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This paper investigates the stability properties of a class of dynamic linear systems possessing
several linear time-invariant parameterizations (or configurations) which conform a linear time-
varying polytopic dynamic system with a finite number of time-varying time-differentiable point
delays. The parameterizations may be timevarying and with bounded discontinuities and they
can be subject to mixed regular plus impulsive controls within a sequence of time instants of
zero measure. The polytopic parameterization for the dynamics associated with each delay is
specific, so that (q + 1) polytopic parameterizations are considered for a system with q delays
being also subject to delay-free dynamics. The considered general dynamic system includes, as
particular cases, a wide class of switched linear systems whose individual parameterizations
are timeinvariant which are governed by a switching rule. However, the dynamic system under
consideration is viewed as much more general since it is time-varying with timevarying delays
and the bounded discontinuous changes of active parameterizations are generated by impulsive
controls in the dynamics and, at the same time, there is not a prescribed set of candidate potential
parameterizations.

1. Introduction

The stabilization of dynamic systems is a very important question since it is the first
requirement for most of applications. Powerful techniques for studying the stability of
dynamic systems are Lyapunov stability theory and fixed point theory which can be
easily extended from the linear time-invariant case to the time-varying one as well as to
functional differential equations, as those arising, for instance, from the presence of internal
delays, and to certain classes of nonlinear systems, [1, 2]. Dynamic systems which are of
increasing interest are the so-called switched systems which consist of a set of individual
parameterizations and a switching law which selects along time, which parameterization
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is active. Switched systems are essentially timevarying by nature even if all the individual
parameterizations are timeinvariant. The interest of such systems arises from the fact that
some existing systems in the real world modify their parameterizations to better adapt to
their environments. Another important interest of some of such systems relies on the fact
that changes of parameterizations through time can lead to benefits in certain applications,
[3–13]. The natural way of modelling these situations lies in the definition of appropriate
switched dynamic systems. For instance, the asymptotic stability of Liénard-type equations
with Markovian switching is investigated in [4, 5]. Also, time-delay dynamic systems are
very important in the real life for appropriate modelling of certain biological and ecology
systems and they are present in physical processes implying diffusion, transmission, tele-
operation, population dynamics, war and peace models, and so forth. (see, e.g., [1, 2, 12–
18]). Linear switched dynamic systems are a very particular case of the dynamic system
proposed in this paper. Switched systems are very important in practical applications since
their parameterizations are not constant. A switched system can result, for instance, from the
use of a multimodel scheme, a multicontroller scheme, a buffer system or a multiestimation
scheme. For instance, a (nonexhaustive) list of papers deal with some of these questions
related to switched systems follow

(1) In [15], the problem of delay-dependent stabilization for singular systems with
multiple internal and external incommensurate delays is focused on. Multiple
memoryless state-feedback controls are designed so that the resulting closed-
loop system is regular, independent of delays, impulsefree and asymptotically
stable. A relevant related problem for obtaining sufficiency-type conditions of
asymptotic stability of a time-delay system is the asymptotic comparison of its
solution trajectory with its delayfree counterpart provided that this last one is
asymptotically stable, [19].

(2) In [20], the problem of theN-buffer switched flow networks is discussed based on
a theorem on positive topological entropy.

(3) In [21], a multi-model scheme is used for the regulation of the transient regime
occurring between stable operation points of a tunnel diode-based triggering
circuit.

(4) In [22, 23], a parallel multi-estimation scheme is derived to achieve close-loop
stabilization in robotic manipulators whose parameters are not perfectly known.
The multi-estimation scheme allows the improvement of the transient regime
compared to the use of a single estimation scheme while achieving at the same
time closed-loop stability.

(5) In [24], a parallel multi-estimation scheme allows the achievement of an order
reduction of the system prior to the controller synthesis so that this one is of
reducedorder (then less complex) while maintaining closed-loop stability.

(6) In [25], the stabilization of switched dynamic systems is discussed through
topologic considerations via graph theory.

(7) The stability of different kinds of switched systems subject to delays has been
investigated in [11–13, 17, 26–28].

(8) The stability switch and Hopf bifurcation for a diffusive prey-predator system is
discussed in [6] in the presence of delay.
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(9) A general theory with discussed examples concerning dynamic switched systems
is provided in [3].

(10) Some concerns of time-delay impulsivemodels are of increasing interest in the areas
of stabilization, neural networks, and Biological models with particular interest in
positive dynamic systems. See, for instance, [29–40] and references therein.

The dynamic system under investigation is a linear polytopic system subject to
internal point delays and feedback state-dependent impulsive controls. Both parameters and
delays are assumed to be timevarying in the most general case. The control impulses can
occur as separate events from possible continuous-time or bounded-jump type parametrical
variations. Furthermore, each delayed dynamics is potentially parameterized in its own
polytope. Those are the main novelties of this paper since it combines a time-varying
parametrical polytopic nature with individual polytopes for the delay-free dynamics with time-varying
parameters which are unnecessarily smooth for all time with a potential presence of delayed dynamics
with point time-varying delays. The case of switching between parameterizations at certain time
instants, what is commonly known as a switched system, [3, 17, 20–28], is also included
in the developed formalism as a particular case as being equivalent to define the whole
systems as a particular parameterization of the polytopic system at one of its vertices. The
delays are assumed to be time differentiable of bounded time-derivative for some of the
presented stability results but just bounded for the rest of results. An important key point
is that if the system is stabilizable, then it can be stabilized via impulsive controls without requiring
the delay-free dynamics of the system as it is then shown in some of the given examples.
Usually, for a given interimpulse time interval, the impulsive amplitudes are larger as the
instability degree becomes larger, and the signs of the control components also should be
appropriate, in order to compensate it by the stabilization procedure. Such a property also
will hold for nonpolytopic parameterizations. The design philosophy adopted in the paper
is that stabilization might be achieved through appropriate impulsive controls at certain
impulsive time instants without requiring the design of a standard regular controller. The
paper is organized as follows. Section 2 discusses the various evolution operators valid to
build the state-trajectory solutions in the presence of impulsive feedback state-dependent
controls. Analytic expressions are given to define such operators. In particular, an important
operator defined and discussed in this paper is the so-called impulsive evolution operator.
Such an evolution operator is sufficiently smooth within open time intervals between each
two consecutive impulsive times, but it also depends on impulses at time instants with hose
ones happen. Section 3 discusses new global stability and global asymptotic stability issues
based on Krasovsky-Lyapunov functionals taking account of the feedback state-dependent
control impulses. The relevance of the impulsive controls towards stabilization is investigated
in the sense that the most general results do not require stability properties of the impulse-
free system (i.e., that resulting as a particular case of the general one in the absence of
impulsive controls). Some included very conservative stability results follow directly from
the structures of the state-trajectory solution and the evolution operators of Section 2 without
invoking Lyapunov stability theory. It is proven that stabilization is achievable if impulses
occur at certain intervals and with the appropriate amplitudes. Finally, two application
examples are given in Section 4.

Notation 1.1. Z, R, and C are the sets of integer, real, and complex numbers, respectively.
Z+ and R+ denote the positive subsets of Z, respectively, and C+ denotes the subset of

C of complex numbers with positive real part, and n := {1, 2, . . . , n} ⊂ Z+, for all n ∈ Z+.
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Z− and R− denote the negative subsets of Z, respectively, and C− denotes the subset of
C of complex numbers with negative real part.

Z0+ := Z+ ∪ {0}, R0+ := R+ ∪ {0}, C0+ := C+ ∪ {0}
Z0− := Z− ∪ {0}, R0− := R− ∪ {0}, C0− := C− ∪ {0}

(1.1)

Given some linear space X (usually R or C), then C(i)(R0+, X) denotes the set of
functions of class C(i). Also, BPC(i)(R0+, X) and PC(i)(R0+, X) denote the set of functions in
C(i−1)(R0+, X) which, furthermore, possess bounded piecewise continuous or, respectively,
piecewise continuous ith derivative on X.

L(X) denotes the set of linear operators from X to X. In particular, the linear space
denoted by X denotes the state space of the dynamic system with controls in the linear space
U.

In denotes the nth identity matrix.
The symbols M � 0, M ≺ 0, M � 0, and M � 0 stand for positive definite,

negative definite, positive semidefinite, and negative semidefinite square real matrices M,
respectively. The notationsM � D, M ≺ D, M � D, and M � D stand correspondingly for
(M − D) � 0, (M − D) ≺ 0, (M − D) � 0, and (M − D) � 0, and Superscript “T” stands for
transposition of matrices and vectors.

λmax(M) and λmin(M)stand for the maximum and minimum eigenvalues of a definite
square real matrixM = (mij).

A finite or infinite strictly ordered sequence of impulsive time instants is defined by
Imp := {ti ∈ R0+ : ti+1 > ti}, where an impulsive control u(ti)δ(t − ti) occurs with δ (·) being
the Dirac delta of the Dirac distribution.

2. The Dynamic System Subject to Time Delays
and Impulsive Controls

Consider the following polytopic linear time-differential system of state vector and control of
respective dimensions n andm and being subject to q time-varying point delays:

ẋ(t) =
q∑

i=0

N∑

j=1

λij(t)
(
Aij(t)x(t − hi(t)) + Bij(t)uij(t)

)
= λT (t)(x(t) + u(t)), (2.1)

where the incommensurate time-varying delays are h0(t) = 0 for all t ∈ R0+, hi ∈
PC(1)(R0+,R0+), for all i ∈ q := {1, 2, . . . , q} (i.e., the delays are continuous time differentiable
of bounded time derivative), and

λT (t) =
(
λ01(t)λ02(t) · · ·λ0N(t) · · ·λq1(t)λq2(t) · · ·λqN(t)

)
,

xT (t) =
(
xT (t)

(
AT

01(t) · · ·AT
0N(t)

)
· · ·xT(t − hq(t)

)(
AT
q1(t) · · ·AT

qN(t)
))
,

uT (t) =
(
uT01(t)B

T
01(t) · · ·uT0N(t)BT0N(t) · · ·uTq1(t)BTq1(t) · · ·uTqN(t)BTqN(t)

)
(2.2)

are vector functions from R0+ to R(q+1)N , R(q+1)Nn and R(q+1)Nm, respectively, and
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(i) x : R0+ ∪ [−h, 0) → X ⊂ Rn is the state vector, which is almost everywhere time
differentiable on R0+ satisfying (2.1), subject to bounded piecewise continuous initial con-
ditions on [−h, 0),that is, x = ϕ ∈ BPC(0)([−h, 0],Rn), where h = h(0) = maxi∈q sup(hi(0)) ≤
h := maxi∈ q supt∈R0+

(h(t)), and uij : R0+ → U ⊂ Rm are the control vectors for all i ∈ q ∪
{0} for all j ∈ N and Aij ∈ BPC( 0)( R0+,Rn×n) and Bij ∈ BPC(0)( R0+,Rn×m) parameterize
the dynamic system.

(ii) λij ∈ BPC(0)(R0+,R0+), subject to the constraint
∑q

i=0
∑N

j=0 λij(t) ∈ [c1, c2] ⊂
R+, for all t ∈ R0+ with∞ > ε2 ≥ c2 ≥ c1 ≥ ε1 ≥ 0 are the weighting scalar functions defining
the polytopic system in the various delayed dynamics and parameterizations which are not
all simultaneously zero at any time for some given lower-bound and upper-bound scalars
ε1 and ε2. Note that there exist two summations in (2.1) related to these scalar functions,
one them referring to the contribution of delayed dynamics for the various delays and the
second one related to the system parameterization within the polytopic structure. It will be
not assumed through the paper that the delay-free auxiliary system is stable. Note that the
dynamic system can be seen as a convex polytopic dynamic system

ẋ(t) =
q∑

i=0

N∑

j=1

λij(t)ẋij(t) (2.3)

formed with subsystems of the form ẋij(t) = Aij(t)x(t − hi(t)) + Bij(t)uij(t). The controls
uij : R0+ → U ⊂ Rm are generated from the state-feedback impulsive controller as follow:

uij(t) = Kij(t)x(t − hi(t)) ∀i ∈ q =
{
1, 2, . . . , q

}
; ∀t ∈ R0+, for i = 0, t /∈ Imp,

u0j(t+) =
(
K0j(t+) +K′0j(t)

)
x(t+) for i = 0, t ∈ Imp,

(2.4)

where the strictly ordered Imp: = {ti ∈ R0+ : ti+1 > ti, i ∈ Z+} is the so-called
sequence of impulsive time instants where the control impulses occur whose elements form
a monotonically increasing sequence; that is, for any well posed test function f : R → R,

f(t) =
∫∞

−∞
f(τ)δ(t − τ)dτ =

∫ t+

t

f(τ)δ(t − τ)dτ = lim
ε→ 0+

∫ t+ε

t−ε
f(τ)δ(t − τ)dτ, (2.5)

where δ(t) is the Dirac distribution at time t = 0 with the following notational convention
being used: g(t+) = limε → 0+g (t + ε)/= g(t) = limε → 0+g (t − ε) either if t ∈ Imp or if g is
bounded having left and right limits at a discontinuity point t ∈ R0+, and g(t+) = g(t) if
R0+ � t /∈ Imp since the functions used are all left-continuous functions. Partial sequences
of impulsive time instants are denoted by specifying the time intervals they refer to, as for
instance, Imp[T1, T2] = {t ∈ Imp : t ∈ [T1, T2]} and Imp[T1, T2) = {t ∈ Imp : t ∈ [T1, T2)}. Note
that Imp = Imp[0,∞). The regular and impulsive controller gain matrices are, respectively,
Kij ∈ BPC(0)(R0+,Rm×n) and K′ij : Imp → Rm×n being a discrete sequence of bounded
matrices. Note that, if K0j(t) is discontinuous at the time instant t, then K0j(t+)/=K0j(t) even
if t /∈ Imp. The extensions to vector and matrix test functions are obvious by using respective
appropriate zero components or entries if impulses do not occur at time t, a particular
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component ormatrix entry. The substitution of the control law (2.4) into the open-loop system
equation (2.1) leads to the closed-loop functional dynamic system as follows:

ẋ(t) =
∑N

j=1 λ0j(t)
(
A∗0j(t) + B0j(t)K′0j(t)δ(0)

)
x(t) +

∑q

i=1

∑N
j=1 λij(t)A

∗
ij(t)x(t − hi(t)),

x(t+) =
(
In +

∑N
j=1 λ0j(t)B0j(t)K′0j(t)

)
x(t);

(2.6)

for all t ∈ R0+ with K′0j(t) = 0; for all t /∈ Imp, where

A∗ij(t) = Aij(t) + Bij(t)Kij(t), ∀i ∈ q ∪ {0} ∀j ∈N, (2.7)

Equation (2.6) becomes

ẋ(t) =
q∑

i=0

N∑

j=1

λij(t)A∗ij(t)x(t − hi(t)), (2.8)

for all t /∈ Imp and also at the left limits for all t ∈ Imp, and x(t+) − x(t) =∑N
j=1 λ0j(t)B0j(t)K′0j(t)x(t), which is zero if t /∈ Imp, with

ẋ(t+) =
N∑

j=1

λ0j(t)A∗0j(t
+)x(t+) +

q∑

i=1

N∑

j=1

λij(t)A∗ij(t
+)x(t+ − hi(t)) (2.9)

for the right limits of all t ∈ Imp. Define D := Imp ∪Dp, where

Dp : =

⎛

⎝
⋃

i∈q ∪{0}, j∈N
DAij

⎞

⎠ ∪
⎛

⎝
⋃

i∈q ∪{0}, j∈N
DBij

⎞

⎠ ∪
⎛

⎝
⋃

i∈q ∪{0}, j∈N
Dλij

⎞

⎠ ∪
⎛

⎝
⋃

i∈q ∪{0}, j∈N
DKij

⎞

⎠

(2.10)

is the total set of discontinuities on R0+ of Aij ∈ BPC(0)(R0+,Rn×n), Bij ∈ BPC(0)(R0+,Rn×m),
λij ∈ BPC(0)(R0+,R0+), and Kij ∈ BPC(0)(R0+,Rm×n) for all i ∈ q ∪ {0}, for all j ∈ N which are
in the respective setsDAij ,DBij ,Dλij , andDKij . The following technical assumptions are made.

Assumption 2.1. there exist υ ∈ R+ such that tk+1 − tk ≥ υ, for all tk, tk+1(> tk) ∈ Imp.

Assumption 2.2. ((
⋃
j∈N DB0j ) ∪ (

⋃
j∈N Dλij )) ∩ Imp = ∅.

Assumption 2.1 implies that the sequence of impulsive time instants is a real sequence
with no accumulation points. It is a technical assumption to guarantee the existence
and uniqueness of an almost everywhere time-differentiable state-trajectory solution.
Assumption 2.2 is needed for all the functions λ0j(B0j)k� ∈ BPC(0)(R0+,R0+) for all j ∈ N,
for all k ∈ n and for all � ∈ m, build with the entries B0j ∈ BPC(0)(R0+,Rn×m). This
follows since they are piecewise continuous on R0+ and, furthermore, continuous at any
small neighborhood around any point of the sequence of impulsive time instants where
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control impulses occur. From Picard-Lindeloff theorem, there is a unique solution for any
vector function of initial conditions ϕ ∈ BPC(0)([−h, 0],Rn) and x ∈ BPC(1)(R+,Rn). The
state-trajectory solution of the closed-loop system (2.8)-(2.9) for initial conditions ϕ ∈
BPC(0)([−h, 0],Rn) is given by

x(t) = Ψ(t)

⎡

⎣Ψ−1(0)x(0) +
q∑

i=1

N∑

j=1

∫ t

0
Ψ−1(τ)λij(τ)A∗ij(τ)x(τ − hi(τ))dτ

+
∑

tk∈Imp[0,t)

N∑

j=1

λ0j(tk)Ψ−1(tk)B0j(tk)K′0j(tk)x(tk)

⎤

⎦

=

⎡

⎣Ψs(t, t0)x(t0) +
q∑

i=1

N∑

j=1

∫ t

0
λij(τ)Ψs(t, τ)A∗ij(τ)x(τ − hi(τ))dτ

+
∑

tk∈Imp[t0,t)

N∑

j=1

λ0j(tk)Ψs(t, tk)B0j(tk)K′0j(tk)x(tk)

⎤

⎦,

(2.11)

subject to x(t) = ϕ(t), for all t ∈ [−h, 0], where

(1) Ψ(t) ∈ C(0)(R0+,Rn×n) is an almost everywhere differentiable matrix function
on R+ (being time differentiable on the non connected real set

⋃
ti∈Imp(ti+1 −

ti)) with unnecessarily continuous time derivatives which satisfies Ψ̇(t) =∑N
j=1 λ0j(t)A

∗
0j(t)Ψ(t) on R+ with Ψ(0) = In. IfAij , Bij , λij , andKij for all i ∈ q ∪ {0},

for all j ∈ N are everywhere continuous on R+, then Ψ(t) ∈ C(1)(R0+,Rn×n),
Ψs(·, ·) : R2

0+ → Rn×n as Ψs(t, τ) = Ψ(t)Ψ−1(τ) for all t ≥ τ , and

(2) Imp[t0, t): = {tk ∈ R0+ : t0 ≤ tk(∈ Imp) < t} ⊂ Imp is the strictly ordered sequence
of impulsive time instants with input impulses occurred on [t0, t) for any t0 ∈ R+.
Also, Imp(t0, t): = {tk ∈ Imp : t0 < tk < t} ⊂ Imp; Imp(t0, t]: = {tk ∈ Imp : t0 < tk ≤
t} ⊂ Imp are defined in a closed way.

The solution (2.11) is identically defined by

x(t) = Z(t)

[
Z−1(0)x(0) +

∫0

−h
Z−1(τ)ϕ(τ)dτ

+
∑

tk∈Imp(0,t)

N∑

j=1

λ0j(tk)Z−1(tk)B0j(tk)K′0j(tk)x(tk)

⎤

⎦,

(2.12)

where Z(t) ∈ C(0)(R0+,Rn×n) is an almost everywhere differentiable matrix function on
R+, with unnecessarily continuous time derivatives, which satisfies (2.8) on R+ with Z
(0) = In, Z(t) = 0 for all t ∈ R−. Defining the matrix function Zs(·, ·) : R2

0+ → Rn×n as
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Zs(t, τ) = Z(t)Z−1(τ) for all t ≥ τ , one has from (2.12) for t ∈ [tk, tk+1] for any two consecutive
given tk, tk+1 ∈ Imp as follow:

x(t) = Zs(t, tk)x
(
t+k
)
+

q∑

i=1

∫0

−hi
Zs(t, tk + τ)ϕ(tk + τ)dτ

+

⎛

⎝
N∑

j=1

Zs(t, tk)λ0j(tk )B0j(tk+1)x
(
t+k+1
)
K′0j(tk+1)

⎞

⎠,

(2.13)

which becomes for t = t+
k+1 as follow:

x
(
t+k+1
)
=

⎛

⎝In +
N∑

j=1

Zs(tk+1, tk)B0j(tk+1)K′0j(tk+1)

⎞

⎠x(tk+1)

= Zs(tk+1, tk)x
(
t+k
)
+

q∑

i=1

∫0

−hi
Zs(t, tk + τ)ϕ(tk + τ)dτ

+
N∑

j=1

Zs(tk+1, tk)λ0j(tk)B0j(tk+1)x(tk+1)K′0j(tk+1)δ(t, tk+1),

(2.14)

where δ(t, tk+1) = 1 if t = tk+1 and zero otherwise is the Kronecker delta. In view of (2.12),
the state-trajectory solution can be defined by the impulsive evolution operator {T(t, tk) :
t ∈ [tk, tk+1], for all tk ∈ Imp}, associated with {Z(t) : t ∈ R0+} where T(·, ·) : {([tk, tk+1] : tk ∈
Imp∪{0})} → L(X), which is represented by x(t) = T(t, tk)xt+

k
; for all t ∈ [tk, tk+1], for all tk ∈

Imp so that:

x(t) = T(t, tk)xt+
k
,

x
(
t+k+1
)
= T
(
t+k+1, tk

)
xt+

k
=

⎛

⎝In +
N∑

j=1

λ0j(tk+1)B0j(tk+1)K′0j(tk+1)

⎞

⎠T(tk+1, tk)xt+
k
,

(2.15)

for all t ∈ [tk, tk+1], for all tk ∈ Imp, where xt and xt+ denote the strings of state solution
trajectory and {x(τ) : τ ∈ [t − h, t)} and {x(τ) : τ ∈ [t − h, t]}, respectively. The subsequent
result follows directly for the state-trajectory solution from (2.11) for any initial conditions
ϕ ∈ BPC(0)([−h, 0],Rn).

Theorem 2.3. The following properties hold.
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(i) The state-trajectory solution satisfies the following equations on any interval [ζ, t) ⊂ R0+ for
any ϕ ∈ BPC(0)([−h, 0],Rn):

x
(
t+k+1
)
=

⎛

⎝In +
N∑

j=1

Ψs(tk+1, tk+1)λ0j(tk+1)B0j(tk+1)K′0j(tk+1)

⎞

⎠x(tk+1) (2.16)

= Ψs(tk+1, ζ)x(ζ+) +
∫ tk+1

ζ+
Ψs(tk+1, τ)

⎛

⎝
q∑

i=1

N∑

j=1

λij(τ)A∗ij(τ)x(τ − hi(τ))
⎞

⎠dτ

+
∑

ti∈Imp[ζ,tk+1]

N∑

j=1

λ0j(ti)Ψs(tk+1, ti)B0j(ti)K′0j(ti)x(ti)

(2.17)

=

⎛

⎝In +
N∑

j=1

Zs(tk+1, tk+1)B0j(tk+1)K′0j(tk+1)

⎞

⎠x(tk+1) (2.18)

= Zs(tk+1, ζ)x(ζ+) +
q∑

i=1

∫0

−hi
Zs(tk+1, ζ + τ)x(ζ + τ)dτ

+
∑

ti∈Imp[ζ,tk+1]

N∑

j=1

λ0j(ti)Zs(tk+1, ti)B0j(ti)x(ti)K′0j(ti)

(2.19)

= T
(
t+k+1, ζ

)
xζ+ (2.20)

=
∏

ti,ti+1∈Imp[ζ,tk+1]

⎡

⎣

⎛

⎝In +
N∑

j=1

λ0j(ti+1)B0j(ti+1)K′0j(ti+1)

⎞

⎠T(ti+1, ti)

⎤

⎦xζ+ , (2.21)

for all tk+1(> ζ) ∈ Imp, for all ζ ∈ R0+ with T(tk+1, tk+1) = Zs(tk+1, tk+1) = Ψs(tk+1, tk+1) = In.
Equations (2.17) and (2.19) are also valid by replacing tk+1 → t, for all t ∈ (tk+1, tk+2) if tk+2 ∈
Imp and for all t ∈ (tk+1,∞) if (tk+1,∞) ∩ Imp = ∅, that is, if the sequence of impulsive time
instants is finite with the last impulsive time instant being tk+1. Equation (2.21) has to be modified by
replacing tk+1 → t and then by premultiplying it by T(t, tk+1).

(ii) Assume that

∥∥∥∥∥∥

∏

ti,ti+1∈ Imp[ζ,tk+1]

⎡

⎣

⎛

⎝In +
N∑

j=1

λ0j(ti+1)B0j(ti+1)K′0j(ti+1)

⎞

⎠T(ti+1, ti)

⎤

⎦

∥∥∥∥∥∥
≤MT ≤ 1 (2.22)

∥∥∥∥∥∥

⎛

⎝In +
N∑

j=1

λ0j(t)B0j(t)K′0j(t)

⎞

⎠T
(
t, tcimp

)
∥∥∥∥∥∥
≤MT ≤ 1, (2.23)

for all tk+1(> ζ) ∈ Imp, for all ζ ∈ R0+, and for all t ≥ tcimp provided that cimp := card Imp[0,∞) <
∞, then ‖Γx‖Lp(R+,X) ≤ CΓ, where Γ : Dom(Γ) ≡ X → Lp(R+, X) is defined by (Γx)(t) = T(t, θ)x.
for all x ∈ X.
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Proof. (i) It follows directly for the state-trajectory solution from (2.11), (2.14), and (2.15) for
any time interval [ζ − h, ζ) of initial conditions ϕ ∈ BPC(0)([−h, 0],Rn).

(ii) The first part follows from the definition of the impulsive evolution operator. If, in
addition,MT < 1, then it follows from the following given constraints:

∃ lim
t→∞

T(t, θ)ξ = 0, ∀t(> θ) ∈ R+, θ ∈ R0+, ∀ξ ∈ X =⇒ T(t, θ)ξ (2.24)

is bounded, for all ξ ∈ X, for all t(> θ) ∈ R+, θ ∈ R0+

=⇒ ‖T(t, θ)‖ ≤ CT , some R � CT ≥ 1, ∀ t(> θ) ∈ R+, θ ∈ R0+ (2.25)

(from the uniform boundedness principle). Now, note that the operator Γ : Dom(Γ) ≡ X →
Lp(R+, X) is closed and then bounded from the closed graph theorem, so that the proof of
Property (ii) is complete.

Remark 2.4. Stabilization by impulsive controls may be combined with the design of regular
stabilization controllers or used as the sole stabilization tool. Some advantages related to the
use of impulsive control for stabilization of stabilizable systems arise in the cases when the
classical regular controller are of high design and maintenance costs.

3. Stability

The global asymptotic stability of the controlled system is now investigated. Firstly, a
conservative stability result follows from Theorem 2.3 (2.16)–(2.21), which does not take into
account possible compensations of the impulsive controls for stabilization purposes.

Theorem 3.1. Assume that the sequence Imp is infinite, ‖Ψs(t, τ)‖ ≤ kΨe−ρψ(t−τ), for all t ≥ τ + t0,
some finite t0 > 0, some R+ � kΨ > 0, and some ρψ ∈ R+ as follow:

kΨ

⎛
⎜⎝1 +

suptk+ip≤τ≤tk+(i+1)p

∥∥∥
∑q

i=1

∑N
j=1 λij(τ)A

∗
ij(τ)

∥∥∥
2

ρΨ

+

∥∥∥∥∥∥

∑

tj∈ Imp[tk+ip ,tk+(i+1)p]

N∑

j=1

λ0j
(
tj
)
B0j
(
tj
)
K′0j
(
tj
)
e−ρΨ(tk+(j+1)p−tj )

∥∥∥∥∥∥
2

⎞
⎟⎠ ≤ 1,

(3.1)

for some p ∈ Z+, some finite k ∈ Z0+, some subsequence {tk+ip} ∈ Imp, for all i ∈ Z0+. Thus,
the closed-loop system (2.8)-(2.9) is globally stable. If the above inequality is strict, then the system
is globally asymptotically stable. Also, if the sequence Imp is finite, then the results are valid
kΨ(1 + suptk≤τ<∞‖

∑q

i=1

∑N
j=1 λij(τ)A

∗
ij(τ)‖2/ρΨ) ≤ 1(< 1) with tk being the last element of the

finite sequence Imp

Now, a general stability result follows, which proves that (in general, nonasymptotic)
global stability is achievable by some sequence of impulsive controls generated from
appropriate impulsive controller gains.
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Theorem 3.2. There is a sequence of impulsive time instants Imp := {ti ∈ R0+} such that the closed-
loop system (2.6)–(2.7) is globally stable for any function of initial conditions ϕ ∈ BPC(0)([−h, 0],Rn)
for some sequence of impulsive controller gains K′0j : R0+ → Rn×m, for all j ∈N, for all i ∈ q ∪ {0}.

Proof. The basic equation to build the stability proof is x(t+) − x(t) =∑N
j=1 λ0j(t)B0j(t)K′0j(t)x(t), for all t ∈ Imp and any sequence of impulsive time instants

Imp. Consider prefixed real constants Ki ∈ R+ (i ∈ 4) fulfilling K1 ≤ K3 − ε1
and K4 ≤ K2 − ε2 with ε1 ∈ (0, K3) ∩ R0+ and ε2 ∈ (0, K2) ∩ R0+ such that
xk(0) ∈ [K3, K4] ⊂ [K1 + ε1, K2−ε2] ⊂ [K1, K2], for all k ∈ n. The proof of global
stability is nowmade by complete induction. Assume that some finite or infinite t ∈ R+ exists
such that xk(τ) ∈ [K1, K2]; for all τ ∈ [0, t), but xk(t) ∈ ((−∞, K3) ∪ (K4,∞)) ∩ [K1, K2] for
some k ∈ n, some K3 ∈ R with an existing (perhaps empty) partial sequence of impulsive
time instants Imp[0, t) until time t. Such a time t always exists from the boundedness
and almost everywhere continuity of the state-trajectory solution. Then, t ∈ Imp so that
Imp[0, t] = Imp[0, t) ∪ {t} is fixed as the first impulsive time instant and

−∞ < K3 ≤ xk(t+) =
⎛

⎝δ(k, �) +
N∑

j=1

m∑

i=1

n∑

�=1

λ0j(t)B0jki(t)K′0ji�(t)

⎞

⎠x�(t) ≤ K4 <∞, (3.2)

where the entry notation M = (Mij) for a matrix M is used, provided that the impulsive
controller gain K′0jik(t) is chosen so that the following constraint holds:

K3 −
(∑N

j=1
∑m

i(/= k)=1
∑n

�(/= k)=1 λ0j(t)B0jki(t)K′0ji�(t)
)
x�(t) − xk(t)

(
1 +
∑N

j=1 λ0j(t)B0jki(t)K′0jik(t)
)
xk(t)

≤ K′0jkk(t) ≤
K4 −

(∑N
j=1
∑m

i(/= k)=1
∑n

�(/= k)=1 λ0j(t)B0jki(t)K′0ji�(t)
)
x�(t) − xk(t)

(
1 +
∑N

j=1 λ0j(t)B0jki(t)K′0jkk(t)
)
xk(t)

.

(3.3)

Note by direct inspection of (3.3) that such a controller gain always exists. As a result,
xk(t+) ∈ [K3, K4] ⊂ [K1, K2], for all k ∈ n. By continuity of the state-trajectory solution, there
exists a finite T(t,K′) ∈ R+ such that xk(τ) ∈ [K3 − K′, K4 + K′] ⊂ [K1, K2] for any prefixed
K′ ∈ R+, for all τ ∈ [t, t + T(t,K′)), for all k ∈ n provided that K3 −K1 ≤ K′ ≤ K2 −K4. Since
xk(t+T(t,K′)) ∈ ((−∞, K3)∪(K4,∞))∩[K1, K2] then xk(τ) ⊂ [K1, K2], for all τ ∈ [0, t+T(t)),
for all k ∈ n. Also, xk(τ) ⊂ [K1, K2] for al τ ∈ [0, t + T(t)], for all k ∈ n if an impulsive
controller gain is chosen at time t + T(t) by replacing t → t + T(t) in (3.3) and Imp[0, t +
T(t)] = Imp[0, t + T(t)) ∪ {t + T(t)} with Imp[0, t + T(t)) = Imp[0, t]. It has been proven that
xk(τ) ∈ [K1, K2], for all τ ∈ [0, t) for any given t ∈ R0+, for all k ∈ n then xk(τ) ∈ [K1, K2],
for all τ ∈ [0, t + T(t)], for some T(t) ∈ R+, and for all k ∈ n so that the result holds by
complete induction for for all t ∈ R0+ with a bounded sequence of impulsive controller gains
at some appropriate sequence of impulsive time instants Imp: = {ti ∈ R0+}.

Remark 3.3. Note that Theorem 3.2 holds irrespective of the values of the regular controller
gain functions Kij : R0+ → Rm×n for some appropriate sequence of impulsive controller
gains K′0j : R0+ → Rn×m, for all j ∈ N, for all i ∈ q ∪ {0}. The reason is that the stabilization
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mechanism consists of decreasing the absolute values of the state components as much as
necessary at its right limits at the impulsive time instants for any values of their respective
left-hand-side limits and values at previous values at the intervals between consecutive
impulsive time instants.

The subsequent result establishes that the stabilization is achievable with the
stabilizing impulsive controller gains being chosen arbitrarily except at some subsequence
of the impulsive time instants.

Theorem 3.4. The closed-loop system (2.6)–(2.7) is globally stable for any ϕ ∈ BPC(0)([−h, 0],Rn)
and any given set of regular controller gain functions Kij : R0+ → Rn×m if the sequence of impulsive
time instants Imp := {ti ∈ R0+} is chosen so that

(1) the sequence of impulsive controller gains K′0j : R0+ → Rn×m, for all j ∈ N; for all i ∈
q ∪ {0} is chosen appropriately for some subsequence of impulsive time instants Imp∗ :=
{t∗k} ⊂ Imp satisfying t∗k+1 − t∗k ≤ T ∗(t∗k) <∞, for each two consecutive t∗k, t

∗
k+1 ∈ Imp∗

(2) such a sequence of impulsive controller gains is chosen arbitrarily for the sequence Imp \
Imp∗.

Proof. Consider the following Lyapunov functional candidate V : R0+ × Rn → R0+, [17]:

V (t, xt) := xT (t)Px(t) +
q∑

i=1

∫ t

t−hi(t)
xT (τ)Si(τ)x(τ)dτ, (3.4)

where Rn×n � P = PT � 0 and Si ∈ BPC(0)(R0+,Rn×n) fulfils Si(t) � 0, for all t ∈ R0+, for all i ∈
q. One gets by taking time-derivatives in (3.4) using (2.6) as follow:

V̇ (t, xt) := 2xT (t)P

⎡

⎣
N∑

j=1

λ0j(t)B0j(t)K′0j(t)δ(0) +
q∑

i=0

N∑

j=1

λij(t)A∗ij(t)x(t − hi(t))
⎤

⎦x(t)

+
q∑

i=1

(
xT (t)Si(t)x(t) −

(
1 − ḣi(t)

)
xT (t − hi(t))Si(t − hi(t))xT (t − hi(t))

)
(3.5)

= x̂T (t)Q(t)x̂(t) = −x̂T (t)(Qd(t) +Qod(t))x̂(t), (3.6)

where

x̂(t) =
(
xT (t)xT (t − h1(t)) · · ·xT

(
t − hq(t)

))T
,

Q(t) := Block matrix
(
Qij(t) : i, j ∈ q + 1

)
,

(3.7)
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with

Q11(t) =

⎛

⎝
N∑

j=1

λ0j(t)
(
A∗0j(t) + B0j(t)K′0j(t)δ(0)

)
⎞

⎠
T

P

+ P

⎛

⎝
N∑

j=1

λ0j(t)
(
A∗0j(t) + B0j(t)K′0j(t)δ(0)

)
⎞

⎠ +
q∑

i=1

Si(t)

Q1,i+1(t) = QT
i+1,1(t) :=

N∑

j=1

λij(t)PA∗ij(t), ∀i ∈ q,

Qii(t) := −
(
1 − ḣi(t)

)
Si(t − hi(t)), Qij(t) = 0, ∀i, j(/= i) ∈ q + 1 \ {1},

Qd(t) = Blockdiag
(−Q11(t) −Q22(t) −Qq+1,q+1(t)

)
,

Qod(t) = −(Q(t) +Qd(t)) =

⎡
⎢⎢⎢⎢⎣

0 −Q12(t) · · · −Q1,q+1(t)
−QT

12(t) 0 −Q23(t) · · · −Q2,q+1(t)
...

...
. . .

...
−QT

q+1,1(t) −QT
q+1,2(t)(t) −QT

q+1,q(t)(t) · · · 0

⎤
⎥⎥⎥⎥⎦
,

(3.8)

so that the following cases arise:
(1) if t /∈D, then

Q11(t) =

⎛

⎝
N∑

j=1

λ0j(t)A∗T0j (t)

⎞

⎠P + P

⎛

⎝
N∑

j=1

λ0j(t)A∗0j(t)

⎞

⎠ +
q∑

i=1

Si(t),

Q1,i+1(t) = QT
i+1,1(t) :=

N∑

j=1

λij(t)PA∗ij(t), ∀i ∈ q,

Qii(t) : = −
(
1 − ḣi(t)

)
Si(t − hi(t)), Qij(t) = 0, ∀i, j(/= i) ∈ q + 1 \ {1},

(3.9)

(2) if t ∈ D \ Imp, then (3.8) still holds to the left of any t ∈ R0+. Similar equations
as (3.9) stand for t+ by replacing t → t+ in all the matrix functions entries which become
modified only if the time instant t is a discontinuity point of the corresponding matrix
function entry,

(3) if t ∈ Imp, then the left-hand-side limit of Q(t) is defined with block matrices as
follow:

Q11(t) =

⎛

⎝
N∑

j=1

λ0j(t)
(
A∗0j(t) + B0j(t)K′0j(t)δ(0)

)
⎞

⎠
T

P

+ P

⎛

⎝
N∑

j=1

λ0j(t)
(
A∗0j(t) + B0j(t)K′0j(t)δ(0)

)
⎞

⎠ +
q∑

i=1

Si(t),
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Q1,i+1(t) = QT
i+1,1(t) :=

N∑

j=1

λij(t)PA∗ij(t), ∀i ∈ q,

Qii(t) : = −
(
1 − ḣi(t)

)
Si(t − hi(t)), Qij(t) = 0, ∀i, j(/= i) ∈ q + 1 \ {1},

(3.10)

and the right-hand-side limits are defined with block matrices as follow:

Q11(t+) =

⎛

⎝
N∑

j=1

λ0j(t)
(
A∗0j(t

+) + B0j(t)K′0j(t)
)
⎞

⎠
T

P

+ P

⎛

⎝
N∑

j=1

λ0j(t)

⎛

⎝A∗0j(t
+) +

N∑

j=1

B0j(t)K′0j(t)

⎞

⎠

⎞

⎠ +
q∑

i=1

Si(t+)

Q1,i+1(t+) = QT
i+1,1(t

+) :=
N∑

j=1

λij(t)PA∗ij(t
+), ∀i ∈ q,

Qii(t+) := −
(
1 − ḣi(t)

)
Si(t − hi(t))+, Qij(t) = 0, ∀i, j(/= i) ∈ q + 1 \ {1},

(3.11)

since from Assumption 2.1, the scalar functions λij(t) and the matrix functions B0j( t),
for all i ∈ q ∪ {0}, for all j ∈ N cannot be discontinuous at the sequence Imp. As in (3.11),
a matrix function entry at t+ is more distinct than its left-hand-side limit at t only if it has a
discontinuity at the time instant t. Thus,

V̇ (t+, xt+) − V̇ (t, xt) = x̂T (t)(Q(t+) −Q(t))x̂(t), V (t+, xt) − V (t, xt) = 0, ∀t /∈ Imp,

V̇ (t+, xt+) − V̇ (t, xt) = 0, ∀t /∈D since Q(t+) = Q(t).
(3.12)

Furthermore, in view of (3.5),

V̇ (t+, xt+) − V̇ (t, xt) = x̂T (t+)Q(t+)x̂(t+) − x̂T (t)Q(t)x̂(t), ∀t ∈ Imp. (3.13)

If, in addition, t /∈Dp, that is, if t ∈ Imp ∩Dp, and since Q(t+) = Q(t), (3.13) becomes

V̇ (t+, xt+) − V̇ (t, xt) = x̂T (t+)Q(t)x̂(t+) − x̂T (t)Q(t)x̂(t), (3.14)
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Furthermore,

V (t+, xt+) − V (t, xt) =
∫ t+

t

V̇ (τ, xτ)dτ

× xT (t)

⎛
⎜⎝

⎛

⎝
N∑

j=1

λ0j(t)B0j(t)K′0j(t)

⎞

⎠
T

P

⎛

⎝
N∑

j=1

λ0j(t)B0j(t)K′0j(t)

⎞

⎠

+ 2P

⎛

⎝
N∑

j=1

λ0j(t)B0j(t)K′0j(t)

⎞

⎠

⎞

⎠x(t), ∀t ∈ Imp.

(3.15)

since x(t+)−x(t) =∑N
j=1 λ0j(t)B0j(t)K′0j(t)x(t) from (2.4) (which results to be zero for t /∈ Imp).

Now, for any k ∈ Z0+ and some pk ∈ Z+, consider a sequence of consecutive impulsive time
instants Imp(tk, tk+pk) := {tk, tk+1, . . . , tk+pk} ⊂ Imp, so that,

V
(
t+k+pk , xt

+
k+pk

)
− V
(
t+k, xt+k

)

=
∫ t+

k+pk

t+
k

V̇ (τ, xτ)dτ

=
pk∑

i=1

⎡

⎣
∫ t−

k+i

t+
k+i−1

V̇ (τ, xτ)dτ + 2xT (tk+i)P

⎛

⎝
N∑

j=1

λ0j(tk+i)B0j(tk+i)K′0j(tk+i)

⎞

⎠x(tk+i)

+xT (tk+i)

⎛

⎝
N∑

j=1

λ0j(tk+i)K
′T
0j (tk+i)B

T
0j(tk+i)

⎞

⎠

×P
⎛

⎝
N∑

j=1

λ0j(tk+i)B0j(tk+i)K′0j(tk+i)

⎞

⎠x(tk+i)

⎞

⎠

⎤

⎦

(3.16)

≤ −
pk∑

i=1

[∫ tk+i

t+
k+i−1

α(τ)
∣∣∣xT (τ)Qd(τ)x(τ)

∣∣∣dτ +
∫ tk+1

t+
k+i−1

β(τ)
∣∣∣xT (τ)Qod(τ)x(τ)

∣∣∣dτ

+ xT (tk+i)

⎛

⎝
N∑

j=1

λ0j(tk+i)K
′T
0j (tk+i)B

T
0j(tk+i)

⎞

⎠

×P
⎛

⎝
N∑

j=1

λ0j(tk+i)B0j(tk+i)K′0j(tk+i)

⎞

⎠x(tk+i)

⎞

⎠

−2μ(tk+i)
∣∣∣∣∣∣
xT (tk+i)P

⎛

⎝
N∑

j=1

λ0j(tk+i)B0j(tk+i)K′0j(tk+i)

⎞

⎠x(tk+i)

∣∣∣∣∣∣

⎤

⎦

(3.17)
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by using the binary indicator functions as follow:

(a) α : R0+ → {1,−1} defined by α(t) = 1 if xT (t)Qd(t)x(t) > 0 and α(t) = −1 otherwise,
for all t ∈ R0+,

(b) β : R0+ → {1,−1} defined by β(t) = 1 if xT (t)Qod(t)x(t) > 0 and β(t) = −1 otherwise,
for all t ∈ R0+,

(c) μ : Imp → {1,−1} defined by,

μ(tk) = 1 if xT (t+j )P(
∑N

j=1 λ0j(tj)B0j(tj)K′0j(tj))x(t
+
j ) > 0 and μ(tk) = −1 otherwise; for all tk ∈

Imp. Equation (3.17) is less than or equal to zero, which implies that V (t+k+pk , xt+k+pk ) ≤
V (t+

k
, xt+

k
) if

pk∑

i=1

⎡

⎣
∫ tk+i

t+
k+i−1

α(τ)
∣∣∣xT (τ)Qd(τ)x(τ)

∣∣∣dτ +
∫ tk+i

t+
k+i−1

β(τ)
∣∣∣xT (τ)Qod(τ)x(τ)

∣∣∣dτ

+xT (tk+i)

⎛

⎝
N∑

j=1

λ0j(tk+i)K
′T
0j (tk+i)B

T
0j(tk+i)

⎞

⎠

×P
⎛

⎝
N∑

j=1

λ0j(tk+i)B0j(tk+i)K′0j(tk+i)

⎞

⎠x(tk+i)

⎞

⎠

− 2μ(tk+i)

∣∣∣∣∣∣
xT (tk+1)P

⎛

⎝
N∑

j=1

λ0j(tk+i)B0j(tk+i)K′0j(tk+i)

⎞

⎠x(tk+i)

∣∣∣∣∣∣

⎤

⎦ ≥ 0,

(3.18)

which holds with an existing Imp � tk∗ = tk+pk ∈ [tk, tk+pk ] for each tk+i ∈ Imp (for all i ∈
pk ∪ {0})with impulsive control gainsK′0j(tk∗) = Λ0j(tk∗)BT0j(tk∗)P of the jth parameterization

of the polytopic system, where Rn×n � Λ0j(tk∗) = ΛT
0j(tk∗), for all j ∈N if

N∑

j=1

⎛
⎜⎝λ0j(tk∗)λmax

(
Λ0j(tk∗)

)∥∥PB0j(tk∗)
∥∥
2 (3.19)

×

⎛
⎜⎝1 − λ0j(tk∗)

λ2min

(
Λ0j(tk∗)

)
λmin

(
BT0j(tk∗)P

2B0j(tk∗)
)

λmax
(
Λ0j(tk∗)

)

⎞
⎟⎠

⎞
⎟⎠
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≤ 1
‖x(tk∗)‖22

⎛

⎝
k∗∑

i=1

[∫ tk+i

t+
k+i−1

α(τ)
∣∣∣xT (τ)Qd(τ)x(τ)

∣∣∣dτ +
∫ t−

k+i

t+
k+i−1

β(τ)
∣∣∣xT (τ)Qod(τ)x(τ)

∣∣∣dτ
]

+
k∗−1∑

i=1

⎡

⎣xT (tk+i)

⎛

⎝
N∑

j=1

λ0j(tk+i)K
′T
0j (tk+i)B

T
0j(tk+i)

⎞

⎠

×P
⎛

⎝
N∑

j=1

λ0j(tk+i)B0j(tk+i)K′0j(tk+i)

⎞

⎠x(tk+i)

⎞

⎠

−2
∣∣∣∣∣∣
xT (tk+i)

⎛

⎝
N∑

j=1

λ0j(tk+i)PB0j(tk+i)K′0j(tk+i)

⎞

⎠x(tk+i)

∣∣∣∣∣∣

⎤

⎦

⎞

⎠,

(3.20)

where tk∗ := maxi∈pk(tk+i ∈ Imp : xT (tk+i)(
∑N

j=1 λ0j(tk+i)PB0j(tk+i)K
′
0j(tk+i))x(tk+i)/= 0)

The existence of tk∗ ∈ [tk,tk+pk] has been proven for time instants tk+i ∈ Imp (for all i ∈
pk ∪ {0}), and some pk ∈ Z0+ such that xT (t∗

k
)(
∑N

j=1 λ0j(t
∗
k
)PB0j(t∗k)K

′
0j(t

∗
k
))x(t∗

k
)/= 0 if x(t∗

k
)/= 0

for appropriate impulsive controller gains K′0j(tk), for all j ∈
←−
N. In particular, if Λ0j(tk∗) =

ν(tk∗)Im /= 0 with ν(tk∗) ∈ R \ {0} being a scalar common for the impulses injected at all the
parameterizations of the polytopic system, then the condition in (3.19) becomes in particular,

ν(tk∗) ≤ 1

ρ(tk∗)‖x(tk∗)‖22

×
⎛

⎝
k∗∑

i=1

[∫ tk+i

t+
k+i−1

α(τ)
∣∣∣xT (τ)Qd(τ)x(τ)

∣∣∣dτ +
∫ tk+i

t+
k+i−1

β(τ)
∣∣∣xT (τ)Qod(τ)x(τ)

∣∣∣dτ
]

+
k∗−1∑

i=1

⎡

⎣xT (tk+i)

⎛

⎝
N∑

j=1

λ0j(tk+i)K
′T
0j (tk+i)B

T
0j(tk+i)

⎞

⎠

×P
⎛

⎝
N∑

j=1

λ0j(tk+i)B0j(tk+i)K′0j(tk+i)

⎞

⎠x(tk+i)

⎞

⎠

−2
∣∣∣∣∣∣
xT (tk+i)

⎛

⎝
N∑

j=1

λ0j(tk+i)PB0j(tk+i)K′0j(tk+i)

⎞

⎠x(tk+i)

∣∣∣∣∣∣

⎤

⎦

⎞

⎠,

ρ(tk∗) :=
N∑

j=1

⎛
⎜⎝λ0j(tk∗)λmax

(
Λ0j(tk∗)

)∥∥PB0j(tk∗)
∥∥2

×

⎛
⎜⎝1 − λ0j(tk∗)

λ2min

(
Λ0j(tk∗)

)
λmin

(
BT0j(tk∗)P

2B0j(tk∗)
)

λmax
(
Λ0j(tk∗)

)

⎞
⎟⎠

⎞
⎟⎠.

(3.21)
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It follows by simple inspection that ν(tk∗) may be chosen to satisfy (3.21) and, furthermore,
−∞ ≤ ν(tk∗) ≤ ∞ for some tk∗ ∈ Imp ∩ [tk,tk+pk]. It is now proven by contradiction
that the sequences {‖x(tk)‖tk∈Imp}and {‖x(t+k)‖tk∈Imp} are both bounded. Assume that Sν :=
{ν(tk∗)}tk∗ ∈Imp∩[tk,tk+pk ] is an unbounded sequence. Then, there is an infinite subsequence
S′ν ⊂ Sν such that S′ν � ν(tk∗) → ±∞ as tk∗ → ∞, for all tk ∈ Imp. From the definition of
the Lyapunov function candidate (3.4) and the guaranteed property V (t+

k∗ , xt+k∗ ) ≤ V (t+
k
, xt+

k
) ≤

V (t+1 , xt+1 ) < ∞, (from (3.17), if (3.21) holds), it follows that ‖x(t+
k∗)‖ ≤ M+

ϕk∗ < ∞ for any
positive finite constant Mϕ depending on the bounded function of initial conditions of the
system (3.4). Also, ‖x(tk∗)‖ ≤ Mϕk∗ < ∞ since the discontinuities at the state trajectory
solution caused by impulses are second-class finite jump-type discontinuities. Then, the
sequences {‖x(t∗k)‖}t∗k∈Imp∗ and {‖x(t∗+k )‖}

t∗
k
∈Imp∗ are bounded by positive real constants,Mϕ =

maxtk∈ Imp(maxt∗
k
∈[tk ,tk+pk ]Mϕk∗) and M+

ϕ = maxtk∈ Imp(maxt∗
k
∈[tk ,tk+pk ]M

+
ϕk∗), respectively. This

implies that (3.21) may be fulfiled with −∞ < ν(tk∗) <∞, also, since

(1) the state-trajectory solution of the closed-loop system is continuous and almost
everywhere time differentiable except at second-class discontinuity points on a set
of zero measure, and

(2) the state-trajectory solution of the closed-loop system is bounded on the subse-
quence Imp∗. Thus, it cannot beunbounded on Imp\ Imp∗ since, otherwise, it could
not be an almost everywhere smooth state-trajectory solution.

As a result, it exist C = C(T ∗, Imp) ∈ R+ and C+ = C+(T ∗, Imp) ∈ R+ such that ‖x(tk)‖ ≤ CMϕ

and ‖x(t+
k
)‖ ≤ C+M+

ϕ, for all tk ∈ Imp and the candidate (3.4) is a Lyapunov functional. The
result has been proven.

The proof of the global asymptotic stability of the system requires to extend
Theorem 3.4 by guaranteeing that the state-trajectory solution converges asymptotically
to zero as time tends to infinity. This requires also stabilizability-type conditions on the
nonimpulsive part of the closed-loop solution. The following result holds.

Theorem 3.5. The closed-loop system (2.6)–(2.7) is globally asymptotically stable for any ϕ ∈
BPC(0)([−h, 0],Rn) and a given sequence of impulsive time instants if the regular controller gain
functions Kij : R0+ → Rn×m and the sequence of impulsive controller gains K′0j : R0+ → Rn×m,

for all j ∈ N, for all i ∈ q ∪ {0} are chosen so that the following matrix inequalities hold for some
Rn×n � P = PT � 0 and Si ∈ BPC(0)(R0+,Rn×n) which fulfils Si(t) � 0, for all t ∈ R0+, for all i ∈ q
as follow:

Q11(t) ≺ 0, Q22(t) −Q
T

12(t)Q
−1
11 (t)Q

T

12(t) ≺ 0, ∀t ∈ R0+ \D, (3.22)

Q11(t+) ≺ 0, Q22(t
+) −QT

12(t
+)Q−111 (t

+)Q
T

12(t
+) ≺ 0, ∀t ∈ D \ Imp,

Q11(t+) ≺ 0, Q22(t
+) −QT

12(t
+)Q−111 (t

+)Q
T

12(t
+) ≺ 0, ∀t ∈ D \ Imp,

(3.23)

Q(t+) −Q(t) � 0, ∀t ∈ Imp, (3.24)
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where

Q12(t) = Q
T

21(t) =

⎛

⎝
N∑

j=1

λ1j(t)PA∗1j(t)
N∑

j=1

λ2j(t)PA∗1j(t) · · ·
N∑

j=1

λqj(t)PA∗1j(t)

⎞

⎠, (3.25)

Q22(t): = −Blockdiag
((
1 − ḣ1(t)

)
S11(t − h1(t))

(
1 − ḣ2(t)

)

×S22(t − h2(t)) · · ·
(
1 − ḣq(t)

)
Sqq
(
t − hq(t)

))
.

(3.26)

Proof. From (3.6) and (3.12), the system is globally asymptotically stable if the Lyapunov
functional candidate (3.4) is in fact a Lyapunov functional which is guaranteed if

(a) V̇ (t, xt) < 0, for all t ∈ R0+ such that xt /= 0 what holds if and only if Q(t)≺ 0,
for all t ∈ R0+

(b) V (t+, xt+) ≤ V (t, xt), for all t ∈ Imp what holds if and only ifQ(t+)≺Q(t), for all t ∈
R0+.

The first condition holds from (3.9) via Schur’s complement if (3.22)-(3.23) hold. The second
condition holds if (3.24) holds.

Remark 3.6. Theorem 3.5 can be tested directly from (3.9)–(3.11) with direct algebraic tests.
However, it is very restrictive since it does not provide with conditions guaranteeing
a cooperative achievement of global asymptotic stability among the non-impulsive and
impulsive parts. Note that necessary conditions for the fulfilment of Theorem 3.5 are from
(3.9)–(3.11): Q11(t) ≺ 0, Q11(t+) ≺ 0 (i.e., the Lyapunov matrix inequality holds for for all t ∈
R0+ \D, and for the left and right limits of all t ∈ D), and Q11(t+)≺Q11(t) ≺ 0, for all t ∈ Imp.

Remark 3.7. Note that (3.22)-(3.23) imply that

Q22(t) ≺ Q
T

12(t)Q
−1
11 (t)Q

T

12(t) � 0, ∀t ∈ R0+ \D, (3.27)

Q22(t) ≺ Q
T

12(t)Q
−1
11 (t)Q

T

12(t) � 0,

Q22(t
+) ≺ QT

12(t
+)Q−111 (t

+)Q
T

12(t
+) � 0,

(3.28)

for all t ∈ D \ Imp since Q
T

12(t)Q
−1
11 (t)Q

T

12(t) is symmetric and Q−111 (t) ≺ 0 and

Q22(t) ≺ Q
T

12 (t) Q− 1
11 (t) Q

T

12 (t) � 0,

Q22(t
+) ≺ QT

12(t
+)Q−111 (t

+)Q
T

12(t
+) � 0, ∀t ∈ D \ Imp,

(3.29)

As a result, supt∈R+
0
[maxi∈q(max(ḣi(t), ḣi(t+)))] < 1 is a necessary condition for Theorem 3.5

to hold.

Concerning Theorem 3.5, (3.22)-(3.23), note that isolated bounded discontinuities in
V̇ (t, xt) do not affect to maintain V (t, xt) as a positive strictly monotonically decreasing
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functional on R0+. Therefore, Theorem 3.5 can be relaxed by removing a set of zero measure
of R0+ \D (and then of R0+) to evaluate (3.22)-(3.23) and also bounded discontinuities at the
sequence Imp from (3.24). The resulting modified stability result follows.

Corollary 3.8. The closed-loop system (2.6)–(2.7) is globally asymptotically stable for any ϕ ∈
BPC(0)([−h, 0],Rn) and a given sequence of impulsive time instants if the regular controller gain
functions Kij : R0+ → Rn×m and the sequence of impulsive controller gains K′0j : R0+ → Rn×m,

for all j ∈ N, for all i ∈ q ∪ {0} are chosen so that the following matrix inequalities hold for some
Rn×n � P = PT � 0 and Si ∈ BPC(0)(R0+,Rn×n) which fulfils Si(t) � 0, for all t ∈ R0+, for all i ∈ q
as follow:

⎛

⎝
N∑

j=1

λ0j(t)A∗
T

0j (t)

⎞

⎠P + P

⎛

⎝
N∑

j=1

λ0j(t)A∗0j(t)

⎞

⎠ +
q∑

i=1

Si(t) ≺ 0, (3.30)

almost everywhere in R0+,

Blockdiag
((
1 − ḣ1(t)

)
S11(t − h1(t))

(
1 − ḣ2(t)

)

×S22(t − h2(t)) · · ·
(
1 − ḣq(t)

)
Sqq
(
t − hq(t)

))

�
⎛

⎝
N∑

j=1

λ1j(t)PA∗1j(t)
N∑

j=1

λ2j(t)PA∗1j(t) · · ·
N∑

j=1

λqj(t)PA∗1j(t)

⎞

⎠
T

×
[
−
(

N∑

J=1

λ0j(t)A∗
T

0j (t)

)
P − P

(
N∑

J=1

λ0j(t)A∗0j(t)

)
−

q∑

i=1

Si(t)

]−1

×
⎛

⎝
N∑

j=1

λ1j(t)PA∗1j(t)
N∑

j=1

λ2j(t)PA∗1j(t) · · ·
N∑

j=1

λqj(t)PA∗1j(t)

⎞

⎠,

(3.31)

almost everywhere in R0+, and

Q(t+) −Q(t)

=

[(∑N

j=1
λ0j(t)K

′T
0j (t)B

T
0j(t)

)
P + P

(∑N

j=1
λ0j(t)B0j(t)K′0j(t)λ0j(t)B0j(t)K′0j(t)

)
0

0 0

]
� 0,

∀t ∈ Imp,
(3.32)

where Qij(t
+) = Qij(t) if Qij(t) is not impulsive and Qij(t

+) = Qij(t+), otherwise.

Proof. Equations (3.30)-(3.31) follow from Theorem 3.5 by expanding Q11(t) ≺ 0, Q22(t) −
Q
T

12(t)Q
−1
11 (t)Q

T

12(t) ≺ 0 from (3.8)-(3.9) and (3.25)-(3.26) on R0+ excepting time instants of
bounded isolated discontinuities. Equation (3.32) follow from (3.24), for all t ∈ Imp also
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excluding bounded discontinuities at the time-derivative of the Lyapunov functional since
they are irrelevant for analysis since they do not generate bounded jumps at the Lyapunov
functional.

Corollary 3.8 holds in terms of more restrictive but it is easier to test conditions given
in the subsequent result.

Corollary 3.9. Corollary 3.8 holds if

⎛

⎝
N∑

j=1

λ0j(t)A∗
T

0j (t)

⎞

⎠P + P

⎛

⎝
N∑

j=1

λ0j(t)A∗0j(t)

⎞

⎠ +
q∑

i=1

Si(t) ≺ −q(t)In, (3.33)

almost everywhere in R0+ for some q ∈ BPC(0)(R0+,R+) which satisfies

q(t) > min

⎛
⎜⎝q0,

∥∥∥
(∑N

j=1 λ1j(t)PA
∗
1j(t)

∑N
j=1 λ2j(t)PA

∗
1j(t) · · ·

∑N
j=1 λqj(t)PA

∗
1j(t)

)∥∥∥
2

2

mini∈qλmin(Sii(t − hi(t))) ,

⎞
⎟⎠ (3.34)

provided that

max
i∈q

ḣi(t) < min

⎛
⎜⎝γ, 1 −

∥∥∥
(∑N

j=1 λ1j(t)PA
∗
1j(t)

∑N
j=1 λ2j(t)PA

∗
1j(t) · · ·

∑N
j=1 λqj(t)PA

∗
1j(t)

)∥∥∥
2

2

q(t)mini∈qλmin(Sii(t − hi(t)))

⎞
⎟⎠,

(3.35)

almost everywhere in R0+, and (3.32) holds for all t ∈ Imp.

The following result states that stabilization is achievable under impulsive control
impulses which respect a maximum separation time interval and exceed an upper bound
of the maximum delay provided that it is bounded.

Corollary 3.10. Assume that

(1) all the delays are uniformly bounded for all time,

(2) ¬∃t ∈ R0+ : λ0j(t)B0j(t)/= 0 for all j ∈ N and fix a real constant ∞ > T ≥ T(≥
supt∈R0+

h(t)). Fix a real constant ∞ > T ≥ T(≥ supt∈R0+
h(t)). Thus, there is always

a globally stabilizing impulsive control law by appropriate design of one of the impulsive
controller gains and choice of the interval sequences of impulsive instants as follow:

K′0� : R0+ −→ Rm×n, � ∈N, Imp
(
jT,
(
j + 1

)
T
]

(3.36)

for each time interval (jT, (j + 1)T], for all j(≥ j0) ∈ Z0+ and some given arbitrary finite j0 ∈ Z0+.
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Proof. One has from (3.4) that

ΔV (t, xt) = V (t+, xt+) − V (t, xt) = xT (t+)Px(t+)−xT (t)Px(t), ∀t ∈ R0+, (3.37)

which equalizes zero at t /∈ Imp, since

q∑

i=1

∫ t+

(t−hi(t))+
xT (τ)Si(τ)x(τ)dτ =

q∑

i=1

∫ t

(t−hi(t))
xT (τ)Si(τ)x(τ)dτ, ∀t ∈ R0+, (3.38)

since the discontinuities of the state vector at t ∈ Imp are bounded. Thus, one has for any
arbitrary T ∈ R+ that

V (t+ + T) − V (t+) ≤ −
∫ t+T

t

x̂T (τ)Q(τ)x̂(τ)dτ

+
∑

ti∈Imp(t,t+T]

(
xT
(
t+i
)
Px
(
t+i
) − xT (ti)Px(ti)

)

≤ −
∫ t+T

t

x̂T (τ)Q(τ)x̂(τ)dτ

+
∑

ti∈Imp(t,t+T]

⎛

⎝xT (ti)

⎡

⎣

⎛

⎝In +
N∑

j=1

λ0j(ti)K′T0j (ti)B0j(ti)

⎞

⎠

×P
⎛

⎝In +
N∑

j=1

λ0j(ti)B0j(ti)K′0j(ti)

⎞

⎠ − P
⎤

⎦x(ti)

⎞

⎠,

∀t ∈ R0+.

(3.39)

Define

t∗ = t∗(t, T) =
{
ti ∈ Imp(t, t + T] : x(t∗)/= 0 ∧ (Imp(t∗, t + T]/= ∅ =⇒ x

(
t∗i
)
= 0,

∀ti ∈ Imp(t∗, t + T]
)} ∈ (t, t + T] ∩ R0+

(3.40)

as the last impulsive sampling instant in (t, t + T], where the state vector is nonzero. Thus,
V (t+ + T) ≤ V (t+) if

⎛

⎝xT (t∗)

⎡

⎣

⎛

⎝In +
N∑

j=1

λ0j(t∗)K′T0j (t
∗)BT0j(t

∗)

⎞

⎠

×P
⎛

⎝In +
N∑

j=1

λ0j(t∗)B0j(t∗)K′0j(t
∗)

⎞

⎠ − P
⎤

⎦x(t∗)

⎞

⎠

≤
∫ i+T

t

x̂T (τ)Q(τ)x̂(τ)dτ
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−
∑

ti∈Imp(t,t∗(t,T)]

⎛

⎝xT (ti)

⎡

⎣

⎛

⎝In +
N∑

j=1

λ0j(ti)BT0j(ti)

⎞

⎠

×P
⎛

⎝In +
N∑

j=1

λ0j(ti)B0j(ti)K′0j(ti)

⎞

⎠ − P
⎤

⎦x(ti)

⎞

⎠

(3.41)

from (3.6). Since the interval (t, t + T) is finite, it follows that the Lyapunov functional
candidate is bounded on the interval, provided that it is bounded at a single point. The result
follows by applying the above upper-bounding constraint recursively for t = jT, for all j ≥
j0 and appropriate choice of the impulsive sequence Imp(jT, (j + 1)T] since the state vector
cannot be identically zero on (jT, (j + 1)T] for∞ > T ≥ T(≥ supt∈R0+

h(t)) except for the trivial
state-trajectory solution.

Remark 3.11. Corollary 3.10 may be directly reformulated under weaker (but easier to deal
with) conditions by using

V̇ (t, xt) ≤ x̂T (t)Q(t)x̂(t) = −x̂T (t)(Qd(t) +Qod(t))x̂(t)

≤ −
(
λmin(Qd(t)) −

√
λmax

(
QT

0d(t)Q0d(t)
))‖x̂(t)‖22,

(3.42)

ΔV (t, xt): = V (t+, xt+) − V (t, xt)

= xT (t)

⎡

⎣

⎛

⎝
N∑

j=1

λ0j(t)K
′T
0j (t)B

T
0j(t)

⎞

⎠P

⎛

⎝
N∑

j=1

λ0j(t)B0j(t)K′0j(t)

⎞

⎠

+2

⎛

⎝
N∑

j=1

λ0j(t)K
′T
0j (t)B

T
0j(t)

⎞

⎠P

⎤

⎦x(t).

(3.43)

4. Examples

4.1. Example for Scalar Systems

ẋ(t) = ax(t) + a0(t)x(t − h) +
∑

tk∈Imp(0,t)K(tk)x(tk)δ(t − tk) for some constant delay h ≥ 0. Its
solution satisfies for Tk = tk+1 − tk, for all θ ∈ [0, Tk]withU(t) being the unit step (Heaviside)
function,

x
(
t+k + θ

)
= eaθ

[
x
(
t+k
)
+
∫θ

0
e−aτa0(tk + τ)x(tk + τ − h)dτ +K(tk+1)U(θ − Tk)x(tk+1)

]

×
(

sup
τ∈[tk−h,max(tk+1−h,tk)]

|x(τ)|
)
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≤ |1 +K(tk+1)U(θ − Tk)|
∣∣∣∣∣e

aθ

(
x
(
t+k
)
+
∫θ

0
e−aτa0(tk + τ)x(tk + τ − h)dτ

)∣∣∣∣∣,

∀θ ∈ [0, Tk]

=⇒ sup
θ∈[tk ,tk+1]

|x(τ)| ≤ max
θ∈[0,Tk]

|1 +K(tk+1)U(θ − Tk)|

max
θ∈[0,Tk]

∣∣∣∣∣

(
eaθ
∣∣x
(
t+k
)∣∣ +

∣∣∣∣∣
eaθ − 1
a

∣∣∣∣∣

× max
τ∈[0,Tk]

|a0(tk + τ)|
(

sup
τ∈[tk−h,max(tk+1−h,tk)]

|x(τ)|
))∣∣∣∣∣, ∀θ ∈ [0, Tk]

=⇒ sup
τ∈[tk ,tk+1]

|x(τ)| ≤ max
(
1, max

θ∈[0,Tk]
|1 +K(tk+1)U(θ − Tk)|

× max
θ∈[0,Tk]

(
eaθ
∣∣x
(
t+k
)∣∣ +

∣∣∣∣∣
eaθ − 1
a

∣∣∣∣∣ max
τ∈[0,Tk]

|a0(tk + τ)|
))

×max

((
sup

τ∈[tk−h,tk+1−h]
|x(τ)|

)
, sup
τ∈[tk+1−h,tk]

|x(τ)|U(tk − tk+1 − h)
)
.

(4.1)

Note that

|x(tk+1)| ≤ C(tk+1)
(

sup

τ ∈ [tk − h,max(tk+1 − h, tk)]

)
|x(τ)|,

∣∣x
(
t+k+1
)∣∣ ≤ C(t+k+1

)
(

sup

τ ∈ [tk − h,max(tk+1 − h, tk)]

)
|x(τ)|,

(4.2)

with

C
(
t+k+1
)
= |1 +K(tk+1)|C(tk+1), C(tk+1) =

(
eaTk +

∣∣∣∣∣
eaTk − 1

a

∣∣∣∣∣ max
τ∈[0,Tk]

|a0(tk + τ)|
)
, (4.3)

and also

|x(tk+1 + θ)| ≤ Cθ(tk+1)

(
sup

τ∈[tk−h,max(tk+1−h,tk)]
|x(τ)|

)
,

∣∣x
(
t+k+1 + θ

)∣∣ ≤ Cθ

(
t+k+1
)
(

sup
τ∈[tk−h,max(tk+1−h,tk)]

|x(τ)|
)
,

(4.4)
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for all θ ∈[0, Tk+1 ], so that

|x(tk+1 + θ)| ≤ max
i∈p

(Cθ(tk+i))

⎛

⎝ sup
τ∈[tk−h,max(tk+

∑p

i=1 Tk+i−h,tk)]
|x(τ)|

⎞

⎠

∣∣x
(
t+k+1 + θ

)∣∣ ≤ max
i∈p
(
Cθ

(
t+k+i
))
⎛

⎝ sup
τ∈[tk−h,max(tk+

∑p

i=1 Tk+i−h,tk)]
|x(τ)|

⎞

⎠

(4.5)

for all θ ∈ [0,
∑p

i=1 Tk+i] and any finite p ∈ Z+. Thus, there exist Ωθ(tk+1 − h, tk) ∈
[1,∞) ∩ R+, which might be computed with direct simple calculations via (4.3), which
equalizes maxi∈pk+1(Cθ(t+k+i)) with pk+1 being a positive integer accounting for a subsequence
of consecutive impulsive time instants {tk+i : i ∈ pk+1}. Thus, it follows from (4.5) that

max

((
sup

τ∈[tk−h,tk+1−h]
|x(τ)|

)
, sup
τ∈[tk+1−h,tk]

|x(τ)|U(tk − tk+1 − h)
)

≤ Ωθ(tk+1 − h, tk) sup
τ∈[tk−h,tk+1−h]

|x(τ)|.
(4.6)

It follows directly from (4.6) into (4.1) and complete induction that if

max
θ∈[0,tk+1−tk]

|1 +K(tk+1)U(θ − Tk)| max
θ∈[0,tk+1−tk]eaθ

+

∣∣∣∣∣
eaθ − 1
a

∣∣∣∣∣ max
τ∈[0,tk+1−tk]

|a0(tk + τ)|Ωθ(tk+1 − h, tk) ≤ 1,

(4.7)

for all tk ∈ Imp(t0,∞) for some finite t0 ∈ R0+ then the system is globally uniformly stable
for any admissible function of initial conditions ϕ ∈ BPC(0)([−h, 0],R) with

sup
t∈R0+

|x(t)| ≤ sup
t∈[−h,t0],

|x(t)| ≤ Kx <∞, (4.8)

with x(t) = ϕ(t), for all t ∈ [−h, 0]. If the inequality in (4.7) is strict, then the system is globally
asymptotically stable for any ϕ ∈ BPC(0)([−h, 0],R).

Note that if, furthermore, tk+1 > tk + h, for all tk, tk+1 ∈ Imp, then Ωθ(tk+1 − h, tk) =
1, for all tk, tk+1 ∈ Imp so that (4.7) holds if the subsequent constraints hold for some real
constant γ ∈ (0, 1] ∩ R0+ as follow:

max
θ∈[0,tk+1−tk]

eaθ +

∣∣∣∣∣
eaθ − 1
a

∣∣∣∣∣ max
τ∈[0,tk+1−tk]

|a0(tk + τ)| ≤ γ,

max
θ∈[0,tk+1−tk]

|1 +K(tk+1)U(θ − Tk)| ≤ γ−1,
(4.9)
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which may be fulfiled without requiring neither a ≤ 0 (global stability of the auxiliary system
with no delayed dynamics) nor a + |a0(t)| ≤ 0 (global stability independent of the delay size)
by using appropriate impulses of appropriate signs so that the above inequalities hold. A
similar consideration applies for global asymptotic stability one of the inequalities in (4.9)
being well posed and strict without requiring neither a < 0 (global asymptotic stability of the
auxiliary system with no delayed dynamics) nor a + |a0(t)| < 0 (global asymptotic stability
independent of the delay size). Note also that these above results are particular results of
Theorem 3.1 for a scalar system (2.1)-(2.4) with a single parameterization with the non-
impulsive controller being identically zero and the control parameter b being unity. If the
scalar dynamic system is of polytopic type 3d by

ẋ(t) =
N∑

j=1

λ0j(t)

⎛

⎝a0j(t)x(t) +
∑

tk∈Imp(0,t)

K0j(tk)x(tk)δ(t − tk)
⎞

⎠

+
q∑

i=1

N∑

j=1

λij(t)aij(t)x(t − hi(t))

= ax(t) +
N∑

j=1

∑

tk∈Imp(0,t)

λ0j(tk)K0j(tk)x(tk)δ(t − tk)

+
q∑

i=0

N∑

j=1

λij(t)aij(t)x(t − hi(t)),

(4.10)

provided that
∑N

j=1 λ0j(t) = 1, λ0j(t) ∈ R0+, a0j(t) = a0j(t) − a, aij(t) = aij(t), for all i ∈
q, for all j ∈N, for all t ∈ R0+ and any arbitrary constant a ∈ R so that,

x
(
t+k + θ

)
= eaθ

⎡

⎣x
(
t+k
)
+
∫θ

0

q∑

i=0

N∑

j=1

λij(tk + τ)e−aτaij(tk + τ)x(tk + τ − hi(τ))dτ

+
N∑

j=1

λ0j(tk+1)K0j(tk+1)U(θ − Tk)x(tk+1)
⎤

⎦, ∀θ ∈ [0, Tk].

(4.11)

Thus, the first inequality of (4.1) becomes,

sup
θ∈[tk ,tk+1]

|x(τ)| ≤ max
θ∈[0,Tk]

∣∣∣∣∣∣
1 +

N∑

j=1

λ0j(tk+1)K0j(tk+1)U(θ − Tk)
∣∣∣∣∣∣

× max
θ∈[0,Tk]

∣∣∣∣∣∣

⎛

⎝eaθ
∣∣x
(
t+k
)∣∣ +

∣∣∣∣∣
eaθ − 1
a

∣∣∣∣∣ max
τ∈[0,Tk]

∣∣∣∣∣∣

q∑

i=0

N∑

j=1

λij(tk + τ)aij(tk + τ)

∣∣∣∣∣∣

×

⎛
⎜⎝ sup

τ∈
[
tk−h(t),max

(
tk+1−h(t),tk

)]
|x(τ)|

⎞
⎟⎠

⎞
⎟⎠

∣∣∣∣∣∣∣
,

(4.12)
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for all θ ∈ [0, Tk], where h(t) = maxi∈q sup(hi(t)). Thus, (4.7) is modified as follows:

max
θ∈[0,tk+1−tk]

∣∣∣∣∣∣
1 +

N∑

j=1

λ0j(tk+1)K0j(tk+1)U(θ − Tk)
∣∣∣∣∣∣

× max
θ∈[0,tk+1−tk]eaθ

+

∣∣∣∣∣
eaθ − 1
a

∣∣∣∣∣ max
τ∈[0,tk+1−tk]

∣∣∣∣∣∣

q∑

i=0

N∑

j=1

λij(tk + τ)aij(tk + τ)

∣∣∣∣∣∣

×Ωθ(tk+1 − h, tk) ≤ 1,

(4.13)

which guarantees global stability from Theorem 3.1 and if the above inequality is strict, then
global asymptotic stability is guaranteed.

Example 4.1. This example refers to the stability of the impulsive closed-loop system
(2.8), subject to (2.7) and (2.9), by application of Corollary 3.10 to Theorems 3.4-3.5 and
Remark 3.11. Assume that the non impulsive controller gains Kij(t)are identically zero for
all time so that A∗ij(t) = Aij(t), for all i ∈ q ∪ {0}, for all j ∈ N and (3.7)–(3.12) are stated
for this particular case. Then, the system is controlled by the impulsive controller gains
which are nonzero only at set of zero measure defined by all the sequence of impulsive time
instants. Note from Remark 3.11 that ΔV (t, xt) = 0 if t /∈ Imp. Note also that if there only one
Imp � ti ∈ (t, t + T] at which x(ti) /= 0 so that for the controller gain choice K′0j(ti) = ν0(ti)In
then

V (t+ + T, xt+) − V (t, xt)

≤ −
∫ t+T

t+

(
λmin(Qd(τ)) −

√
λmax

(
QT

0d(τ)Q0d(τ)
))‖x̂(τ)‖22dτ

+

⎡

⎣λmin

⎛

⎝

⎛

⎝
N∑

j=1

λ0j(ti)K
′T
0j (ti)B

T
0j(ti)

⎞

⎠P

⎛

⎝
N∑

j=1

λ0j(ti)B0j(ti)K′0j(ti)

⎞

⎠

⎞

⎠

−2
∥∥∥∥∥∥

⎛

⎝
N∑

j=1

λ0j(ti)K
′T
0j (ti)B

T
0j(ti)

⎞

⎠P

∥∥∥∥∥∥
2

⎤

⎦‖x(ti)‖22

≤ −
∫ t+T

t+

(
−
√
λmax

(
QT

0d(τ)Q0d(τ)
)
λmin(Qd(τ))

)
‖x̂(τ)‖22dτ

+

⎡

⎣λmin

⎛

⎝

⎛

⎝
N∑

j=1

λ0j(ti)BT0j(ti)

⎞

⎠P

⎛

⎝
N∑

j=1

λ0j(ti)B0j(ti)

⎞

⎠

⎞

⎠ν0(ti)

−2
∥∥∥∥∥∥

⎛

⎝
N∑

j=1

λ0j(ti)BT0j(ti)

⎞

⎠P

∥∥∥∥∥∥
2

⎤

⎦ν0(ti)‖x(ti)‖22 ≤ 0

(4.14)
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if

ν0(ti) ∈
[
0,
b(ti) +

√
b2(ti) + 4a(ti)c(ti)
2a(ti)

]
, λmin(Qd(t)) ≥

√
λmax

(
QT

0d(t)Q0d(t)
)
, ∀t ∈ R0+,

(4.15)

where

a(ti) := λmin

⎛

⎝

⎛

⎝
N∑

j=1

λ0j(ti)BT0j(ti)

⎞

⎠P

⎛

⎝
N∑

j=1

λ0j(ti)B0j(ti)

⎞

⎠

⎞

⎠‖x(ti)‖22,

b(ti) := 2

∥∥∥∥∥∥

⎛

⎝
N∑

j=1

λ0j(ti)BT0j(ti)

⎞

⎠P

∥∥∥∥∥∥
2

‖x(ti)‖22,

c(ti) :=
∫ t+T

t+

(
λmin(Qd(τ)) −

√
λmax

(
QT

0d(τ)Q0d(τ)
))‖x̂(τ)‖22dτ,

(4.16)

which can always be fulfilled with ν0i(ti) = 0 (i.e., zero impulsive controller of the given class
of impulsive controllers) since the right-hand equation (4.16) holds, which is a condition of
global stability of the impulse-free system. If (4.16) is replaced with

ν0(ti) ∈
(
0,
b(ti) +

√
b2(ti) − 4a(ti)c(ti)
2a(ti)

)
, λmin(Qd(t)) >

√
λmax

(
QT

0d(t)Q0d(t)
)
,

∀t ∈ R0+,

(4.17)

then global asymptotic stability is guaranteed. However, assume that λmin(Qd(t)) <√
λmax(QT

0d(t)Q0d(t))⇒ c(ti) ≤ 0 (except possibly on a set of zeromeasure) implying c(ti) ≤ 0.
Then, global stability is not guaranteedwithout impulsive controls since the candidate is not a
Lyapunov functional. However, the choice ν0(ti) ∈ [0, (b(ti) +

√
(b2(ti) − 4a(ti)|c(ti)| )/2a(ti)]

and a sufficiently small T(t) ∈ R+ containing each impulsive time instant ensuring that

|c(ti)| ≤ T(t) max
τ∈[t,t+T(t)]

∣∣∣∣
(
λmin(Qd(τ)) −

√
λmax

(
QT

0d(τ)Q0d(τ)
)‖x̂(τ)‖22

)∣∣∣∣ ≤
b2(ti)
4a(ti)

(4.18)

also guarantees global stability even although the impulsive-free system is not stable.
If ν0(ti) ∈ (0, (b(ti) +

√
(b2(ti) − 4a(ti)|c(ti)|)/2a(ti)) then global asymptotic stability is

guaranteed provided that λmin(Qd(t)) >
√
λmax(QT

0d(t)Q0d(t)) ⇒ (c(ti) > 0) on a connected
subset of R0+ of infinite measure in order to guarantee the global asymptotic convergence
to zero of the state-trajectory solution. That means that asymptotic stability is guaranteed
under the last conditions for finite time intervals but, after some finite time, the conditions
(4.17) are fulfilled. Note that it has not been assumed that the polytope of vertices A∗ij(t) =

Aij(t), for all i ∈ q ∪ {0}, for all j ∈ N is a stability matrix at any time. The example is



Mathematical Problems in Engineering 29

very easily extendable to the case of simultaneous control under a standard control and an
impulsive one so that A∗ij(t) = Aij(t) + BijKij , for all i ∈ q ∪ {0}, for all j ∈N.

Example 4.2. An automatic steering device was designed by Minorsky for the battleship New
Mexico in 1962, [32]. There is a direction indicating instrument tracking the current direction
of motion and there is also an instrument defining the suitable reference motion. Another
problem solved byMinorsky for ships is that of the stabilization of the rolling by the activated
tanks method in which ballast water is pumped from a position to another one by means of a
propeller pump controlled by electronic instrumentation. The second-order delayed resulting
dynamics for rolling control of the ship has the following standard form:

ÿ(t) + αẏ(t) + βẏ(t − h) +ω2
0y(t) = u0(t), (4.19)

where the various parameters are positive, where the last left-hand side term is related to
stiffness, α is the standard dumping coefficient excluding delay effects, and β is the dumping
coefficient produced by pumping which has a delay when the dump becomes overworked
(in not overworked normal operation points, the delay h = 0 and the dumping coefficient is
α + β). If the open-loop control action is modified using feedback to improve the original
dynamics as follows:

u0(t) −→ u(t) = u0(t) + kαẏ(t) + kβẏ(t − h) + kωy(t) (4.20)

then, the resulting closed-loop differential equation becomes,

ÿ(t) + (α − kα)ẏ(t) +
(
β − kβ

)
ẏ(t − h) +

(
ω2

0 − kω
)
y(t) = u0(t), (4.21)

which can be also described in the state-space form (1) through two first-order differential
equations by the state variables x1(t) = y(t), x2(t) = ẏ(t) as

[
ẋ1(t)
ẋ2(t)

]
=
[

0 1
kω −ω2

0 kα − α
][
x1(t)
x2(t)

]
+
[
0 0
0 kβ − β

][
x1(t − h)
x2(t − h)

]
+
[
0
1

]
u0(t). (4.22)

The above system is positive if and only if kω ≥ ω2
0 and kβ ≥ β irrespective of the value of

(kα−α) sinceA0 :=
[

0 1
kω−ω2

0 kα−α
]
(the system delay-free matrix) is a Metzler matrix, the control

vector b > 0 and the delayed matrix of dynamics A1 :=
[
0 0
0 kβ−β

]
> 0. A complete discussion

about positivity is found in [32]. The fundamental matrix of the above system is

Ψ(t, 0) = eA0t

(
I +
∫ t−h

0
e−A0τA1Ψ(τ − h, 0)U(t − h)dτ

)
, (4.23)

where U(t) = 1(t) is the unit step (Heaviside) function. In Minorsky’s problem u0(t) ≡
a sinω twhich is not a positive control for all time. Now, consider the stability problem rather
than the positivity one under a polytopic parameterization numbered by “1” and “2” one
being stable while the other being unstable. Consider the case where switches occur between
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both vertices of the polytope. The polytopemodel is adopted to deal wit the uncertainty in the
parameter (kω −ω2

0)which is known to be close zero, but its sign is unknown if, for instance,
it is slightly time varying around zero.

(1)Assume that the uncontrolled parameterization 1 is stable independent of the delay
under the following constraints:

kω1 < ω
2
01, kα1 < α1, ‖A11‖2 <

1
2

∣∣∣λmax

(
A01 +AT

01

)∣∣∣, (4.24)

where A01 =
[

0 1
kω1−ω2

01 kα1−α1
]
, A11 =

[
0 0
0 kβ1−β1

]
. The two first constraints ensure that A01

is a stability matrix while the third one ensures stability independent of the delay of
the uncontrolled system or under any control guaranteeing that the modified closed-loop
matrices Ai1 (i = 1, 2) satisfiy similar stability constraints.

(2) Assume that the uncontrolled parameterization 2 is unstable under the following
constraints:

kω2 > ω
2
02, kα2 < α2, ‖A12‖2 <

1
2

∣∣∣λmax

(
A02 +AT

02

)∣∣∣, (4.25)

where A02 =
[

0 1
kω2−ω2

02 kα2−α2
]
, A12 =

[
0 0
0 kβ2−β2

]
. The two first constraints ensure that A01

is a stability matrix while the third one ensures stability independent of the delay of
the uncontrolled system or under any control guaranteeing that the modified closed-loop
matrices Ai1 (i = 1, 2) satisfy similar stability constraints. There are several possibilities to
stabilize the system by choosing to generate impulsive controls at certain switching time
instants in between parameterizations. Two of them are the following.

(1) Stabilizing Law 1 via Impulse-Free Switching between Parameterizations with
Minimum Residence Time at the Stable Parameterization 1

Choose u0 ≡ 0. Let Imp≡ Ξ := {ti ∈ R0+}i∈Z0+ be the sequence of switching time instants in-
between the parameterizations 1 and 2 and vice-versa. Prefix a designer’s choice of indexing
index integer î ∈ Z0+ whichmight be sufficiently large but finite. Thus, for anyZ0+ � i(even) ≥
î the active 2-parameterization is unstable on [ti, ti+1)with switching to parameterization 1 at
t = ti+1. Proceed as follows. Choose ti+2 > ti+1 with sufficiently large residence time interval
Ti+1 := ti+2−ti at the active stable parameterization 1 so that the subsequent stability constraint
holds

‖Ψ(ti+2, ti+1)‖2‖Ψ(ti+1, ti)‖2 ≤ σ(ti+2, ti+1) ≤ 1, (4.26)

with the prefixed real sequence Θ := {σ(ti+2, ti+1) ≤ 1}i(≥î)∈Z0+
for any ti+1 > ti. The above

switching law between parameterizations generates a stable polytopic system with switches
at the polytope vertices. This simple law has to direct immediate extensions. (a) The use of
an impulsive-free stabilizing control law which makes the parameterization 1 stable with a
greater stability degree that its associate open-loop counterpart. (b) To guarantee the stability
constraint by considering strips including some finite number of consecutive switches in-
between parameterizations 1-2 by guaranteeing a sufficiently large residence time at the
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current stable active parameterization 1. Note that if the sequence Θ has infinitely many
members strictly less than one, the global exponential stability of the polytopic system with
switches in between vertices is guaranteed.

(2) Stability Might Be Achieved with Impulsive Controls at Switching Time Instants for a
Switching Sequence Ξ Indexed for Z0+ � i(Even) ≥ î as Above

Proceed as follows. (1) Choose ti+2 ∈ Ξ at time instants such that x1(ti+2)/= 0 for each
triple of switching time instants which does not respect the stability constraint (i.e., if
‖Ψ(ti+2, ti+1)‖2‖Ψ(ti+1, ti)‖2 > 1). (2)Define a sequence of real numbers {ε(ti+2)}i(≥î)∈Z0+

defined
by ε(ti+2) := |ε(ti+2)| sgnx1(ti+2) if x2(ti+2)/= 0 and ε(ti+2) = 0 if x2(ti+2) = 0 such that ε(ti) is
zero if and only if x2(ti+2) = 0. (3) Generate an impulsive control u0(ti+2) = K(ti+2)δ(t − ti+2)
with controller sequence {K(ti+2)}i(≥î)∈Z0+

defined as

K(ti+2) =

⎧
⎪⎨

⎪⎩

ε(ti+2) sgnx1(ti+2) − x2(ti+2)
x2(ti+2)

, if x2(ti+2)/= 0,

−1 if x2(ti+2) = 0,

x1
(
t+i+2
)
= x1(ti+2), x2

(
t+i+2
)
= (1 +K(ti+2))x2(ti+2) = ε(ti+2).

(4.27)

Now, note by taking into account from the companion form of the state-space realization that
x2(t) = ẋ1(t), kω2 > ω2

02, and kα2 < α2, it follows for δ > 0 from the mean value theorem for
integrals of continuous integrands that,

ẋ1
(
t+i+2
)
=

⎧
⎨

⎩
x2
(
t+i+2
)
= (1 +K(ti+2))x2(ti+2) = ε(ti+2) := |ε(ti+2)| sgnx1(ti+2) if x2(ti+2)/= 0,

x2
(
t+i+2
)
= 0 if x2(ti+2) = 0

(4.28)

Since x2(t) is Lipschitz-continuous, then for any given ε0 ∈ R+, it exists δ∗ = δ∗(ti+2, ε0) ∈
R+ being a monotone increasing function of the argument σ such that using the mean
value theorem for integrals of continuous bounded integrands, one has for all σ ∈ [0, σ∗);
for all σ∗ ∈ R+ as follow:

ẋ1(ti+2+σ)=x2
(
t+i+2+σ

) ∈ (ε(ti+2)−ε0, ε(ti+2)+ε0) =⇒ |x2(ti+2+σ)|≤ |ε(ti+2)|+ε0,

x1(ti+2 + σ)=x1(ti+2)+
∫ ti+2+σ

ti+2

ẋ1(τ)dτ =x1(ti+2)+σx2(ζ) =⇒ |x1(ti+2+σ)|

≤(1−σ)(|ε(ti+2)|+ε0),

(4.29)

for some R+ � ζ ∈ (ti+2, ti+2 + δ). Thus, for sufficiently small |ε(ti+2)| and ε0, one has

‖x(ti+2 + σ)‖2 ≤
√
1 + (1 − σ)2(|ε(ti+2)| + ε0), (4.30)

so that there is a close time instant t = ti+2 + σ to ti+2 (for a sufficiently small σ ∈ R+) such
that ‖x(ti+2 + σ)‖2 is arbitrarily small by choosing a sufficiently small |ε(ti+2)| in the sequence
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and a sufficiently small ε0. Thus stabilization is achievable via impulsive controls proceeding
in this way at the unstable parameterization when necessary through the above technique.
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