
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 653215, 7 pages
doi:10.1155/2010/653215

Research Article
The Well-Posedness of the Dirichlet Problem in
the Cylindric Domain for the Multidimensional
Wave Equation

Serik A. Aldashev

Aktobe State University, AGU, Br. Zhubanov Str 263, Aktobe 030000, Kazakhstan

Correspondence should be addressed to Serik A. Aldashev, aldashevg@yahoo.com

Received 26 October 2009; Accepted 29 April 2010

Academic Editor: Carlo Cattani

Copyright q 2010 Serik A. Aldashev. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

In the theory of hyperbolic PDEs, the boundary-value problems with conditions on the entire
boundary of the domain serve typically as the examples of the ill-posedness. The paper shows
the unique solvability of the Dirichlet problem in the cylindric domain for the multidimensional
wave equation. We also establish the criterion for the unique solvability of the equation.

One of the fundamental problems of mathematical physics—the analysis of the behavior of
the vibrating string—has been shown to be ill-posed when the boundary-value conditions
are defined on the entire boundary ([1]). Furthermore, this problem (known as Dirichlet
problem) has been shown to be ill-posed not only for the wave equation but for hyperbolic
PDEs more generally (see [2, 3]). Some progress was done in [4]which showed that for some
rectangles the solution of this problem existed under sufficient differentiability conditions.
Further analyses of this problem reverted to functional analysis methods (see, e.g., [5]),
which has the serious shortcoming of making the applications of such results in physics and
engineering highly difficult. Moreover, most studies have concentrated so far on the 2D wave
equation.

This paper studies the Dirichlet problem, using the classical methods, in the cylindric
domain for the multidimensional wave equation. We show that the problem is well-posed.
We also establish the criterion for the unique solvability of the problem.

Let Ωα be the cylindric domain of the Euclidean space Em+1 of points (x1, . . . , xm, t),
bounded by the cylinder Γ = {(x, t) : |x| = 1}, the planes t = α > 0 and t = 0, where |x| is the
length of the vector x = (x1, . . . , xm).
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Let us denote, respectively, with Γα, Sα, and S0 the parts of these surfaces that form the
boundary ∂Ωα of the domain Ωα.

We study, in the domain Ωα, the multidimensional wave equation

Δxu − utt = 0, (1)

where Δx is the Laplace operator on the variables x1, . . . , xm, m ≥ 2.
Hereafter, it is useful to move from the Cartesian coordinates x1, . . . , xm, t to the

spherical ones r, θ1, . . . , θm, t, r ≥ 0, 0 ≤ θ1 < 2π, 0 ≤ θi ≤ π, i = 2, 3, . . . , m − 1.

Problem 1 (Dirichlet). Find the solution of (1) in the domain Ωα, in the class C(Ωα) ∩ C2(Ωα),
that satisfies the following boundary-value conditions:

u|Sα = ϕ(r, θ), u|Γα = ψ(t, θ), u|S0
= τ(r, θ). (2)

Let {Yk
n,m(θ)} be a system of linearly independent spherical functions of order n, 1 ≤

k ≤ kn, (m − 2)!n!kn = (n +m − 3)!(2n +m − 2), and letWl
2(S0), l = 0, 1, . . . be Sobolev spaces.

The following lemmata hold ([6]).

Lemma 1. Let f(r, θ) ∈Wl
2(S0). If l ≥ m − 1, then the series

f(r, θ) =
∞∑

n=0

kn∑

k=1

fkn (r)Y
k
n,m(θ), (3)

as well as the series obtained through its differentiation of order p ≤ l−m+ 1, converge absolutely and
uniformly.

Lemma 2. For f(r, θ) ∈ Wl
2(S0), it is necessary and sufficient that the coefficients of the series (3)

satisfy the inequalities

∣∣∣f1
0 (r)

∣∣∣ ≤ c1,
∞∑

n=0

kn∑

k=1

n2l
∣∣∣fkn (r)

∣∣∣
2 ≤ c2, c1, c2 = const. (4)

Let’s denote as ϕkn(r), ψ
k
n(t), and τ

k
n(r) the coefficients of the series (3), respectively, of

the functions ϕ(r, θ), ψ(t, θ), and τ(r, θ).

Theorem 3. If ϕ(r, θ) ∈Wl
2(Sα), ψ(t, θ) ∈Wl

2(Γα), τ(r, θ) ∈Wl
2(S0), l > 3m/2, and

sinμsα/= 0, s = 1, 2, . . . , (5)

then Problem 1 is uniquely solvable, where μs are the positive nulls of the Bessel function of first type
Jn+(m−2)/2(z).

Theorem 4. The solution of Problem 1 is unique if and only if condition (5) is satisfied.
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Proof of Theorem 3. In the spherical coordinates, (1) takes the form

urr +
m − 1
r

ur − 1
r2
δu − utt = 0,

δ ≡ −
m−1∑

j=1

1

gjsinm−j−1θj

∂

∂θj

(
sinm−j−1θj

∂

∂θj

)
, g1 = 1, gj =

(
sin θ1 · · · sin θj−1

)2
, j > 1.

(6)

It is known (see [6]) that the spectrum of the operator δ consists of eigenvalues λn =
n(n + m − 2), n = 0, 1, . . . , to each of which correspond kn orthonormalized eigenfunctions
Yk
n,m(θ).

Given that solution of the problem that we are looking for belongs to the class C(Ωα)∩
C2(Ωα), we can look for it in the form of the series

u(r, θ, t) =
∞∑

n=0

kn∑

k=1

ukn(r, t)Y
k
n,m(θ), (7)

where ukn(r, t) are the functions to be determined.
Substituting (7) into (6) and using the orthogonality of the spherical functions Yk

n,m(θ)
([6]), we get

uknrr +
m − 1
r

uknr − ukntt −
λn
r2
ukn = 0, k = 1, kn, n = 0, 1, . . . , (8)

and given this, the boundary-value conditions (2), taking into account Lemma 1, will take
the form

ukn(r, 0) = τ
k
n(r), ukn(r, α) = ϕ

k
n(r), ukn(1, t) = ψ

k
n(t), k = 1, kn, n = 0, 1, . . . . (9)

In (8) and (9), making the substitution of variables

ϑ
k

n(r, t) = u
k
n(r, t) − ψkn(t), (10)

we get

ϑ
k

nrr +
m − 1
r

ϑ
k

nr − ϑ
k

ntt −
λn
r2
ϑ
k

n = f
k

n(r, t),

ϑ
k

n(r, 0) = τ
k
n(r), ϑ

k

n(r, α) = ϕ
k
n(r), ϑ

k

n(1, t) = 0, k = 1, kn, n = 0, 1, . . . ,

f
k

n(r, t) = ψ
k
ntt +

λn
r2
ψkn, τkn (r) = τ

k
n(r) − ψkn(0), ϕkn(r) = ϕ

k
n(r) − ψkn(α).

(11)
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Making the substitution of the variable ϑ
k

n(r, t) = r(1−m)/2ϑkn(r, t), we can reduce the
problem (11) to the following problem

Lϑkn ≡ ϑknrr − ϑkntt +
λn
r2
ϑkn = fkn (r, t),

ϑkn(r, 0) = τ̃
k
n (r), ϑkn(r, α) = ϕ̃

k
n(r), ϑkn(1, t) = 0,

λn =
(m − 1)(3 −m) − 4λn

4
, fkn (r, t) = r

(1−m)/2f
k

n(r, t),

τ̃kn (r) = r
(1−m)/2τkn (r), ϕ̃kn(r) = r

(1−m)/2ϕkn(r).

(12)

We look for the solution of the problem (12) in the form ϑkn(r, t) = ϑk1n(r, t) + ϑ
k
2n(r, t),

where ϑk1n(r, t) is the solution of the problem

Lϑk1n = fkn (r, t),

ϑk1n(r, 0) = 0, ϑk1n(r, α) = 0, ϑk1n(1, t) = 0
(13)

whereas ϑk2n(r, t) is the solution of the problem

Lϑk2n = 0,

ϑk2n(r, 0) = τ̃
k
n (r), ϑk2n(r, α) = ϕ̃

k
n(r), ϑk2n(1, t) = 0.

(14)

We analyze the solutions of the above problems, analogously to [7], in the form

ϑkn(r, t) =
∞∑

s=1

Rs(r)Ts(t); (15)

moreover, let

fkn (r, t) =
∞∑

s=1

as(t)Rs(r), τ̃kn (r) =
∞∑

s=1

bsRs(r), ϕ̃kn(r) =
∞∑

s=1

dsRs(r). (16)

Substituting (15) into (13) and taking into account (16), we get

Rsrr +
λn
r2
Rs + μRs = 0, 0 < r < 1, (17)

Rs(1) = 0, |Rs(0)| <∞, (18)

Tstt + μTs = −as(t), 0 < t < α, (19)

Ts(0) = Ts(α) = 0. (20)
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The bounded solution of the problems (17) and (18) is (see [8])

Rs(r) =
√
rJυ

(
μsr

)
, (21)

where υ = n + (m − 2)/2, μ = μ2
s.

The general solution of (19) can be represented in the form (see [8])

Ts(t) = c1s cosμst + c2s sinμst +
cosμst
μs

∫ t

0
as(ξ) sinμsξ dξ −

sinμst
μs

∫ t

0
as(ξ) cosμsξ dξ, (22)

where c1s and c2s are arbitrary constants; satisfying the condition (20), we will get

c1s = 0,

c2sμs sinμα = − cosμsα
∫α

0
as(ξ) sinμsξ dξ − sinμsα

∫α

0
as(ξ) cosμsξ dξ.

(23)

Substituting (21) into (16), we get

r−1/2fkn (r, t) =
∞∑

s=1

as(t)Jυ
(
μsr

)
, r−1/2τ̃kn (r) =

∞∑

s=1

bsJυ
(
μsr

)
,

r−1/2ϕ̃kn(r) =
∞∑

s=1

dsJυ
(
μsr

)
, 0 < r < 1.

(24)

Series (24) are the decompositions into the Fourier-Bessel series (see [9]), if

as(t) =
2

[
Jυ+1(μs)

]2

∫1

0

√
ξfkn (ξ, t)Jυ

(
μsξ

)
dξ, (25)

bs =
2

[
Jυ+1(μs)

]2

∫1

0

√
ξτ̃kn (ξ)Jυ

(
μsξ

)
dξ, ds =

2
[
Jυ+1(μs)

]2

∫1

0

√
ξϕ̃kn(ξ)Jυ

(
μsξ

)
dξ, (26)

μs, s = 1, 2, . . . are positive nulls of the Bessel functions, set in the increasing order.
From (21)–(23)we get the solution of the problem (13):

ϑk1n(r, t) =
∞∑

s=1

√
r

μs

{[∫α

0
as(ξ) cosμsξdξ − cotμsα

∫α

0
as(ξ) sinμsdξ

]
sinμst

+ cosμst
∫ t

0
as(ξ) sinμsξdξ − sinμst

∫ t

0
as(ξ) cosμsdξ

}
Jυ
(
μsr

)
,

(27)

where as(t) is determined from (25).
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Next, substituting (15) into (14) and taking into account (16), we will get

Tstt + μ2
sTs = 0, 0 < t < α, (28)

Ts(0) = bs, Ts(α) = ds. (29)

The general solution of (28) will become

Ts(t) = c′1s cosμst + c
′
2s sinμst; (30)

satisfying the condition (29), we will get

c′1s = bs,

c′2s =
ds

sinμsα
− bs cotμsα.

(31)

From (21), (30), and (31)we find the solution of the problem (14):

ϑk2n(r, t) =
∞∑

s=1

√
r

[
bs cosμst −

(
ds

sinμsα
− bscotμsα

)
sinμst

]
Jυ
(
μsr

)
, (32)

where bs and ds are found from (26).
Thus, the unique solution of Problem 1 is the function

u(r, θ, t) =
∞∑

n=0

kn∑

k=1

{
ψkn(t) + r

(1−m)/2
[
ϑk1n(r, t) + ϑ

k
2n(r, t)

]}
Yk
n,m(θ), t > 0, (33)

where ϑk1n(r, t) and ϑ
k
2n(r, t) are determined from (27) and (32).

Taking into account the formula (see [9]) J ′υ(z) = Jυ−1(z) + Jυ+1(z), the estimates (see
[6, 9])

|Jυ(z)| ≤ 1
Γ(1 + υ)

(z
2

)υ
, kn ≤ c1nm−2,

∣∣∣∣∣∣
∂q

∂θ
q

j

Yk
n,m(θ)

∣∣∣∣∣∣
≤ c2nm/2−1+q, j = 1, m − 1, q = 0, 1, . . . ,

(34)

where Γ(z) is the gamma-function, the lemmata, and the bounds on the given functions
ϕ(r, θ), ψ(t, θ), and τ(r, θ), we can show that the obtained solution (33) belongs to the class
C(Ωα) ∩ C2(Ωα).

Theorem 3 is proven.

Proof of Theorem 4. If condition (5) is satisfied, then from Theorem 3, it follows that the
solution of Problem 1 is unique.
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Now, suppose condition (5) does not hold, at least for one s = 1.
Then, if we look for the solution of the homogeneous problem, corresponding to

Problem 1, in the form (7), then we get to the problem

Lϑkn = 0,

ϑkn(r, 0) = 0, ϑkn(r, α) = 0, ϑkn(1, t) = 0, k = 1, kn, n = 0, 1, . . . ,
(35)

the solution of which is the function

ϑkn(r, t) =
√
r sinμltJn+(m−2)/2

(
μlr

)
. (36)

Therefore, the nontrivial solution of homogeneous Problem 1 is written as

u(r, θ, t) =
∞∑

n=2

kn∑

k=1

n−lr(2−m)/2 sinμltJn+(m−2)/2
(
μlr

)
Yk
n,m(θ). (37)

From estimates (34) it follows that u ∈ C(Ωα) ∩ C2(Ωα), if l > 3m/2.
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