
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 749894, 15 pages
doi:10.1155/2010/749894

Research Article
Effect of Trends on Detrended Fluctuation Analysis
of Precipitation Series

Jianhai Yue,1 Xiaojun Zhao,2 and Pengjian Shang2

1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University,
Beijing 100044, China

2 Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, China

Correspondence should be addressed to Xiaojun Zhao, 05271060@bjtu.edu.cn

Received 21 January 2010; Revised 29 March 2010; Accepted 26 April 2010

Academic Editor: Ming Li

Copyright q 2010 Jianhai Yue et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We use detrended fluctuation analysis (DFA) method to detect the long-range correlation and
scaling properties of daily precipitation series of Beijing from 1973 to 2004 before and after adding
diverse trends to the original series. The correlation and scaling properties of the original series
are difficult to analyze due to existing crossovers. The effects of the coefficient and the power of
the added trends on the scaling exponents and crossovers of the series are tested. A crossover is
found to be independent of the added trends, which arises from the intrinsic periodic trend of
the precipitation series. However, another crossover caused by the multifractal vanishes with the
increasing power of added trends.

1. Introduction

Many physical and biological systems exhibit complex behavior characterized by long-range
power-law correlations. Traditional approaches such as the power-spectrum and scaled-
Hurst analysis are limited to quantify correlations in stationary signals. In recent years,
detrended fluctuation analysis (DFA) has been established as an important tool for the
detection of long-range correlations in time series with nonstationarities. DFA is a scaling
analysis method providing a quantitative parameter, the scaling exponent α, to represent
the long-range autocorrelation properties of a signal. The advantages of DFA over many
other methods are that it permits the detection of correlations in apparent nonstationary time
series and also avoids the spurious detection of seemingly long-range correlations that are
artifact of nonstationarity. DFA which is a nonparametric approach for data mining has been
successfully applied to diverse fields of interest such as DNA, heart rate dynamics, neuron
spiking, human gait, cloud structure, economical time series, and long-time weather records
as well as [1–9]. Besides, many parameter models as well as relevant prediction also have
been systematically explored such as in traffic flows with remarkable results [10–14].



2 Mathematical Problems in Engineering

A fact exists that precipitation has a dramatic effect on agriculture and plays
a significant role in human’s activities. The study of precipitation can be utilized for
several purposes, including hydrological structure design, flood prevention, and so forth.
Precipitation has been long analyzed by traditional statistics, and effective methods as well
as prediction models have been developed in bulk to investigate its role [15–17]. There
also exist many investigations of scaling behaviors and multifractal characterization of
the precipitation records [18–20]. However, traditional time series analysis of precipitation
always produces spurious results due to the highly nonstationary nature of precipitation
signals. Matsoukas et al. [21] used detrended fluctuation analysis to quantify the correlation
properties of precipitation time series but did not describe them in detail.

In the paper, we detect the long-range correlations of the daily precipitation series
collected from 21 weather stations of Beijing through about 30 years and investigate their
correlation properties together with the influence of added trends under the method of DFA.
As external trends are the main components which affect the correlation properties of a time
series, people are trying to eliminate them to gain proper insight into the records. However,
in most cases it is difficult to distinguish the trends from the intrinsic fluctuations in data. We
add diverse trends on the contrary to the original data and systematically analyze their effect
on the correlation properties. The essence of adding the trends in the paper is a preprocessing
as the trends will be the functions of original series.

The organization of this paper is as follows: in Section 2, we briefly introduce the
DFA method. Section 3 is about the details of the precipitation data we used in this paper.
In Section 4 we detect the correlation properties by calculating the scaling exponents and
crossover times of the original series before and after adding correlated trends. We summarize
in Section 5.

2. Methodology

Experimental series are often affected by nonstationarity and fractality [22]. To investigate
the scaling behavior of fluctuations, external trends are expected to be well distinguished
from the intrinsic fluctuations of the system. If trends exist in the data, Hurst rescaled-range
analysis and other nondetrending methods might give spurious results [5–8]. Very often we
never know the reasons for underlying trends in collected data and even worse the scales
of the underlying trends. DFA is a well-established and robust method for determining the
scaling behavior of noisy data in the presence of diverse trends [17–21].

For a record {X(i)}, i = 1, 2, . . . ,N, where N denotes the length of record, the DFA
procedure briefly involves the following four steps.

Step 1. We determine the profile x(i),

x(i) =
i∑

k=1

Xk − 〈X〉, (2.1)

where 〈X〉 is the mean of the record.

Step 2. We cut the profile x(i) into Ns = [N/s] boxes of the same size s. In each box, we fit the
integrated time series by using a polynomial function, pv(i), which is regarded as the local
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trend. For order-n DFA, n order polynomial function is applied of the fitting approximation.
We subtract the local trend in each box and get the detrended fluctuation function xs(i):

xs(i) = x(i) − pv(i). (2.2)

Step 3. In each box of size s, we calculate the root mean square (rms) fluctuation F(s):

F(s) =

√√√√ 1
Ns

Ns∑

i=1

x2
s(i). (2.3)

Step 4. We repeat this procedure for different box sizes s (different scales).
If a power-law relation exists between F(s) and s,

F(s) ∼ sα. (2.4)

It indicates the presence of scaling property. The parameter α, called the scaling exponent
or fluctuation exponent, represents the correlation properties of the data. For correlation
exponent γ , which is derived from the autocorrelation function, a similar approximation for
F(s) is

F(s) ∼ s1−γ/2. (2.5)

Comparing with (2.4), we find γ = 2 − 2α for 0 < γ < 1. A brief certification of the relation of
γ and α is proposed in [23]. We can determine the correlation exponent γ by measuring the
fluctuation exponent α. If α = 0.5, there is no correlation (white noise); if α < 0.5, the data is
anticorrelated; if α > 0.5, the data is long-range correlated.

3. Data Description

The precipitation data here is collected from 21 weather stations of Beijing from January1
1973 to December 31 2004, 11688 days, as illustrated in Figure 1. A vision processing based
on coded structure light has been investigated to acquire 3D data which can be referred for
further analysis if necessary [24, 25]. There may not be any precipitation record which is
different from such as temperature series. There may be a little precipitation that it is not
necessary for the weather stations to record in detail but adopting a word “minim” instead of
a specific quantity. For convenience, we regard the quantity of the days without precipitation
as 0 and the “minim” as 0.5. We treat the mean value of the 21 records every day of different
stations as a new precipitation series for analysis.

4. Data Analysis

4.1. DFA of the Original Series

First, we detect the correlation behavior of the original series. To get more information, we
use the DFA arranging from 1st to 5th order. The original series is a multifractal according
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Figure 1: illustrates the precipitation data of every day in the record years. The unit of the precipitation is
0.1 mm. From this figure, we can clearly see the seasonal trend of the data. We derive similar results from
the DFA of the original data shown in next section.

to Figure 2(a) since the scaling exponents of each order-n DFA change twice, that is, two
crossovers. At small scales s, the deviations grow stronger with the increasing DFA order
n. To decrease the impact of the deviations on the calculating of scaling exponents α(n), we
ignore some small s while fitting the curve.

Crossover times s(n)1x and s
(n)
2x are determined by the intersection of linear fits done

on both sides of the crossovers. We choose the point at the intersection in scales {s} as the
crossover times s(n)x , calculate the slope on both sides of s(n)x to get α(n), and exhibit s(n)x , α(n)

in Table 1.
s
(n)
1x and s(n)2x of each order-nDFA divide the series into three different scaling segments.

At the first segment where the time scales s < s(n)1x , 0.5 < α(n)0 < 1 corresponds to a long-range
correlation behavior which indicates that a relatively large magnitude is likely to be followed
by a large magnitude event. For the two segments on the two sides of the second crossover
s
(n)
2x , scaling exponents α(n) changes from α

(n)
0 > 1 to α(n)2 < 0.5 which means that at large time

scales s, the series is anticorrelated. The scaling behavior of the original series at large scales s
is similar to the DFA of a sinusoidal series shown in Figure 2(b). Comparing Figure 2(a) with
Figure 2(b), there exist some common properties at large scales; after a significant crossover,
both scaling exponents turn rather small. It manifests that periodic trend dominates the
scaling property at large scales after s(n)1x which is accordant to the investigations in [4]. It
also can be referred that s(n)2x is highly possible to be dominated by the seasonal trend in the
precipitation series.

4.2. DFA of the Series with Correlated Trend A[X(i)]p

The complex properties of the original series result from the crossover times s(n)1x and s
(n)
2x , so

it is difficult to understand the scaling behavior and make a valid prediction. A crossover
usually can arise from a change in the correlation properties of the series at different time
scales, that is, multifractal, or can often arise from external trends in the data [26]. Diverse
methods provide inspiration to produce discrete sequences and continuous functions [27, 28]
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Table 1: The crossover times s(n)x and the scaling exponent α(n) of the original data.

DFA1 DFA2 DFA3 DFA4 DFA5

α
(n)
0 0.6718 0.6263 0.6122 0.6318 0.6415

s
(n)
1x 84 98 146 234 274

α
(n)
1 1.1407 1.2772 1.3650 1.4857 1.4927

s
(n)
2x 406 556 704 892 965

α
(n)
2 0.1512 0.1419 0.1236 0.1263 0.1296
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Figure 2: (a) DFA of the original series. For each order-n DFA there exists two crossovers s(n)1x and s
(n)
2x

(We uses(n)x for them) which divide the curves into 3 different scaling segments whose scaling exponents
are: α(n)0 , α(n)1 and α

(n)
2 respectively (We use α(n) for them). (b) The DFA of a sinusoidal series given by the

function 10 ∗ sin(20πi/N), where N is the length of the original series

for simulation. In most cases, people generate long-range correlated experimental data with
modified Fourier filtering [29] or “ARFIMA” [30] method and superimpose diverse trends
on them which are the function of time, like linear, sinusoidal, and power-law trend. The
trends effects on the original series are tested, mainly including the crossover, complete
with diverse detrending methods based on such as SVD [9], EMD [31–33], Fourier-DFA
[34], wavelet analysis [35], and “superposition rule” [4]. In real data, the type of trend is
analyzed and proper detrending method is employed correspondingly. It is an attractive and
logical direction in solving the crossover caused by trends and deriving a constant scaling
exponent. However, at times the type of the trend is difficult to identify, and we note that the
information of the series is not fully uncovered just by the DFA method. Here we firstly
propose a new method to preprocess the data by adding a trend which is a function of
the original series. Then we test whether and how correlated trends added to the original
series will affect the correlation properties. A common power-law function A[X(i)]p is used,
where A is a coefficient and p presents the power. We apply DFA method to the new series
Y (i) = X(i) + A[X(i)]p. It is apparent that Y share the same period of trend with X but with
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Table 2: Scaling exponents α(n) and crossover times s(n)x of the series with correlated trends A[X(i)]p, A = 1
and p are integers from 1 to 6.

DFA1 DFA2 DFA3 DFA4 DFA5

p = 1

α
(n)
0 0.6718 0.6263 0.6122 0.6318 0.6415

s
(n)
1x 84 98 146 234 274

α
(n)
1 1.1407 1.2772 1.3650 1.4857 1.4927

s
(n)
2x 406 556 704 892 965

α
(n)
2 0.1512 0.1419 0.1236 0.1263 0.1296

P = 2

α
(n)
0 0.6153 0.5927 0.5856 0.5966 0.6073

s
(n)
1x 106 116 146 234 274

α
(n)
1 0.8732 0.9452 0.9890 1.0643 1.0593

s
(n)
2x 406 556 704 892 965

α
(n)
2 0.2680 0.2256 0.1687 0.1583 0.1544

P = 3
α
(n)
1 0.6031 0.6021 0.6015 0.6026 0.6024

s
(n)
2x 406 556 704 892 965

α
(n)
2 0.3361 0.2772 0.2224 0.2151 0.2197

P = 4
α
(n)
1 0.5499 0.5570 0.5565 0.5600 0.5633

s
(n)
2x 406 556 704 892 965

α
(n)
2 0.3709 0.3198 0.3010 0.3008 0.3073

P = 5
α
(n)
1 0.5271 0.5367 0.5365 0.5407 0.5454

s
(n)
2x 406 556 704 892 965

α
(n)
2 0.3951 0.3538 0.3638 0.3672 0.3721

P = 6
α
(n)
1 0.5177 0.5276 0.5279 0.5322 0.5377

s
(n)
2x 406 556 704 892 965

α
(n)
2 0.4138 0.3760 0.4012 0.4060 0.4106

different fluctuation magnitudes. As we will see later, s(n)2x dominated by periodic trend is
independent of added trend A[X(i)]p, but s(n)1x rises from the multifractal will disappear. We
make A and p variables, respectively, to operate our study as follow.

4.2.1. Effect of Power p on DFA of Y (i)

In this section, p is a variable and A is a constant 1.

(1) p Is Positive Integer

Considering the capability of order-n DFA in removing trend of (n − 1)th order, we give p
integer values ranging from 1 to 6 to take a whole view of effects of DFA on the series Y (i).

For s < 103 every order-n DFA in Figures 3(a) and 3(b), two crossovers exist while in
(c) the crossovers only remain in DFA3, DFA4, and DFA5 together with their positions being
much closer. For (d), (e), and (f), although the crossovers still exist, one cannot identify them
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Figure 3: DFA of the series with correlated trend A[X(i)]p, that is, Y (i) = X(i) + A[X(i)]p, where A = 1,
(a) p = 1, (b) p = 2, (c) p = 3, (d) p = 4, (e) p = 5, (f) p = 6.

without checking carefully. For each order-nDFA in (d), (e), and (f), only one crossover exists,
which is still marked by only s(n)2x for convenience. We illustrate the representative crossovers
by arrows. It seems that crossovers s(n)2x in all six subfigures share an identical position. We
apply the method in Section 4.1, calculate these crossovers and scaling exponents, and specify
the crossover time scales in Table 2. Since the scaling behavior of DFA3, DFA4, and DFA5 in
Figure 3(c) on both sides of s(n)1x is just the same, we calculate one scaling exponent α(n)1 for
each of them before s(n)2x in Table 2.

The positions of crossover times s(n)2x after adding diverse trends are identical to that
of the original series, which demonstrate that s(n)2x are independent of the power p of the
correlated trend. With the increasing of p from 1 to 6, the values of all scaling exponents α(n)0
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Table 3: Comparison of α(n)1 and only α(n)2 from p = 1 to p = 6 after recalculating of p = 1 and p = 2.

DFA1 DFA2 DFA3 DFA4 DFA5

α
(n)
1

P = 1 0.8775 0.8300 0.8238 0.8106 0.7885
P = 2 0.7113 0.6924 0.6907 0.6862 0.6779
P = 3 0.6031 0.6021 0.6015 0.6026 0.6024
P = 4 0.5499 0.5570 0.5565 0.5600 0.5633
P = 5 0.5271 0.5367 0.5365 0.5407 0.5454
P = 6 0.5177 0.5276 0.5279 0.5322 0.5377

α
(n)
2

P = 1 0.1512 0.1419 0.1236 0.1263 0.1296
P = 2 0.2680 0.2256 0.1687 0.1583 0.1544
P = 3 0.3361 0.2772 0.2224 0.2151 0.2197
P = 4 0.3709 0.3198 0.3010 0.3008 0.3073
P = 5 0.3951 0.3538 0.3638 0.3672 0.3721
P = 6 0.4138 0.3760 0.4012 0.4060 0.4106

and α(n)1 before s(n)2x decrease to 0.5 while all values of α(n)2 after s(n)2x have the trend to increase to
0.5. To get a clearer view of this phenomenon, for p = 1 and p = 2, we calculate a new scaling
exponent α(n)1 before s(n)2x of each order-n DFA by linear fit. They are specified, respectively in
Table 3.

The decreasing trend of α(n)1 to 0.5 and the increasing trend of α(n)2 to 0.5 are shown in
Table 3. With the increasing of p the approaching pace of α(n)2 to 0.5 seems to be slower than
that of α(n)1 .

s
(n)
1x vanishes with increasing p of the trend A[X(i)]p but s(n)2x is independent of the

added trend. It agrees well with the previous analysis that s(n)1x and s
(n)
2x , respectively arise

from the multifractal and periodic trend in precipitation series.
The scaling behavior of Y (i) is similar to that of original signal when p = 1, as

Y (i) = (A + 1)X(i). When p > 1, since the magnitude of X(i) is mostly larger than 1, the
scaling properties of A[X(i)]p will play a vital role and the influence of X(i) can be negligible
which also can be inferred from the scale of the fluctuation Fn(s). In fact, Figures 3(b)–
3(f) demonstrate the fluctuations of A[X(i)]p as well. We note that the scaling properties
of A[X(i)]p is also attractive, as it is the function of original series which can be treated a
preprocessing.

(2) p Is Number with Decimal and p > 1

The crossovers s
(n)
2x in Figure 3 are independent of power p but s

(n)
1x are not which is,

respectively, affected by the multifractal and periodic trend of original precipitation series.
Figures 3(b), 3(c), and 3(d) show a “vanishing” process of s(n)1x , where s(n)1x remains by adding
an order-p trend while disappears by an order-p + 1 trend. However, we also expect to track
the whole process of vanishing with a decimal of p. We test it in Figure 4. First we find some
common properties in three pair figures that these significant processes all take place between
m + 0.8 to m + 0.9, m = 1, 2, 3, which are very close to m + 1. As we use DFA to 5th order, the
“vanishing” process of s(n)1x just completes when the power of the trend A[X(i)]p, p, is 3.9,
close to 5 − 1 = 4. Thus we can make a hypothesis that if our DFA is order n + 1, there will
be some significant process around each p = i + 0.9, i = 1, 2, . . . , n − 1, close to i + 1 and we
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Figure 4: DFA of the series with correlated trend A[X(i)]p, that is, Y (i) = X(i)+ A[X(i)]p, where A = 1, (a)
p = 1.8. (b) p = 1.9. (c) p = 2.8. (d) p = 2.9. (e) p = 3.8. (f) p = 3.9. (a)→ (b) is the process that crossover s(1)1x

changes from 84(< 100) to 106(> 100). (c)→ (d) is the “vanishing” process of s(1)1x and s
(2)
1x while (e)→ (f) is

the “vanishing” process of s(n)1x , n = 3, 4, 5. Some typical crossovers are tagged by arrows.

get the final stable property around p = n − 0.1, close to n. It may be related to the fact that
an (n + 1)th DFA can eliminate an nth order polynomial trend due to the integration in DFA
algorithm.

(3) p < 1

As we can see from Figure 3(a), when p = 1, that the extra trend A[X(i)]p does not have
any influence on the correlation properties of the series. And as most data in our original
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Figure 5: DFA of the series with correlated trend A[X(i)]p, that is, Y (i) = X(i) + A[X(i)]p where p = 2,
(a) A = 0.01, (b) A = 10, (c) A = 100, (d) A = 10000.

precipitation, series are larger than 1.0 (0.1 mm). We can guess that when p < 1, that is,
the adding correlated trend is weaker than that of one above, the correlated trend does not
affect the correlation properties either and we prove it in Table 4.

We find from Table 4 that the crossovers s(n)x of p < 1 are just the same as the original
data. They are rather close to the original data as well by observing their scaling exponents.
The trends are so weak that there is little influence of A[X(i)]p on the correlation properties
of X(i).

4.2.2. Effect of coefficient A on DFA of Y (i)

In Section 4.2.1, we have studied the correlation properties of the series with correlated trend
A[X(i)]p, where A is a constant 1. And we find that the crossovers s(n)2x are independent of
power p of trend A[X(i)]p. So how about coefficient A?
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Figure 6: DFA of the series with correlated trend AepX(i)/x, where A = 10, (a) p = 2, (b) p = 3, (c) p = 5, (d)
p = 6, (e) p = 7, (f) p = 8.

In this section we vary A to find the relation between A and the correlation properties
of Y (i). As the correlation properties for DFA of Y (i) in Section 4.2.1 is the most complicated
when p = 2, here we just test coefficient A with p = 2.

There is a clear vision that the crossover times of (a), (b), (c), and (d) are just the
same as Figure 3(b). And the scaling exponents α(n) seem to be also the same that we exhibit
them in Table 5 to make it evident. The scaling exponents α(n) of Figures 5(a), 5(b), 5(c),
and 5(d) are not exactly the same by values but they hold the same scaling behavior with
Figure 3(b).When A is large, the scaling exponents α(n) are rather close to the ones of A = 1
in Figure 3(b). The crossovers in DFA result from the competition between the scaling of
original series and the scaling of the trend. The case of A < 0 is similar to that of A > 0
which can be inferred by the following analysis. If the original series dominates the scaling
behavior, apparently the symbol of A can be negligible. When the added trends prevail, most
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Table 4: DFA of the series with correlated trend A[X(i)]p, that is, Y (i) = X(i) + A[X(i)]pp < 1. We pick
four values of p as below.

DFA1 DFA2 DFA3 DFA4 DFA5

p = −3

α
(n)
0 0.6713 0.6261 0.6121 0.6317 0.6414

s
(n)
1x 84 98 146 234 274

α
(n)
1 1.1376 1.2730 1.3603 1.4800 1.4869

s
(n)
2x 406 556 704 892 965

α
(n)
2 0.1524 0.1429 0.1242 0.1267 0.1299

P = −1

α
(n)
0 0.6710 0.6260 0.6120 0.6315 0.6412

s
(n)
1x 84 98 146 234 274

α
(n)
1 1.1364 1.2713 1.3584 1.4778 1.4847

s
(n)
2x 406 556 704 892 965

α
(n)
2 0.1530 0.1434 0.1245 0.1270 0.1301

P = −0.5

α
(n)
0 0.6711 0.6260 0.6120 0.6315 0.6412

s
(n)
1x 84 98 146 234 274

α
(n)
1 1.1371 1.2722 1.3594 1.4791 1.4860

s
(n)
2x 406 556 704 892 965

α
(n)
2 0.1527 0.1432 0.1244 0.1269 0.1300

p = 0.5

α
(n)
0 0.6746 0.6276 0.6131 0.6330 0.6429

s
(n)
1x 84 98 146 234 274

α
(n)
1 1.1522 1.2937 1.3835 1.5068 1.5143

s
(n)
2x 406 556 704 892 965

α
(n)
2 0.1460 0.1379 0.1210 0.1244 0.1284

Table 5: Scaling exponents of Figures 5(a), 5(b), 5(c), and 5(d).

P = 2 DFA1 DFA2 DFA3 DFA4 DFA5

A = 0.01
α
(n)
0 0.6425 0.6045 0.5947 0.6081 0.6183

α
(n)
1 0.9691 1.0743 1.1243 1.2200 1.2169

α
(n)
2 0.2182 0.1884 0.1457 0.1404 0.1388

A = 10
α
(n)
0 0.6150 0.5926 0.5855 0.5965 0.6072

α
(n)
1 0.8718 0.9434 0.9871 1.0621 1.0571

α
(n)
2 0.2687 0.2262 0.1691 0.1586 0.1547

A = 100
α
(n)
0 0.6150 0.5925 0.5855 0.5964 0.6071

α
(n)
1 0.8717 0.9432 0.9869 1.0619 1.0569

α
(n)
2 0.2688 0.2263 0.1692 0.1586 0.1547

A = 10000
α
(n)
0 0.6150 0.5925 0.5855 0.5964 0.6071

α
(n)
1 0.8717 0.9432 0.9869 1.0619 1.0568

α
(n)
2 0.2688 0.2263 0.1692 0.1586 0.1547
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Figure 7: DFA of the series with correlated trendAepX(i)/x,where p = 5, (a)A = 0.01, (b)A = 1, (c)A = 100,
(d) A = 10000.

values may change the signs, but the magnitude of fluctuation and the period of trend remain
unchangeable. Of course, A = −1 and p = 1 should be excluded. So the correlation properties
with correlated trend A[X(i)]p are independent of the coefficient A.

4.3. DFA of the Series with Other Correlated Trends

Discussion of Section 2 has told that crossovers s(n)2x of the original data are independent of
the trend A[X(i)]p which presents another question which is are they still independent of
other correlated trends? In this section we test another common trend AepX(i)/x (x is the max
of X(i)) which is stronger than A[X(i)]p with the same method applied in Section 2. We test
the effects of A and p on the correlation properties of Z(i) = X(i) +AepX(i)/x, respectively, in
Figures 6 and 7.

Although Figure 7 indicates that the correlation properties of series with correlated
trend AepX(i)/x are dependent of A which are not the same as they are for trend A[X(i)]p,
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we can see form Figures 6 and 7 that the crossover times s(n)2x are just identical to the ones of
original series for each figure. So crossovers s(n)2x of the original data are independent of the
correlated trend AepX(i)/x. It is an obvious conclusion that crossovers s(n)2x are independent of
trend A log(pX(i)) as well, because it is weaker than A[X(i)]p, not to mention AepX(i)/x. Thus
we can see that crossovers s(n)2x of the original data are rather significant and they are so stable
that it is necessary to take further investigations to gain insight into them.

5. Conclusion

In summary, DFA of the original series indicates the complex correlation properties by
two obvious crossovers and three different scaling segments. The second crossover s(n)2x is
proved to be independent of the adding correlated types of trend:A log(pX(i)), A[X(i)]p,
and AepX(i)/x,while the first crossover s(n)1x disappears with added trend. They are induced by
different reasons while behave similarly if we just analyze original precipitation series. The
paper also provides a method to distinguish the multifractal and trend effects on the scaling
behavior. With the development of study on correlation, scaling exponents and crossovers
will take more significant roles in providing foundation theories for precipitation series
predictions based on correlations theories.
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