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In order to model the output laser power of a copper bromide laser with wavelengths of 510.6 and
578.2 nm we have applied two regression techniques—multiple linear regression and multivariate
adaptive regression splines. The models have been constructed on the basis of PCA factors for
historical data. The influence of first- and second-order interactions between predictors has been
taken into account. The models are easily interpreted and have good prediction power, which
is established from the results of their validation. The comparison of the derived models shows
that these based on multivariate adaptive regression splines have an advantage over the others.
The obtained results allow for the clarification of relationships between laser generation and
the observed laser input variables, for better determining their influence on laser generation, in
order to improve the experimental setup and laser production technology. They can be useful for
evaluation of known experiments as well as for prediction of future experiments. The developed
modeling methodology is also applicable for a wide range of similar laser devices—metal vapor
lasers and gas lasers.

1. Introduction

The object of research of this paper is a low-temperature copper bromide vapor (CuBr)
laser, with a wavelength of 510.6 nm and 578.2 nm. This type of laser is one of the most
promising of the group of metal vapor lasers. It is characterized as the most efficient laser
in the visible spectrum which allows for many practical applications [1, 2]. Analytical and
numerical modeling of metal vapor lasers, including the CuBr laser in question, has been
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developing rapidly in the last few decades [3–5]. The main results are in the sphere of
modeling of discharge kinetics processes which are based on a wide range of experimental
data. In recent years, complex kinetic models which include tens and hundreds of coupled
differential equations have been created, describing the physics phenomena occurring in
different laser devices [4, 5].

Another fundamentally different approach to metal vapor laser research is the use
of accumulated experiment data to construct statistic models and to design experiments.
This is a fairly new approach in the field of lasers. In principle, it is considered that
the physics processes and phenomena connected with lasers are deterministic. In practice,
actual experimental measurements do not provide readings for all related physics and
technical parameters and phenomena; they do not take into account specific internal and
external conditions; furthermore, there is an error factor in the accuracy of the measurement
itself. Consequently, experimental data contains a number of random components which
makes it suitable for analysis (processing) using statistical methods [6]. What is more, the
complexity of the processes, the great number of independent parameters, and the difficulty
in determining their interrelations (part of which have not been properly researched) also
support the idea of applying a statistical approach. This is especially true when studying
significant laser output characteristics such as laser generation, laser efficiency, lifetime, and
laser beam quality.

In [7–9], for the copper bromide vapor laser, multivariate statistical techniques were
applied for the first time to the field of metal vapor lasers. The effect of ten basic input laser
variables on laser efficiency and generation was studied. It was established that only six
input laser variables have a significant effect on output characteristics. In order to deal with
multicolinearity, Principal Component Analysis (PCA) factors were used to construct simple
linear regression models. The classification of variables based on hierarchical agglomerative
cluster analysis for samples from the same set of data, confirming the relevance of the factor
models, was obtained in [9, 10]. Statistical methods for the design of the experiment, for
some laser components, for example, for the electric power circuits, have been included in
[11].

The object of this paper is the construction and comparison of several types of
parametric and nonparametric regression models for estimation and prediction of output
laser power (laser generation) of CuBr laser devices. This is achieved using the PCA factors
of the data and the following statistical methods: Multiple Linear Regression (MLR) and
multivariate adaptive regression splines (MARS).

Modeling was based on experimental data, obtained at the Laboratory of Metal Vapor
Lasers with the Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of
Sciences. For the purpose we used the statistical package SPSS, Mathematica and MARS
predictive software [12–14].

2. Data Description

This study includes experimental data for various CuBr lasers, published in [15–22].
According to their geometry, the CuBr lasers which are studied herein can be divided into
three basic groups: small-bore lasers of inside diameter D < 20 mm, medium-bore lasers
of D = 20–40 mm, and large-bore lasers of D > 40 mm. From the available data for about
300 experiments with the three general types of lasers, a random sample with size n = 109
has been used. Since over 60% of all data is about small-bore lasers, the sample is partially
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stratified, in order to avoid the imbalance of the available data. Each experiment includes data
about six independent basic laser characteristics and one dependent variable-laser generation
(see also [7, 8]). The data is of historical type. Here we have to mention the complexity, long
duration, and high cost of each conducted experiment.

The independent input laser variables included in the analysis are as follows.
D (mm) is the inside diameter of the laser tube; dr (mm) is the inside diameter of the

internal rings; L (cm) is the length of the active area (electrode separation); Pin (kW) is the
input electric power; PL (kWm−1) is the input electric power per unit length; PH2 (Torr) is
the hydrogen gas pressure.

The response variable is laser generation, Pout (W).
It has to be added that laser generation is also affected by other quantities such as

pulse repetition frequency, neon gas pressure, capacity of the capacitor bank, and temperature
of the CuBr reservoirs. Their values for the lasers being studied have been experimentally
optimized and exhibit statistical nonsignificance (see also [7–9]). For this reason they have
not been included in the analysis.

3. Factor Analysis and Selection of Predictors

3.1. Calculation of PCA Factors

Both for all the data and for the sample, obtaining regression models based on input variables
is impeded by their multicolinearity. For this reason the first process used is multiple
factor analysis in order to obtain orthogonal to each other factor variables describing the
data cloud. Using the SPSS software for our data sample we obtained the Kaiser-Meyer-
Olkin measure of sampling adequacy KMO = 0.660 and Bartlett’s test of sphericity with
significance level equal to 0.000. The respective measures of sampling adequacy (MSA) are
also of significance for each variable. This indicates that the factor analysis of the sample is
adequate and can be carried out. The factors have been extracted using PCA. Usually the
number of factors chosen is equal to the number of eigenvalues of the correlation matrix
greater than 1. However, as shown in [23], the low-variance principal components may
also be important. In our case, although there is only one eigenvalue greater than one,
we have chosen the number of factors to be three. When variables are grouped in three
factors the subsequent rotation using the Varimax method clearly reveals the following
orthogonal factors: F1 (including Pin, dr, L, D), F2 (including PL), and F3 (including
PH2). They account for 95.413% of the total variability of the data sample. The choice
of three factors is justified as follows. When hydrogen is added, this leads to a twofold
increase of Pout, which is an indisputable fact proven by experimental results [1, 15] and
so the F3 factor must not be overlooked. The PL variable (factor F2) also plays a special
role and during experiments it has been detected to noticeably affect laser generation.
Omission of this variable leads to regression models which do not provide sufficiently good
estimates.

Table 1 shows a rotated component matrix with the factor loadings of the observed six
input variables, obtained using PCA. For a sample with size n = 109 and level of significance
α = 0.05, the statistically significant factor loadings are those over 0.5 [24]. The good quality
of the factor model is confirmed by the calculated reproduced correlations matrix, for which
there is only one nonredundant residual with absolute value greater than 0.05 (actually it is
equal to −0.059).
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Table 1: Rotated component matrix. Factor loadings below 0.5 have been omitteda.

Component
Variable 1 2 3
Pin 0.913
dr 0.887
D 0.807
L 0.769
PL −0.914
PH2 0.929
aExtraction method: Principal Component Analysis. Rotation
method: Varimax with Kaiser normalization. Rotation converged in 5
iterations.

The factor scores which are used in all methods of this study have also been calculated
at this stage of the statistical calculations.

3.2. General Relationship between Factors and Laser Output Power

Resulting factors F1, F2, F3 affect differently laser output power Pout. Figures 1(a)–1(c) show
the scaterplots of Pout against each of the factors as well as the LOESS smoothing curves. We
can come to the conclusions that in addition to the linear members we should also be taking
into account second- and even third-degree interactions between factor variables. The 3D
plots in Figures 2(a)–2(c) show the general relationships between pairs of factors with regard
to Pout.

Based on these graphical relationships, in an exploratory manner, we will later on
construct regression models using three groups of variables as predictors: first group F1, F2, F3

and second and third groups as follows:
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(3.2)

The corresponding models will be noted as 0, 1, and 2 order models, respectively.

4. Multiple Linear Regression Models with PCA Factors

The results from the modeling have been presented in this and the following sections.
For parametric methods it is assumed that data and population distribution are nearly
normal. All calculations and analyses have been carried out at level of significance 0.05. The
comparison between models has been conducted via the commonly used indices, such as
multiple correlation coefficient R, coefficient of multiple determination R2 (RSquare), and
adjusted R2.
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Figure 1: (a)–(c) Relationship between Pout and each of the three PCA factors F1, F2, F3.

4.1. Multiple Linear Models Employing the First Group of Predictors

With the help of the three orthogonal PCA factors F1, F2, F3 (first group of predictors) and
the stepwize or linear procedure we obtain the MLR-0th order models for estimation of the
dependent variable Pout:

̂Pout = 40.598 + 29.717F1 + 4.155F2 + 12.941F3, (4.1)

Pout = 0.884F1 + 0.124F2 + 0.385F3. (4.2)

These equations refer, respectively, to the nonstandardized and standardized estimated value
of Pout. All coefficients as well as all subsequent estimates have been obtained at a significance
level 0.000.

The conducted ANOVA produced the statistics given in Table 2, model MLR-0th order,
no interactions. They have Sig. 0.000. This means that (4.1) and (4.2) describe 94.6% of the
sample.
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Figure 2: (a)–(c) Relationship between Pout and (a) F1, F2; (b) F1, F3; (c) F2, F3.

Table 2: Results from constructed parametric and nonparametric regression models for estimation of
output laser power Pout: MLR (Multiple Linear Regression) and MARS (Multivariate Adaptive Regression
Splines).

Model R2 R2
adj.

MARS
GCV R2

Std. Err. of
the Estimate

Number of
predictors

MLR 0th order, no interactions 0.946 0.944 — 7.92540 3
MLR 1st order interactions 0.950 0.948 — 7.63382 4
MLR 2nd order interactions 0.967 0.965 — 6.27075 7
MARS 0th order, no interactions 0.965 0.963 0.952 6.50470 3
MARS 1st order interactions 0.973 0.970 0.951 5.82838 5
MARS 2nd order interactions 0.972 0.970 0.953 5.89545 6

The basic statistics of the constructed models are presented in Table 2. In this table we
include the commonly used indices, such as multiple correlation coefficient R, coefficient of
multiple determination R2 (RSquare), adjusted R2, and standard error of the estimate.
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Figure 3: Values of the experimental Pout data against the predicted Pout by the model (4.1).

Figure 3 shows the comparison of experimental data for laser generation Pout against
those calculated within the model using formula (4.1).

The histogram of the model residuals showed that the residuals of the MLR model
(4.1)-(4.2) of the output laser power Pout estimates appear to be normally distributed centered
around zero. The normal Q-Q plot of regression standardized residuals is shown in Figure 4.
The normality of residuals has been also tested formally on the basis of the Kolmogorov-
Smirnov test (with Lilliefors correction) and the P -value is .454 > .05. It can be considered
that the residuals are normally distributed.

This way, the diagnostics shows that the model (4.1)-(4.2) fits the data well.

4.2. Multiple Linear Models Employing the Second and
Third Groups of Predictors

Using the nine predictors (3.1) a more precise model was constructed, marked as MLR-1st
order. The corresponding equations are

̂Pout = 38.283 + 28.090F1 + 4.866F2 + 11.992F3 + 2.336F2
1 , (4.3)

Pout = 0.836F1 + 0.145F2 + 0.357F3 + 0.089F2
1 . (4.4)

For the second-order model the obtained equations are, respectively,

̂Pout = 38.270 + 39.511F1 + 8.243F2F
2
3 + 8.718F3

3 + 6.884F2
3 − 2.294F3

1 + 3.053F2
2F3 − 0.976F3

2 ,

(4.5)

Pout = 1.176F1 + 0.192F2F
2
3 + 0.463F3

3 + 0.173F2
3 − 0.217F3

1 + 0.970F2
2F3 − 0.083F3

2 . (4.6)

The basic statistics of these models are given in Table 2.
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Figure 4: Quantile versus quantile scaterplot of the regression standardized residuals of the model (4.1).

5. Nonparametric Models Using Multivariate Adaptive
Regression Splines

5.1. Characteristics of MARS

The MARS method is a relatively new but adaptable instrument for the construction of
nonparametric regression models. It was developed by Friedman in [25] and is applied using
a software product named after it—MARS [14]. MARS combines classical linear regression,
mathematical construction of splines, and binary recursive partitioning to produce a local
model where relationships between response and predictors are either linear or nonlinear. To
do this, MARS approximates the underlying function through a set of adaptive piecewise
linear regressions termed basis functions (BFs). The points in which changes in slope
occur are called knots. Knots are defined according to the forward/backward stepwize
procedure. At first, a model which overfits the data is constructed. After that, those knots
which contribute to the effectiveness of the model the least are systematically removed.
The best model is selected via the generalized cross validation measure criterion (GCV)
[14, 26].

An important advantage of MARS over the parametric approach is that it describes
local changes in the data behavior. What is more, nonlinear relationships fit local interactions
between generated basis functions in the respective subregions. In principle, we have to note
the possibility of a problematic sudden increase in the number of possible interactions when
dealing with a large number of (several thousand) BF and a large number of subregions.
However, this is not the case with our data.
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Figure 5: (a)–(c) Graphs of basis functions of MARS model (5.1)-(5.2) showing the relationship between
response and single predictors.

Another important advantage of MARS is that being a nonparametric technique it
overcomes the requirement for normal distribution of data, which makes it applicable to
a much broader range of problems. Furthermore, MARS can be applied to both big and
small size data samples and its basis functions making resulting models easy to interpret
and subsequently utilize [14].

5.2. MARS Models Using PCA Factors with and without Interactions

Within this study only the best MARS models are calculated, respectively, to the same cases
as for MLR models, obtained in Section 4. The basic statistic figures of the models are given
in Table 2. We will describe in more detail two of the models—piecewise linear model with
no interactions and the model with first-order interactions. All models have been calculated
using MARS software.



10 Mathematical Problems in Engineering

The first model (MARS-0th order) with three predicators F1, F2, F3, without interaction
between them, includes the following six basis functions:

BF1 = max(0, F1 + 0.44606),

BF2 = max(0,−0.44606 − F1),

BF3 = max(0, F3 − 1.06326),

BF4 = max(0, 1.06326 − F3),

BF6 = max(0, 0.58858 − F2),

BF7 = max(0, F3 + 1.37079).

(5.1)

Their graphs are shown in Figures 5(a)–5(c). Although it is difficult to directly read
the changes in the initial six laser input variables in relation to the factors, this figure shows
piecewise linear changes in the behavior of the response Pout for each factor when respective
factor values change in the interval [−3, 3].

The estimated values of laser generation are calculated using the formula:

̂Pout = 128.23399 + 33.46087BF1 − 14.13608BF2 + 112.31790BF3

− 46.10358BF4 − 6.41601BF6 − 37.84639BF7.
(5.2)

The model (5.1)-(5.2) is tested by generating the best MARS model, which is selected
so as to allow no overfitting of the model, as well as by using the algorithm for applying
the least squares method [14]. The obtained basic statistics are given in Table 2. The model is
significant at level 0.000.

The relative factor variable importance for the model (5.1)-(5.2) is given in Table 3 (in
MARS the most important variable always has a value of 100). To a degree this distribution
matches the relationship between factors, given in (4.2), which is F1 : F3 : F2 = 100 :
43.6 : 14.

With the help of MARS model (5.1)-(5.2) it is easy to calculate the estimate of Pout when
predictor values are known. The same is valid for predicting a future response. For example,
a maximum laser output power Pout = 120 W has been measured at D = 58, dr = 58, L = 200,
Pin = 5, PL = 12.5, and PH2 = 0.6. Their respective factor values are F1 = 2.52782, F2 = −1.95902
and F3 = 0.92492. After substituting the latter in (5.1)-(5.2) we find the approximate estimate:
Pout = 118.13487.

The second MARS model which we will describe in more detail is the one which
accounts for possible first order interactions. The resulting best model includes the following
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ten basis functions and a constant:

BF1 = max(0, F1 + 0.44606),

BF2 = max(0,−0.44606 − F1),

BF3 = max(0, F3 − 1.06326),

BF4 = max(0, 1.06326 − F3),

BF5 = max(0, F2 − 0.58858),

BF6 = max(0, 0.58858 − F2),

BF7 = max(0, F2 + 0.15015)BF2,

BF8 = max(0,−0.15015 − F2)BF2,

BF10 = max(0,−1.37079 − F3)BF6,

BF11 = max(0, F1 − 0.64076)BF5.

(5.3)

We can see that basis functions in the best model include only five predictors:
F1, F3, F2, F1F2, F2F3.

The respective equation that can be used to calculate the estimates of Pout is

̂Pout = 39.85018 + 32.26068BF1 − 48.29237BF2 + 78.28982BF3 − 9.54446BF4 − 6.07015BF5

− 6.94150BF6 + 23.92375BF7 + 20.47949BF8 − 64.08146BF10 + 166.11139BF11.
(5.4)

The model (5.3)-(5.4), as well the next model with two interactions, gives the best
test estimates when compared to all other models, as it can be seen from Table 2. Partial
contributions of separate predicators (PCA factors and some of their exponents) in model
(5.3)-(5.4) to the value of Pout can be observed in Figure 6. The biggest contribution is made
by the interaction between F1 and F2, which increases sharply, reaching 115. In that case the
maximum is achieved at values for F1 close to 2 and values for F2 from −2 to −1.5. Predicators
F2 and F3 provide the second biggest contribution, which amounts to about 50 units. The
other two interactions only have a corrective effect.

6. Validation of Models

In order to have a reliable estimate of the prediction power of each model the following
cross validation technique is used. The initial data sample was splitted randomly into one
raining and one evaluation data set, containing approximately 70% and 30% of the total cases,
respectively. The training data sets were used to generate the models which were then tested
with the independent evaluation data sets.
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Figure 6: Graphs of contribution distribution of factor variables in MARS model (5.3)-(5.4).

The following model is obtained using the MLR method with three predicators for
70% of the training data set:

̂Pout70% = 40.533 + 29.585F1 + 4.192F2 + 13.159F3,

Pout70% = 0.889F1 + 0.130F2 + 0.378F3.
(6.1)
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Table 3: Relative Variable Importance for the MARS model with 3 PCA factors, no interactions.

Variable Importance -GSV
F1 100.00000 1099.82605
F3 32.78836 167.41476
F2 16.64488 84.04294

Table 4: Results of the cross validation of the models utilizing independent data sets (70% training set and
30% evaluation set).

Model

Training set 70% Evaluation set 30%
Number of
predictorsR2 R2 adj.

MARS
R2 R2 adj.GCV

R2
MLR 0th-order, no interactions 0.945 0.942 — 0.948 0.947 3
MLR 1st-order interactions 0.948 0.945 — 0.955 0.954 6
MLR 2nd-order interactions 0.968 0.964 — 0.967 0.965 7
MARS 0th-order, no interactions 0.963 0.960 0.952 0.966 0.965 3
MARS 1st-order interactions 0.977 0.974 0.951 0.957 0.956 6
MARS 2nd-order interactions 0.965 0.962 0.953 0.966 0.965 4

Using this model we have calculated the Pout values for a 30% evaluation data set. The
statistic indexes for three MLR are given in Table 4.

For the MARS models the same validation technique is applied, utilizing the same two
independent estimation data sets which were used for MLR, respectively, with 70% and 30%
of the data sample. The results from the cross-validation of all MARS models are given in
Table 4.

7. Discussion

The initial data set includes six independent input laser variables, some of which indicate
high multicolinearity. The problem of predictor multicolinearity is commonly encountered
not only in engineering data but also in ecology, medicine, and many other types of data.
In order to solve this problem we utilize preliminary the method of multiple factor analysis,
based on PCA. We obtained three orthogonal to each other factor variables. These factors
are then used to construct regression models. In essence this is the well-known projection
method which is also called Principal Component Regression. We have to note that usually
the application of this technique limits the accuracy of models because factors do not carry
all the information contained in the sample. For this reason, all constructed models are to an
extent—“rough” [27].

If we compare the obtained results from Table 2, we should note that the best, almost
identical results have been achieved using MARS models employing first- and second-order
interactions. These are preferable since they can be described using fewer basis functions. In
addition, the same models provide better validation results, as shown in Table 4.

As a whole, results obtained by modeling laser output power Pout indicate that the
lowest of considered indexes are those of parametric models, in this case MLR. MARS models
generally provide better indexes and descriptions of local interactions between predicators.
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Furthermore, generated models are easily interpreted and have good prediction power,
which is obvious from the results of their validation.

Let us now consider the physics interpretation of the models. All models include the
three basic factor variables (F1, F2, F3), among which the first factor is dominantly influential.
This is in full agreement with the general linear tendency towards an increase in laser output
power as a result of an increase in geometric and energy parameters included in F1 (tube
diameter, internal ring diameter, tube length, and supplied electric power). The relative
influence of the other two factors also corresponds to the actual experiment. From a practical
point of view, the constructed models are adequate and provide a relatively good description
of the dependence between input laser variables and laser output power. What is more, to
some extent, models can provide guidelines for the experiment when designing new laser
devices with increased laser output power.

8. Conclusion

The comparison between parametric and nonparametric methods for modeling output laser
power of a CuBr vapor laser shows that generally nonparametric models have slightly better
characteristics. The constructed MARS models allowed for a more adequate description
of the data in question at the same time overcoming the problems with multicolinearity,
local nonlinearities, and interactions between first- and second-order interactions between
predictors. Although the regression does not give causation, the models can be of great use
for evaluation of known experiments as well as for prediction and direction regarding future
experiments. The presented methods are also applicable to experimental data of similar laser
devices in the group of metal vapor and gas lasers.
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