∫0

−1
[dζ(θ)]φ(θ), L

(

μ
)

φ =
∫0

−1

[

dζ
(

θ, μ
)]

φ(θ), (3.6)
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where

ζ
(

θ, μ
)

= τ0(aδ(θ) + bδ(θ + 1)) (δ(θ) is Dirac function),

A(0)φ =

⎧

⎪

⎨

⎪

⎩

dφ(θ)
dθ

for θ ∈ [−1, 0),

L(0)φ for θ = 0,

A
(

μ
)

φ =

⎧

⎪

⎨

⎪

⎩

dφ(θ)
dθ

for θ ∈ [−1, 0),

L
(

μ
)

φ for θ = 0,

Dφ =

⎧

⎨

⎩

0 for θ ∈ [−1, 0),
g
(

t, φ
)

for θ = 0.

(3.7)

In order to study Hopf bifurcation problem conveniently, we can rewrite (3.2) as a
function differential equation (FDE)

u̇t = A(0)ut + εA
(

μ
)

ut + εDut. (3.8)

The adjoint equation of (3.3) is given by

ẇ
(

̂t
)

= −τ0
(

aw
(

̂t
)

+ bw
(

̂t + 1
))

̂C := ([0, 1], R). (3.9)

The corresponding operator A
∗
of A is defined by

A
∗(
μ
)

ψ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−dψ(s)
ds

, s ∈ (0, 1],
∫0

−1

[

dζT
(

s, μ
)]

ψ(−s), s = 0,
(3.10)

and the bilinear relation

(

ψj(s), φk(θ)
)

=
(

ψj(0), φk(0)
)

+ τ0b
∫0

−1
ψj(ξ + 1)φk(ξ)dξ,

ψj(s) ∈ ̂C, φk(θ) ∈ C, j, k = 1, 2,

(3.11)

where ̂C is the dual space of C, Φ ∈ C,Ψ ∈ ̂C. Hale and his colleagues have shown that
there exist two disjoint subspaces P, Q as C = P ⊕ Q. From the Hopf bifurcation conditions
given in the previous section, we know the subspace P is the eigenspace corresponding to
the eigenvalues ±wi of Δ(λ, τ) = 0 at Hopf bifurcation, and Q is the infinite-dimensional
complementary subspace associated with the remaining eigenvalues Δ(λ, τ) = 0. For the
particular eigenvalues λ1,2 = ±wi, we have φ(θ) = Φ(θ)β ∈ C (−1 ≤ θ ≤ 0) and ψ(s) =
Ψ(s)̂β ∈ ̂C (0 ≤ s ≤ 1), where the values Φ(θ) = [φ1(θ), φ2(θ)] and Ψ(s) = [ψ1(s), ψ2(s)]

T.
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We define the elements of the initial continuous function φ(θ) ∈ C, projections φP (θ), φQ(θ)
onto the center, and stable subspaces P,Q ∈ C. Through the initial function φ(θ) ∈ C, suppose
xt(φ(θ), μ, ε) ∈ C be the unique solution of (2.1). Then we have the representations

ut
(

φ(θ), μ, ε
)

= uPt
(

φ(θ), μ, ε
)

+ uQt
(

φ(θ), μ, ε
)

, (3.12)

and φ(θ) = φP (θ) + φQ(θ), where xPt (φ(θ), μ, ε), φP (θ) ∈ P and x
Q
t (φ(θ), μ, ε), φ

Q(θ) ∈ Q.
Making a change of variables xPt (θ) = Φ(θ)y(t) + xQt (θ) with y(t) = (Ψ(s), φ(θ)) ∈ R2, then
the center manifold stochastic ODEs of the generalized eigenspace P ∈ C can be obtained:

ẏ(t) = By(t) + εΨ(0)g
(

μ, y(t)
)

, (3.13)

where the values B and Ψ(0) are obtained in Appendix A.
We obtain

ẏ1(t) = −wy2 − εp1
(

aμy1(t) + bμ
(

y1(t) coswθ + y2(t) sinwθ
)

−1
3
bτ
(

y1(t) coswθ − y2(t) sinwθ
)3 + ε−1/2τcη(t)y1(t)

)

,

ẏ2(t) = wy1 − εp2
(

aμy1 + bμ
(

y1(t) coswθ + y2(t) sinwθ
)

− 1
3
bτ
(

y1(t) coswθ + y2(t) sinwθ
)3 + ε−1/2τcη(t)y1(t)

)

,

(3.14)

where

p1 =
−ψ22

ψ11ψ22 − ψ2
12

, p2 =
ψ12

ψ11ψ22 − ψ2
12

. (3.15)

Carrying out a change of variables from (y1, y2) to (z1, z2), namely,

z1 = y1 −
p1
p2
y2, z2 = y2 −

p1
p2
wy1. (3.16)

we obtain expressions for (y1, y2)

y1 =
p22

p22 + p
2
1w

2

(

z1 +
p1
p2
wz2

)

,

y2 =
p22

p22 + p
2
1w

2

(

z2 −
p1
p2
wz1

)

.

(3.17)
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Then the centre manifold stochastic ODEs (3.14) become

ż1(t) = −wz2,

ż2(t) = wz1 − ε
p22 + p

2
1w

p2

(

−1
3
bτ
(

p11z1(t) + p12z2(t)
)3

+ μ
(

q11z1(t) + q12z2(t)
)

+ ε−1/2τcη(t)
(

g11z1(t) + g12z2(t)
)

)

,

(3.18)

where

p11 =
p22

p22 + p
2
1w

2

(

cosw − p1
p2
w sinw

)

, p12 =
p22

p22 + p
2
1w

2

(

sinw +
p1
p2
w cosw

)

,

q11 =
p22

p22 + p
2
1w

2

(

a + b cosw − bp1
p2

w sinw
)

, g11 =
p22

p22 + p
2
1w

2
,

q12 =
p22

p22 + p
2
1w

2

(

p1
p2

(a + bw cosw) + sinw
)

, g12 =
p2p1w

p22 + p
2
1w

2
.

(3.19)

Then, using the relations z1 = β(t) sinΘ, z2 = −β(t) sinΘ, and Θ = wt + ϕ(t), (3.18) is
transformed to the following system with polar coordinates:

β̇(t) = ε
p22 + p

2
1w

p22
β

(

−1
3
bβ2τ

(

p11 sinΘ − p12 cosΘ
)3

+ μ
(

q11 sinΘ − q12 cosΘ
)

+ ε−1/2τcη(t)
(

g11 sinΘ − g12 cosΘ
)

)

cosΘ,

ϕ̇(t) = −εp
2
2 + p

2
1w

p22

(

−1
3
bτβ2

(

p11 sinΘ − p12 cosΘ
)3

+ μ
(

q11 sinΘ − q12 cosΘ
)

+ ε−1/2τcη(t)
(

g11 sinΘ − g12 cosΘ
)

)

sinΘ.

(3.20)

3.2. The Maximum Lyapunov Exponent

In the above subsection, we reduce the system to a two-dimensional ordinary differential
equation (3.20). According to the Khasminskii limit theorem, we obtain the averaging Itô
stochastic equations of (3.20) as follows:

dβ(t) =
p22 + p

2
1w

p22
εβ

(

1
8
bτ
(

p211p12 + p
3
12

)

β2 − 1
2
q12μ +

p22 + p
2
1w

4p22
τ2
(

g2
11 + g

2
12

)

c2
)

dt

+ ε1/2

√

2
(

g2
11 + 3g2

12

)(

p22 + p
2
1w
)

4p22
τβcdw1,

(3.21a)
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dϕ(t) = ε
p22 + p

2
1w

p22

(

1
8
bτ
(

p311 + p11p
2
12

)

β2 − 1
2
q11μ

)

dt

+ ε1/2

√

2
(

3g2
11 + g

2
12

)(

p22 + p
2
1w
)

4p22
τcdw2,

(3.21b)

where w1, w2 are independent standard Wiener processes. The averaged amplitude and
phase of (3.21a) and (3.21b) are uncoupled, so we study stability using the averaged
amplitude equation (3.21a). To examine the stability of β0(t), let β(t) = β0(t) + r(t) and
ρ(t) = ln r(t), where r(t) represents a small variation around the stationary solution β0(t)
when dβ(t) = 0, and using the stochastic differential rule to Itô, we will obtain the linearized
Itô equation governing r(t) and ρ(t), namely,

dr(t) =
p22 + p

2
1w

p22
εr

(

3
8
bτ
(

p211p12 + p
3
12

)

β20 −
1
2
q12μ +

p22 + p
2
1w

4p22
τ2
(

g2
11 + g

2
12

)

c2
)

dt

+ ε
1
2

√

2
(

g2
11 + 3g2

12

)(

p22 + p
2
1w
)

4p22
τrcdw1,

dρ(t) =
p22 + p

2
1w

p22
ε

(

3
8
bτ
(

p211p12 + p
3
12

)

β20 −
1
2
q12μ +

p22 + p
2
1w

4p22
τ2
(

g2
11 + g

2
12

)

c2
)

dt

+ ε1/2

√

2
(

g2
11 + 3g2

12

)(

p22 + p
2
1w
)

4p22
τcdw1.

(3.22)

Sample stability of the stochastic dynamical system is determined by the qualitative
evaluation of the Lyapunov exponents. According to the multiplicative ergodic theorem [28],
the top Lyapunov exponent λ of the amplitude process is obtained as

λ =
p22 + p

2
1w

p22
ε

[

3
8
bτ
(

p211p12 + p
3
12

)

E
[

β20

]

− 1
2
q12μ +

p22 + p
2
1w

4p22
τ2
(

g2
11 + g

2
12

)

c2
]

, (3.23)

where E[β20] denotes the expected value of β20. For the trivial solution β20 = 0, (3.23) gives
λ = −(1/2)q12μ+((p22+p21w)/4p22)τ

2(g2
11+g

2
12)c

2 = 0. Thus, the trivial solution is asymptotically
stable with probability one (w.p.1) if λ < 0, that is, μ < (g2

11+g
2
12)τ

2c2((p22 +p
2
1w)/2p22q12) and

q12 > 0 and unstable when q12 < 0.
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Figure 2: The top Lyapunov exponent λ max of system (2.1) versus noise intensity for different values of
time delay, τ · a = 1, b = −2, ε = 0.1, μ = 0.1.

From Figure 2, we can observe that the top Lyapunov exponent λ increases as the
excitation intensity c or time delay τ increases. The original system is stable if λ < 0 and
unstable if λ > 0. When τ = 1.0, the system (2.1) becomes unstable at c = 0.447214. The
effect of the strength of noise on the human quiet standing losing stability is weak when time
delay τ = 0.10. Obviously, the systems (2.1) is easily unstable if time delay τ is larger for the
fixed excitation intensity c. A small change in the strength of noise may destabilize the quiet
standing for a large delay.

4. Conclusions

The primary purpose of this paper is to study effects of delay and noise on asymptotic
stability of the human quiet standing system with stochastic excitation. For the deterministic
quiet standing system, its stable conditions, namely, the Hopf bifurcation, are presented and
the regions of stability and instability are discussed. On one hand, by using proper variable
transform, the second model for the human standing is changed into a first one. The given
relation expressions between coefficients and physical quantities are practically significant
too. On the other hand, the method of the center manifold reduction is generalized to
investigate the asymptotic stability when the quiet standing system is subjected to a stochastic
perturbation or the white noise. Compared to numerical methods, this analytical method
permits some general conclusions for the classes of feedback functions. The necessary and
sufficient conditions of the stability are obtained approximately by computing the largest
Lyapunov exponent of the linearized stochastic ordinary differential system. The relation
among the delay, the strength of noise, and the top Lyapunov exponent is represented in
the parameter figure. The results show that the exponent is related not only to the strength of
noise but also to the delay, namely, the reaction speed of brain, but such relation is not linear.
In fact, the effect of the strength of noise on the human quiet standing losing stability is weak
for a small delay. With the delay increasing, such effect becomes stronger and stronger. A
small change in the strength of noise may destabilize the quiet standing for a large delay. It
implies that a person with slow reaction easily lose the stability of his/her quiet standing.
This conclusion is in agreement with observation in the real life.
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This may be of great help in diagnosing and treating some disease in this paper.
However, noise is not always bad for cognitive performance, and moderate noise is beneficial
for cognitive performance. Recently, it has been shown that noise can enhance human body
balance via a mechanism known as stochastic resonance (SR) [29–31]. In the future, we will
demonstrate the facilitating effects of SR by qualitative mathematical method.

Appendix

A. The Computation of the B and Ψ(0)

The values of the basis Φ(θ) ∈ C for P is given by

φ(θ) = Φ(θ)β =
[

φ1(θ), φ2(θ)
]

= α1eiwθ + α2e−iwθ

= [(α1 + α2) coswθ, i(α1 − α2) sinwθ] = [coswθ,− sinwθ]
[

β1
β2

]

,
(A.1)

where

α1 = p + iq, α2 = p − iq, α1 + α2 = 2p = β1, i(α1 − α2) = −2q = β2. (A.2)

Similarly, the basis ψ(s) ∈ ̂C for ̂P is of the form

Ψ(s) =
(

ψ1(s)
ψ2(s)

)

=

(

cosws

− sinws

)

, 0 ≤ s ≤ 1. (A.3)

The inner product matrix (ψ(s), φ(θ)) = (ψj(s), φk(θ)), i, j = 1, 2 is given by

(

ψ(s), φ(θ)
)

=

(

cosws coswθ − cosws sin wθ

sinws coswθ sinws sin wθ

)

. (A.4)

The elements (ψj(s), φk(θ)) substitute into the bilinear relation (3.11), which gives the
nonsingular matrix

(Ψ,Φ)nsg =

(

ψ11 ψ12

ψ21 ψ22

)

, (A.5)
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where

ψ11 = 1 + bτ0

∫0

−1
cosw(ξ + 1) coswξdξ = 1 +

bτ0
2

(

1
w

sinw + cosw
)

,

ψ12 = −bτ0
∫0

−1
cosw(ξ + 1)(sinwξ)dξ =

bτ0
2

sinw,

ψ21 = −bτ0
∫0

−1
sinw(ξ + τ) coswξdξ = −b

2
sinw,

ψ22 = bτ0

∫0

−1
sinw(ξ + 1) sinwξdξ =

bτ0
2

(

− 1
w

sinw + cosw
)

.

(A.6)

Then, the basis Ψ(s) ∈ ̂P in ̂C of the adjoint (3.9) is normalized to Ψ(s) = [ψ1(s), ψ2(s)]
T ∈ ̂C.

By computing

(Ψ,Φ)−1nsg =
1

det (Ψ,Φ)nsg

(

ψ22 −ψ21

−ψ12 ψ11

)

=
1

ψ11ψ22 − ψ2
12

(

ψ22 −ψ21

−ψ12 ψ11

)

, (A.7)

we obtain

Ψ(s) = (Ψ,Φ)−1nsgΨ(s) =
1

ψ11ψ22 − ψ2
12

(

ψ22 −ψ21

−ψ12 ψ11

)(

ψ1(s)

ψ2(s)

)

=

(

ψ1(s)

ψ2(s)

)

, (A.8)

where

ψ1(s) =
1

ψ11ψ22 − ψ2
12

(

ψ22 cosws − ψ21 sinws
)

,

ψ2(s) =
1

ψ11ψ22 − ψ2
12

(−ψ12 cosws − ψ11 sinws
)

.

(A.9)

Then, we have

Ψ(0) =
1

ψ11ψ22 − ψ2
12

(

ψ22

−ψ12

)

. (A.10)

The substitution of the elements (ψj(s), φk(θ)), j, k = 1, 2 into the bilinear relation
(3.11)will yield the 2 × 2 identity matrix, namely,

(Ψ,Φ)id =
1

ψ11ψ22 − ψ2
12

(

ψ11ψ22 − ψ2
12 0

0 ψ11ψ22 − ψ2
12

)

=

(

1 0

0 1

)

. (A.11)
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Defining the constant matrix B ∈ C, ̂B ∈ ̂C, the elements of B, ̂B at Hopf bifurcation are
B ≡ ̂B =

(

0 −w
w 0

)

, which satisfy A(μ)Φ(θ) = Φ(θ)B, ̂A(μ)Ψ(s) = Ψ(s) ̂B. On the basis of
algebraic simplifications

eBθ = I + Bθ +
(Bθ)2

2!
+
(Bθ)3

3!
+ · · · =

(

coswθ − sinwθ

sinwθ coswθ

)

, (A.12)

the following formulas can be easily obtained

Φ(θ) = Φ(0)eBθ =
(

coswθ − sinwθ
)

, −1 ≤ θ ≤ 0,

Ψ(s) = Ψ(0)e− ̂BS =
(

coswθ − sinwθ
)T
, 0 ≤ s ≤ 1.

(A.13)
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