
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 617398, 18 pages
doi:10.1155/2010/617398

Research Article
Reverse Bridge Theorem under Constraint Partition

Minghao Yin,1, 2 Tingting Zou,1, 2 and Wenxiang Gu1, 2

1 College of Computer, Northeast Normal University, Changchun 130117, China
2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,
Jilin University, Changchun 130012, China

Correspondence should be addressed to Tingting Zou, zoutt354@nenu.edu.cn

Received 6 October 2009; Revised 7 January 2010; Accepted 7 May 2010

Academic Editor: Joaquim J. Júdice

Copyright q 2010 Minghao Yin et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Reverse bridge theorem (RBTH) has been proved to be both a necessary and sufficient condition
for solving Nonlinear programming problems. In this paper, we first propose three algorithms
for finding constraint minimum points of continuous, discrete, and mixed-integer nonlinear
programming problems based on the reverse bridge theorem. Moreover, we prove that RBTH
under constraint partition is also a necessary and sufficient condition for solving nonlinear
programming problems. This property can help us to develop an algorithm using RBTH under
constraints. Specifically, the algorithm first partitions mixed-integer nonlinear programming
problems (MINLPs) by their constraints into some subproblems in similar forms, then solves
each subproblem by using RBTH directly, and finally resolves those unsatisfied global constraints
by choosing appropriate penalties. Finally, we prove the soundness and completeness of our
algorithm. Experimental results also show that our algorithm is effective and sound.

1. Introduction

Nonlinear programming problems (NLPs) play an important role in both manufacturing
systems and industrial processes and have been widely used in the fields of operations
research, planning and scheduling, optimal control, engineering designs, and production
management [1–7]. Due to its significance in both academic and engineering applications,
different kinds of approaches have been proposed to solve NLPs and obtained some
achievements. In [8], we propose a general approach, called reverse bridge theorem (RBTH),
which can significantly reduce the complexity in solving NLPs. We also prove in [8] that
RBTH is a necessary and sufficient condition for solving NLPs. Compared to other methods
such as extended saddle-point condition (ESPC) [9, 10], RBTH has two obvious advantages.
Firstly, the core inequality of RBTH is formed by only one subinequality and one subequality;
thus RBTH is easier to handle. Secondly, RBTH does not need extra conditions for solving

2 Mathematical Problems in Engineering

NLPs and therefore can be used more widely. However, in [8] we do not provide any
concrete algorithm to solve NLPs using RBTH. Consequently, in this paper, we first present
three algorithms for solving discrete nonlinear programming problems (DNLPs), continuous
nonlinear programming problems (CNLPs), and mixed-integer nonlinear programming
problems (MINLPs), respectively. After that, we prove the soundness and completeness of
these algorithms.

On the other hand, constraint partition has been proved to be an attractive approach
for solving large-scale problems in NLPs recently [11–18]. Based on the regular constraint
structure of a problem instance, we can cluster its constraints into multiple loosely coupled
partitions. Accordingly, the original problem can be partitioned by its constraints into several
subproblems, each of which is a relaxation of the problem and can be solved in exponentially
less time than the original problem. In Section 4 of this paper, we first prove that RBTH under
constraint partition is a necessary and sufficient condition for solving nonlinear programming
problems. Then we further prove that this necessary and sufficient condition can be rewritten
into N + 2 necessary conditions. This property can help us to develop a novel algorithm
using RBTH under constraint partition. Specifically speaking, the algorithm firstly partitions
a nonlinear programming problem into several relaxed subproblems, each of which is then
solved by using RBTH. After that the algorithm resolves the unsatisfied global constraints by
choosing appropriate penalties. Finally, we prove that this algorithm is sound and complete.

The paper is organized as follows. After this introduction, we recall some basic
notions and related work in Section 2. Then in Section 3, we introduce how to solve
nonlinear programming problems using RBTH. In Section 4, we show how to solve nonlinear
programming problems using RBTH under constraint partition. In Section 5, simulations and
comparisons based on some benchmarks are carried out, which show that our algorithm is
both effective and efficient. In the last section we conclude this paper.

2. Basic Concepts and Related Work

In this section, firstly we recall some basic concepts that will be used in this paper. For details,
we refer to [1–7].

2.1. Basic Concepts

Generally speaking, nonlinear programming problems can be divided into three categories,
that is, continuous nonlinear programming problems, discrete nonlinear programming
problems, and mixed-integer nonlinear programming problems. The general forms of these
nonlinear programming problems are as follows:

Definition 2.1 (Continuous Nonlinear Programming). A continuous nonlinear programming
problem (CNLP) is defined as

(Pc): min
x

f(x) where x = (x1, x2, . . . , xv)T ∈ Rv,

subject to h(x) = (h1(x), h2(x), . . . , hm(x))
T = 0,

g(x) =
(
g1(x), g2(x), . . . , gr(x)

)T ≤ 0,

(2.1)

Mathematical Problems in Engineering 3

where x ∈ Rv are continuous variables. The function f is assumed to be continuous and
differentiable, and the constraint functions g and h can be discontinuous, nondifferentiable,
and not in closed form.

Definition 2.2 (Discrete Nonlinear Programming). A discrete nonlinear programming prob-
lem (DNLP) is defined as

(Pd): min
y

f
(
y
)

where y =
(
y1, y2, . . . , yw

)T ∈ Rw,

subject to h
(
y
)
=
(
h1
(
y
)
, h2

(
y
)
, . . . , hm

(
y
))T = 0,

g
(
y
)
=
(
g1
(
y
)
, g2

(
y
)
, . . . , gr

(
y
))T ≤ 0,

(2.2)

where y ∈ Rw are discrete variables. The functions f , g, and h may be assumed discontinu-
ous, nondifferentiable, or not even given in closed form.

Definition 2.3 (Mixed-Integer Nonlinear Programming). A mixed-integer nonlinear program-
ming problem (MINLP) is defined as

(Pm): min
x,y

f
(
x, y

)

subject to h
(
x, y

)
=
(
h1
(
x, y

)
, h2

(
x, y

)
, . . . , hm

(
x, y

))T = 0,

g
(
x, y

)
=
(
g1
(
x, y

)
, g2

(
x, y

)
, . . . , gr

(
x, y

))T ≤ 0,

(2.3)

where x ∈ Rv are continuous variables, and y ∈ Rw are discrete variables. The function
f is bounded below and is assumed to be continuous and differentiable with respect to x,
and the constraint functions g and h are general functions that can be discontinuous, non-
differentiable, or not even given in closed form.

The aims of solving continuous, discrete, and mixed-integer nonlinear programming
problems are, respectively, to find the constrained minima with respect to neighbourhood of
a continuous point x, a discrete point y, and a mixed point (x, y).

Definition 2.4 (Constrained Minimum of CNLP). Point x∗ is a constrained minimum of Pc

(CMc), if x∗ is feasible and f(x∗) ≤ f(x) for all feasible x in the neighbourhood of x∗, that is,
x ∈ Nc(x∗) = {x′ : ‖x′ − x∗‖ ≤ ξ and ξ → 0}.

Definition 2.5 (Constrained Minimum of DNLP). Point y∗ is a constrained minimum of Pd

(CMd), if y∗ is feasible and f(y∗) ≤ f(y) for all feasible y in a neighbourhood of y∗.

Definition 2.6 (Constrained Minimum of MINLP). Point (x∗, y∗) is a constrained minimum
of Pm (CMm), if (x∗, y∗) is feasible and f(x∗, y∗) ≤ f(x, y) for all feasible (x, y) in a
neighbourhood of (x∗, y∗).

4 Mathematical Problems in Engineering

2.2. Related Work

In the following, we introduce some existing methods for solving nonlinear programming
problems.

2.2.1. Necessary Karush-Kuhn-Tucker (KKT) Condition [18, 19]

KKT is mainly designed for solving continuous nonlinear programming problems. The
penalty function of Pc is a Lagrangian function with Lagrange-multiplier vectors α =
(α1, α2, . . . , αm)

T ∈ Rm and β = (β1, β2, . . . , βr)
T ∈ Rr , which is defined as

L
(
x, α, β

)
= f(x) + αTh(x) + βTg(x). (2.4)

Theorem 2.7 (see [19]). If point x∗ is a CMc of Pc and a regular point (gradient vectors of equality
constraints and active inequality constraints are linearly independent), then there exist unique α∗ ∈
Rm and β∗ ∈ Rrsuch that

∇xL
(
x∗, α∗, β∗

)
= 0, (2.5)

where βj = 0 for all j /∈A(x∗) = {i | gi(x∗) = 0} (the set of active constraints), and βj ≥ 0 otherwise.
The unique x, α, and β that satisfy equation (2.5) can be found by solving equation (2.5) as a

system of nonlinear equations. Because KKT is just a necessary condition, there exist some points that
are not CMc. Moreover, the approach is limited to solving CNLPs with continuous and differentiable
functions.

2.2.2. Sufficient Saddle-Point (SP) Condition [6]

The concept of saddle point has been widely studied during the past decades.

Theorem 2.8 (see [6]). For continuous and differentiable constraint functions, point x∗ is CMc of
Pc if there exist unique α∗ ∈ Rm and β∗ ∈ Rr that satisfy the following saddle-point condition at x∗:

L
(
x∗, α, β

) ≤ L
(
x∗, α∗, β∗

) ≤ L
(
x, α∗, β∗

)
, (2.6)

for all x ∈ Nc(x∗) and all α ∈ Rm and β ∈ Rr .
The existing saddle-point condition is only a sufficient but not necessary condition. This means

that there exist some α∗ and β∗ that do not satisfy (2.6) for each CMc x∗ of Pc.

2.2.3. The Necessary and Sufficient Reverse Bridge Theorem (RBTH) [8]

In [8], we propose RBTH as a method for finding a constrained minimum.

Definition 2.9 (Penalty Function for CRBTH). The penalty function of Pc with penalty-
multiplier α ∈ Rm and β ∈ Rr is defined as

Lc

(
x, α, β

)
= f(x) + αT |h(x)| + βT max

(
0, g(x)

)
, (2.7)

Mathematical Problems in Engineering 5

where |h(x)| = (|h1(x)|,|h2(x)|, . . . , |hm(x)|) and max(0, g(x)) = (max(0, g1(x)),max(0, g2(x)),
. . . ,max(0, gr(x))).

Theorem 2.10 (see [8]). Point x∗ is CMc of Pc if and only if there exist finite α∗ ≥ 0 and β∗ ≥ 0
such that for any α∗∗ > α∗, β∗∗ > β∗ the following condition is satisfied:

Lc

(
x∗, α, β

)
= Lc

(
x∗, α∗∗, β∗∗

) ≤ Lc

(
x, α∗∗, β∗∗

)
(2.8)

for each x in the neighbourhood of x∗ and all α ∈ Rm and β ∈ Rr .

Definition 2.11 (Penalty Function for DRBTH). The penalty function of Pd with penalty-
multiplier α ∈ Rm and β ∈ Rr is defined as

Ld

(
x, α, β

)
= f(x) + αT |h(x)| + βT max

(
0, g(x)

)
, (2.9)

where |h(x)| = (|h1(x)|,|h2(x)|, . . . ,|hm(x)|) and max(0, g(x)) = (max(0, g1(x)),max(0, g2(x)),
. . . ,max(0, gr(x))).

Theorem 2.12 (see [8]). Point y∗ is CMd of Pd if and only if there exist finite α∗ ≥ 0 and β∗ ≥ 0
such that for any α∗∗ > α∗, β∗∗ > β∗ the following condition is satisfied:

Ld

(
y∗, α, β

)
= Ld

(
y∗, α∗∗, β∗∗

) ≤ Ld

(
y, α∗∗, β∗∗

)
, (2.10)

for each y in the neighbourhood of y∗ and all α ∈ Rm and β ∈ Rr .

Definition 2.13 (Penalty Function for MRBTH). The penalty function of Pm with penalty-
multiplier α ∈ Rm and β ∈ Rr is defined as

Lm

(
x, y, α, β

)
= f

(
x, y

)
+ αT

∣∣h
(
x, y

)∣∣ + βT max
(
0, g

(
x, y

))
, (2.11)

where |h(x, y)| = (|h1(x, y)|,|h2(x, y)|, . . . ,|hm(x, y)|) and max(0, g(x, y)) = (max(0, g1(x, y)),
max(0, g2(x, y)), . . . , max(0, gr(x, y))).

Definition 2.14 (Mixed-Neighbourhood). A mixed-neighbourhood N(x, y) in mixed space
Rv × Rw is defined as

N
(
x, y

)
=
{(

x′, y′) | ∥∥x′ − x
∥∥ ≤ ξ,

∥∥y′ − y
∥∥ ≤ ξ, ξ −→ 0,

}
. (2.12)

Theorem 2.15 (see [8]). Point (x∗, y∗) is CMm of Pm if and only if there exist finite α∗ ≥ 0 and
β∗ ≥ 0 such that for any α∗∗ > α∗, β∗∗ > β∗ the following condition is satisfied:

Lm

(
x∗, y∗, α, β

)
= Lm

(
x∗, y∗, α∗∗, β∗∗

) ≤ Lm

(
x, y, α∗∗, β∗∗

)
, (2.13)

for all (x, y) in the neighbourhood of (x∗, y∗) and all α ∈ Rm and β ∈ Rr .

6 Mathematical Problems in Engineering

Procedure RBTH CNLP (Pc, x, α, β)
α → 0, β → 0
repeat

increase αi by δ if (hi(x)/= 0 and αi < αi) for i = 1, . . . , m;
increase βj by δ if (gj(x) /≤ 0 and βj < βj) for j = 1, . . . , r;
repeat

perform descent of Lc(x, α, β) with respect to x;
until a local minimum of Lc(x, α, β) is found;

until a CMc of Pc is found or (αi > αi for all hi(x)/= 0 and βj > βj for all gj(x) /≤ 0).
return CMc if found;

end procedure

Algorithm 1: The solving procedure for finding CMc of Pc.

3. Solving NLPs Using Reverse Bridge Theorem

We have proved that RBTH is a necessary and sufficient condition for constrained local
optima under a range of penalties in [8]. However, in [8] we do not provide any concrete
algorithm to solve NLPs using RBTH. Consequently, in this paper, we first present three
algorithms for solving CNLPs, DNLPs, and MINLPs, respectively.

We first present an algorithm, called RBTH CNLP, to find the constrained minimum
of CNLPs, as is shown in Algorithm 1. According to Theorem 2.10, if x∗ is a local minimum
of a CNLP with respect to x, x∗ must be a constrained minimum of the CNLP as well.
Therefore, given an arbitrary CNLP Pc, to find its constrained minimum, we only need to
find its local minimum. According to formula (2.8), let Lc be the penalty function of Pc; a
reverse bridge point is the local minimum of Lc. Consequently, in order to find the constraint
minimum of a CNLP, we only need to find its reverse bridge point. In this way, we design
our algorithm RBTH CNLP. The key idea of the algorithm is to increase α∗∗ and β∗∗ gradually
and to minimize Lc(x, α∗∗, β∗∗) simultaneously until α∗∗ > α∗, β∗∗ > β∗.

As we can see in Algorithm 1, we first initialize the values of α∗∗ and β∗∗. Then the
algorithm is executed to find a local minimum x∗ of Lc(x, α∗∗, β∗∗) according to formula
(2.8). If point x∗ is not a feasible solution of Pc, then the algorithm increases the penalties
corresponding to the violated constraints. The process is repeated until we find that a CMc or
α∗∗ (resp., β∗∗) is larger than its maximum bound α (resp., β).

Algorithm 2 shows the algorithm RBTH DNLP to solve discrete nonlinear program-
ming problems. The idea of this algorithm is similar to algorithm RBTH CNLP. Algorithm
RBTH DNLP first initializes the values of α∗∗ and β∗∗, then gradually increases α∗∗ and β∗∗,
and minimizes Ld(y, α∗∗, β∗∗) until α∗∗ > α∗, β∗∗ > β∗.

In order to solve MINLPs using RBTH, we need to define two neighbourhoods, that
is, discrete neighbourhood and mixed neighbourhood.

Definition 3.1 (Discrete Neighbourhood). A discrete neighbourhood Nd(y) of y in discrete
space Rw is a finite set of points {y′ ∈ Rw} in such a way that y′ is reachable from y in one
step, that y′ ∈ Nd(y) ⇔ y ∈ Nd(y′), and that it is possible to reach every y′′ from any y in
one or more steps through neighbouring points.

Mathematical Problems in Engineering 7

Procedure RBTH DNLP (Pd, y, α, β)
α → 0, β → 0;
repeat

increase αi by δ if (hi(y)/= 0 and αi < αi) for i = 1, . . . , m;
increase βj by δ if (gj(y) /≤ 0 and βj < βj) for j = 1, . . . , r;
repeat

perform descent of Ld(y, α, β) with respect to y;
until a local minimum of Ld(y, α, β) is found;

until a CMd of Pd is found or (αi > αi for all hi(y)/= 0 and βj > βj for all gj(y)/≤0).
return CMd if found;

end procedure

Algorithm 2: The solving procedure for finding CMd of Pd.

Definition 3.2 (Mixed Neighbourhood). A mixed neighbourhood Nm(x, y) in mixed space
Rv × Rw is defined as

Nm

(
x, y

)
= Nc(x)|y +Nd

(
y
)|x =

{(
x′, y

) | x′ ∈ Nc(x)
}⋃{(

x, y′) | y′ ∈ Nd

(
y
)}

, (3.1)

where Nc(x) is continuous neighbourhood of variable x, and Nd(y) is discrete neighbour-
hood of variable y.

Corollary 3.3. According to Definition 3.2 and Theorem 2.15, the RBTH in formula (2.13) can be
rewritten into two following necessary conditions that, collectively, are sufficient:

Lm

(
x∗, y∗, α, β

)
= Lm

(
x∗, y∗, α∗∗, β∗∗

) ≤ Lm

(
x∗, y, α∗∗, β∗∗

)
, y ∈ Nd

(
y∗),

Lm

(
x∗, y∗, α∗∗, β∗∗

) ≤ Lm

(
x, y∗, α∗∗, β∗∗

)
, x ∈ Nc(x∗).

(3.2)

Based on the corollary, we present an algorithm RBTH MINLP, as is seen in
Algorithm 3, to find the constrained minimum of MINLPs. According to Theorem 2.15 as
we mentioned in Section 2, if the point (x∗, y∗) is a local minimum of an MINLP with respect
to (x, y), this point must also be a constrained minimum of the MINLP. This means that
given an arbitrary MINLP Pm, to find its constrained minimum, we only need to find its local
minimum. On the other hand, according to formula (2.13), let Lm be the penalty function
of Pm; a reverse bridge point is the local minimum of Lm. In this sense, in order to find a
MINLP’s constrained minimum, we only need to find the reverse bridge point.

In the procedure of RBTH MINLP, we first initialize the values of α∗∗ and β∗∗. In the
first inner loop, we focus on finding the local minimum x∗ of Lm(x, y, α, β) with respect to
the continuous neighbourhoods of x; in the second inner loop, we are devoted to looking for
the local minimum y∗ by Lm(x, y, α, β) with respect to the discrete neighbourhoods of y. If
the local minimum point (x∗, y∗) violates global constraints of Pm, we increase the penalties
of violated constraints in the outer loop. The process is repeated until we find that a CMm of
Pm or α∗∗ (resp., β∗∗) is larger than α (resp., β).

8 Mathematical Problems in Engineering

Procedure RBTH MINLP (Pm, x, y, α, β)
α → 0, β → 0;
repeat

increase αi by δ if (hi(x)/= 0 and αi < αi) for i = 1, . . . , m;
increase βj by δ if (gj(x) /≤ 0 and βj < βj) for j = 1, . . . , r;
repeat

perform descent of Lm(x, y, α, β) with respect to x for given y;
until a local minimum of Lm(x, y, α, β) with respect to x is found;
repeat

perform descent of Lm(x, y, α, β) with respect to y for given x;
until a local minimum of Lm(x, y, α, β) with respect to y is found;

until a CMm of Pm is found or (αi > αi for all hi(x)/= 0 and βj > βj for all gj(x) /≤ 0)
return CMm if found;

end procedure

Algorithm 3: The resolving procedure for finding CMm of Pm.

Obviously, the main idea of all the three algorithms RBTH CNLP, RBTH DNLP,
and RBTH MINLP is to find the reverse bridge points for CNLPs, DNLPs, and MINLPs,
respectively. According to Theorems 2.10, 2.12 and 2.15 as we mentioned in Section 2, we
know that these reverse bridge points are also constraint minima of NLPs. Because CRBTH,
DRBTH, and MRBTH are all necessary and sufficient conditions for solving CNLPs, DNLPs,
and MINLPs, respectively, as we proved in [8], the following theorem stands.

Theorem 3.4. Given a CNLP (DNLP, MINLP, resp.), if there exists a solution, the algorithm
RBTH CNLP (RBTH DNLP, RBTH MINLP, resp.) can find the solution; if algorithm RBTH CNLP
(RBTH DNLP, RBTH MINLP, resp.) finds a solution, then it must be the solution of the CNLP.

In this section, we have shown that RBTH is an effective method for solving NLPs.
However, it is difficult and expensive to solve some large-scale NLPs by RBTH because of
their huge search spaces and several constraints in different form. Thus, in the next section,
we further propose an approach to solve large-scale NLPs using RBTH under constraint
partition.

4. RBTH under Constraint Partition

In this section, we show how to solve a nonlinear programming problem using RBTH
under constraint partition. Because CNLPs and DNLPs can be regarded as special cases
of MINLPs, in this section we only focus on MINLPs. Constraint partitioning has led to a
major breakthrough in solving nonlinear programming problems in operations research and
engineering applications [11–18]. In this section, we first prove that RBTH under constraint
partition is also a necessary and sufficient condition for solving MINLPs. Then we prove
that this necessary and sufficient condition can be rewritten into several necessary conditions
by providing a partitioned neighbourhood. After that, we present an algorithm for solving
MINLPs and prove that this algorithm is sound and complete.

Mathematical Problems in Engineering 9

Table 1: Results of solving selected CNLP benchmarks from the CUTE library. All timing results are in
seconds. Here nc and nv represent the number of constraints and the number of variables, respectively.
“—” means that no feasible solutions were found in the time limit (600 seconds). “∗” means that solutions
were obtained by submitting problems through commercial version of LANCELOT but no CPU timeswere
available. Numbers in bold represent the best solutions among the three methods.

Test Problem LANCELOT SNOPT CPRBTH
ID nc nv Sol. Time Sol. Time Sol. Time
ALJAZZAF 3 1 75.00 0.46 75.00 0.01 75.00 0.05
ALLINITC 4 1 30.44 ∗ 30.49 0.01 30.49 0.10
ALSOTAME 2 1 0.082 0.57 0.08 0.01 0.08 0.09
AVION2 49 45 — — 9.47E7 0.01 9.47E7 0.10
BATCH 46 73 — — 2.59E5 0.01 2.59E5 0.11
BT11 5 3 0.825 0.62 0.82 0.01 0.82 0.07
BT12 5 3 6.188 0.47 6.19 0.01 6.19 0.07
BT6 5 2 0.277 0.56 0.28 0.01 0.28 0.07
CB2 3 3 1.952 0.60 1.95 0.01 1.95 0.07
CRESC4 6 8 — — 0.87 0.01 0.87 0.01
CSFI1 5 4 −49.07 0.63 −49.08 0.01 −49.08 0.09
DIPIGRI 7 4 680.6 0.68 680.63 0.01 680.63 0.09
DIXCHLNG 10 5 0.0 1.12 2.47E3 0.01 2.47E3 0.05
DNIEPER 61 24 1.87E4 0.83 1.87E4 0.01 1.87E4 0.13
EXPFITA 5 22 1.13E−3 0.65 0.00 0.01 0.00 0.10
GAUSSELM 14 11 −2.25 0.55 0.00 104.90 0.00 0.12
HIMMELBI 100 12 −1735.6 1.23 −1755.00 0.01 −1755.00 0.13
HIMMELP2 2 1 −62.05 0.63 −62.05 0.01 −62.05 0.05
HIMMELP6 2 5 −59.01 0.69 −59.01 0.01 −59.01 0.05
HONG 4 1 22.57 0.50 1.35 0.01 1.35 0.05
HUBFIT 2 1 0.0169 0.46 0.02 0.01 0.02 0.04
LOADBAL 31 31 0.453 0.69 0.45 0.01 0.45 0.12
MADSEN 3 6 0.616 0.55 0.62 0.01 0.62 0.03
MARATOS 2 1 −1.00 0.40 −1.00 0.01 −1.00 0.02
MATRIX2 6 2 0.00 0.52 0.00 0.01 0.00 0.01
MISTAKE 9 13 −1.00 0.58 −1.00 0.01 −1.00 0.11
MWRIGHT 5 3 24.97 0.56 24.98 0.01 24.98 0.01
ODFITS 10 6 −2380 0.50 −2380.03 0.01 −2380.03 0.03
OPTCNTRL 32 20 550.00 0.51 550.00 0.01 550.00 0.03
OPTPRLOC 30 30 −16.42 4.02 −16.42 0.01 −16.42 0.11
OPTHREGB 27 6 0.0 0.76 0.00 0.01 0.00 0.06
PENTAGON 6 15 1.509E−4 0.56 0.00 0.01 0.00 0.09

4.1. RBTH for Partitioned Subproblems

Given an arbitrary mixed-integer nonlinear programming problem Pt, we can partition its
constraints into N + 1 stages. Each stage t (t = 0, 1, . . . ,N) includes ut local variables, mt

local equality constraints, and rt local inequality constraints. Here local constraints restrict
the variables of each stage, and global constraints restrict all the variables of problems. By
applying this partition, the variable vector z ∈ Z of the problem Pt can be decomposed into
N + 1 subvectors z(0), z(1), . . . , z(N), where z(t) = (z1(t), . . . , zut(t))

T is a vector of dynamic

10 Mathematical Problems in Engineering

state variables in mixed space and stage t. In this sense, the MINLP formulation Pt is as
follows:

(Pt): min
z

J(z)

subject to h(t)(z(t)) = 0, g(t)(z(t)) ≤ 0,

H(z) = 0, G(z) ≤ 0,

(4.1)

where J is assumed to be continuous and differentiable with respect to z, h(t) = (h(t)
1 , . . . , h

(t)
mt
)
T

and g(t) = (g(t)
1 , . . . , g

(t)
rt)

T
are vectors of local-constraint functions that involve z(t) and time

in stage t, and H = (H1, . . . ,Hp)
Tand G = (G1, . . . , Gq)

T are vectors of global-constraint
functions that involve state variables and time in two or more stages.

A solution z of Pt can be regarded as the assignments of all the variables in z. The goal
of solving Pt is then to find a constraint minimum with respect to all the feasible solutions
in its mixed neighbourhood. It is clear that the partition of each stage needs to be further
decomposed into discrete and continuous parts; however, we do not consider such situation
for the purpose of simplification. In the following, we define the penalty function of Pt and
then propose the partitioned necessary and sufficient RBTH condition on CMm of Pt.

Definition 4.1 (Penalty Function). The penalty function for Pt and the corresponding penalty
function in stage t are defined as follows:

Lm

(
z, α, β, γ, η

)
= J(z) +

N∑

t=0

{
α(t)T

∣∣∣h(t)(z(t))
∣∣∣ + β(t)T max

(
0, g(t)(z(t))

)}

+ γT |H(z)| + ηT max(0, G(z)),

Γm
(
z, α(t), β(t), γ, η

)
= J(z) + α(t)T

∣∣∣h(t)(z(t))
∣∣∣ + β(t)T max

(
0, g(t)(z(t))

)

+ γT |H(z)| + ηT max(0, G(z)),

(4.2)

where α(t) = (α1(t), . . . , αmt(t))
T ∈ Rmt and β(t) = (β1(t), . . . , βrt(t))

T ∈ Rrt are the penalty
vectors for the local constraints in stage t, t = 0, 1, . . . ,N; γ = (γ1, . . . , γp) ∈ Rp and η =
(η1, . . . , ηq) ∈ Rq are the penalty vectors for the global constraints.

Theorem 4.2. Solution z∗ is a CMm of Pt with respect to its mixed neighbourhood if and only if there
exist finite α∗ ≥ 0, β∗ ≥ 0, γ∗ ≥ 0, and η∗ ≥ 0 for any α∗∗ > α∗, β∗∗ > β∗, γ∗∗ > γ∗, and η∗∗ > η∗ such
that the following RBTH condition is satisfied:

Lm

(
z∗, α, β, γ, η

)
= Lm

(
z∗, α∗∗, β∗∗, γ∗∗, η∗∗) ≤ Lm

(
z, α∗∗, β∗∗, γ∗∗, η∗∗), (4.3)

for all α ∈ RΣN
i=0 mi , β ∈ RΣN

i=0 ri , γ ∈ Rp, η ∈ Rq, and z ∈ Nm(z∗).

Proof. The proof consists of two parts.
“⇒” parts: given a constraint minimum z∗, we need to prove that there exist finite

α∗ ≥ 0, β∗ ≥ 0, γ∗ ≥ 0, and η∗ ≥ 0 to satisfy formula (4.3).

Mathematical Problems in Engineering 11

Equality Part:

z∗ is a feasible solution; so it satisfies all local constraints and global constraints. Therefore,
we obtain

Lm

(
z∗, α∗∗, β∗∗, γ∗∗, η∗∗) = J(z∗) +

N∑

t=0

{
α(t)∗∗T

∣
∣
∣h(t)(z∗(t))

∣
∣
∣ + β(t)∗∗T max

(
0, g(t)(z∗(t))

)}

+ γ∗∗T |H(z∗)| + η∗∗T max(0, G(z∗)) = J(z∗),

Lm

(
z∗, α, β, γ, η

)
= J(z∗) +

N∑

t=0

{
α(t)T

∣
∣
∣h(t)(z∗(t))

∣
∣
∣ + β(t)T max

(
0, g(t)(z∗(t))

)}

+ γT |H(z∗)| + ηT max(0, G(z∗)) = J(z∗).

(4.4)

So, Lm(z∗, α, β, γ, η) = Lm(z∗, α∗∗, β∗∗, γ∗∗, η∗∗).

Inequality Part:

It is as follows.
(1) z∗ is the unique minimum of J(·). For any z, |H(z)| ≥ 0, max(0, G(z)) ≥ 0,

|h(t)(z(t))| ≥ 0, and max(0, g(t)(z(t))) ≥ 0. Therefore the following equation is right regardless
of the choice of the penalties:

Lm

(
z, α∗∗, β∗∗, γ∗∗, η∗∗) ≥ J(z) ≥ J(z∗) = Lm

(
z∗, α∗∗, β∗∗, γ∗∗, η∗∗). (4.5)

(2) z∗ is not the unique minimum of J(·) or is not a minimum of J(·). Assume that
there exists some z′, which satisfies J(z′) ≤ J(z∗).

(i) J(z′) = J(z∗), H(z′) = 0, G(z′) ≤ 0, h(t)(z′(t)) = 0, and g(t)(z′(t)) ≤ 0. This means
that z′ is another CMm of Pt. Therefore, regardless of the choice of penalties, the
inequality of formula (4.3) is satisfied.

(ii) J(z′) = J(z∗), and z′ violates some constraints. We suppose that it violates a global
equality constraint function Hi(·) (the case with a global inequality constraint or a
local constraint is similar), and thus γ∗ ≥ 0 is enough.

(iii) J(z′) ≤ J(z∗), and z′ is a feasible solution. This is impossible because z∗ is not CMm
of Pt in this situation.

(iv) J(z′) ≤ J(z∗), and z′ violates some constraints. We suppose that it violates a global
equality constraint function Hi(·) (the case with a global inequality constraint
or a local constraint is similar), so |Hi(z′)|/= 0. Therefore, let γ∗ = (J(z∗) −
J(z′))/|Hi(z′)|. Then we have Lm(z∗, α∗∗, β∗∗, γ∗∗, η∗∗) = J(z∗),

12 Mathematical Problems in Engineering

Lm

(
z′, α∗∗, β∗∗, γ∗∗, η∗∗) = J

(
z′
)
+

N∑

t=0

{
α(t)∗∗T

∣
∣
∣h(t)(z′(t)

)∣∣
∣

+β(t)∗∗T max
(
0, g(t)(z′(t)

))}

+ γ∗∗T
∣
∣H

(
z′
)∣∣ + η∗∗T max

(
0, G

(
z′
))

≥ J
(
z′
)
+ γ∗∗i

∣
∣Hi

(
z′
)∣∣

> J
(
z′
)
+
J(z∗) − J(z′)

|Hi(z′)|
∣
∣Hi

(
z′
)∣∣ = J(z∗).

(4.6)

Thus Lm(z∗, α∗∗, β∗∗, γ∗∗, η∗∗) ≤ Lm(z, α∗∗, β∗∗, γ∗∗, η∗∗).

“⇐” parts: assume that formula (4.3) is satisfied; we need to prove that z∗ is a CMm
of Pt. Because Lm(z∗, α, β, γ, η) = Lm(z∗, α∗∗, β∗∗, γ∗∗, η∗∗), we have

J(z∗) +
N∑

t=0

{
α(t)T

∣∣∣h(t)(z∗(t))
∣∣∣ + β(t)T max

(
0, g(t)(z∗(t))

)}
+ γT |H(z∗)| + ηT max(0, G(z∗))

= J(z∗) +
N∑

t=0

{
α(t)∗∗T

∣∣∣h(t)(z∗(t))
∣∣∣ + β(t)∗∗T max

(
0, g(t)(z∗(t))

)}

+ γ∗∗T |H(z∗)| + η∗∗T max(0, G(z∗)),
(4.7)

for any α(t), β(t),γ , η and t = 0, 1, . . . ,N. Thus we can obtain |H(z∗)| = 0, max(0, G(z∗)) = 0,
|h(t)(z∗(t))| = 0 and max(0, g(t)(z∗(t))) = 0. Therefore z∗ is a feasible solution.

In the following, we prove that z∗ is minimum for all feasible solutions. Assume that
z′ is another feasible solution; we have

Lm

(
z∗, α∗∗, β∗∗, γ∗∗, η∗∗) = J(z∗) +

N∑

t=0

{
α(t)∗∗T

∣∣∣h(t)(z∗(t))
∣∣∣ + β(t)∗∗T max

(
0, g(t)(z∗(t))

)}

+ γ∗∗T |H(z∗)| + η∗∗T max(0, G(z∗)) = J(z∗),

Lm

(
z′, α∗∗, β∗∗, γ∗∗, η∗∗) = J

(
z′
)
+

N∑

t=0

{
α(t)∗∗T

∣∣∣h(t)(z′(t)
)∣∣∣ + β(t)∗∗T max

(
0, g(t)(z′(t)

))}

+ γ∗∗T
∣∣H

(
z′
)∣∣ + η∗∗T max

(
0, G

(
z′
))

= J
(
z′
)
.

(4.8)

Because Lm(z∗, α∗∗, β∗∗, γ∗∗, η∗∗) ≤ Lm(z, α∗∗, β∗∗, γ∗∗, η∗∗), we get J(z∗) ≤ J(z′). Therefore, z∗ is
a constrained minimum of Pt.

In order to partition RBTH into several independent necessary conditions efficiently,
we define the mixed neighbourhood of solution z∗ as follows.

Mathematical Problems in Engineering 13

Definition 4.3 (Partitioned Mixed Neighbourhood). The partitioned mixed neighbourhood of
z ∈ Z, denoted byNm(z), is defined as

Nm(z) =
N⋃

i=0

N
(t)
p (z) =

N⋃

i=0

{
z′ | z′(t) ∈ Nm(z(t)), z′(i | i /= t) = z(i)

}
, (4.9)

where Nm(z(t)) is the mixed-space neighbourhood of variable vector z(t) in stage t.

Based on this definition, we can further partition the condition described in formula
(4.3) into multiple conditions.

Theorem 4.4. Given Nm(z), the RBTH in formula (4.3) can be rewritten into N + 2 following
necessary conditions that, collectively, are sufficient:

Γm
(
z∗, α(t), β(t), γ∗∗, η∗∗) = Γm

(
z∗, α(t)∗∗, β(t)∗∗, γ∗∗, η∗∗) ≤ Γm

(
z, α(t)∗∗, β(t)∗∗, γ∗∗, η∗∗)

(4.10)

Lm

(
z∗, α(t)∗∗, β(t)∗∗, γ, η

)
= Lm

(
z∗, α(t)∗∗, β(t)∗∗, γ∗∗, η∗∗) (4.11)

for all z ∈ N
(t)
m (z∗), α(t) ∈ Rmt , β(t) ∈ Rrt , γ ∈ Rp, η ∈ Rq, and t = 0, 1, . . . ,N.

Proof. We prove that formula (4.3) is equivalent to the combined formula (4.10) and formula
(4.11).

“⇒” parts: given a z∗ satisfying formula (4.3), we need to prove that it also satisfies
formula (4.10) and formula (4.11). For all t = 0, 1, . . . ,N, any point z ∈ N

(t)
m (z∗) is also

a point in Nm(z∗); therefore J(z∗) ≤ J(z), H(z∗) = 0, max(0, G(z∗)) = 0, h(t)(z∗(t)) = 0,
and max(0, g(t)(z∗(t))) = 0:

Γm
(
z, α(t)∗∗, β(t)∗∗, γ∗∗, η∗∗) = J(z) + α(t)∗∗T

∣∣∣h(t)(z(t))
∣∣∣ + β(t)∗∗T max

(
0, g(t)(z(t))

)

+ γ∗∗T |H(z)| + η∗∗T max(0, G(z))

≥ J(z),

Γm
(
z∗, α(t)∗∗, β(t)∗∗, γ∗∗, η∗∗) = J(z∗) + α(t)∗∗T

∣∣∣h(t)(z∗(t))
∣∣∣ + β(t)∗∗T max

(
0, g(t)(z∗(t))

)

+ γ∗∗T |H(z∗)| + η∗∗T max(0, G(z∗))

= J(z∗).

(4.12)

Therefore, Γm(z∗, α(t), β(t), γ∗∗, η∗∗) ≤ Γm(z, α(t)
∗∗, β(t)∗∗, γ∗∗, η∗∗).

Then we can know that the equality in formula (4.10) and the equality in formula
(4.11) hold in case of z∗ satisfying all the constraints.

“⇐” parts: we prove this part by contradiction. Assume that z∗ satisfies formula (4.10)
and formula (4.11) but does not satisfy formula (4.3). The equality in formula (4.3) cannot
be violated because the equality in formula (4.10) and the equality in formula (4.11) imply
that all local and global constraints are satisfied. Therefore, the inequality in formula (4.3) is

14 Mathematical Problems in Engineering

unsatisfied. In this case, there exists some Nm(z∗) and a unique t′ where z ∈ N
(t)
m (z∗) such

that

Lm

(
z∗, α∗∗, β∗∗, γ∗∗, η∗∗)/≤Lm

(
z, α∗∗, β∗∗, γ∗∗, η∗∗). (4.13)

But

Lm

(
z, α∗∗, β∗∗, γ∗∗, η∗∗) = J(z) +

N∑

t=0

{
α(t)∗∗T

∣
∣
∣h(t)(z(t))

∣
∣
∣ + β(t)∗∗T max

(
0, g(t)(z(t))

)}

+ γ∗∗T |H(z)| + η∗∗T max(0, G(z)),

Lm

(
z∗, α∗∗, β∗∗, γ∗∗, η∗∗) = J(z∗) +

N∑

t=0

{
α(t)∗∗T

∣
∣
∣h(t)(z∗(t))

∣
∣
∣ + β(t)∗∗T max

(
0, g(t) (z∗(t))

)}

+ γ∗∗T |H(z∗)| + η∗∗T max(0, G(z∗))

= J(z∗).
(4.14)

Therefore

J(z∗) /≤ J(z) + α
(
t′
)∗∗T ∣∣∣h(t)(z

(
t′
))∣∣∣ + β

(
t′
)∗∗T max

(
0, g(t) (z

(
t′
)))

+ γ∗∗T |H(z)| + η∗∗T max(0, G(z)).
(4.15)

This implies that

Γm
(
z∗, α

(
t′
)∗∗

, β
(
t′
)∗∗

, γ∗∗, η∗∗)/≤Γm
(
z, α

(
t′
)∗∗

, β
(
t′
)∗∗

, γ∗∗, η∗∗) (4.16)

holds for t = t′, which contradicts our assumption.
Therefore, any z∗ that satisfies formula (4.10) and formula (4.11) must also satisfy

(4.3).
Theorem 4.4 proves that the original RBTH mentioned in Theorem 2.15 can be

partitioned intoN+1 necessary conditions as formula (4.10) and a global necessary condition
as formula (4.11). Consequently, local reverse bridge points, which satisfy formula (4.10) in
stage t, are local minimum of the original RBTH in stage t. The above reverse bridge points
are essentially the solutions of solving the following MINLP P

(t)
t , in which we add the global

constraints to the original objective function J(z):

(
P
(t)
t

)
: min

z(t)
J(t)(z) = J(z) + γT |H(z)| + ηT max(0, G(z))

subject to h(t)(z(t)) = 0, g(t)(z(t)) ≤ 0.
(4.17)

Mathematical Problems in Engineering 15

Procedure RBTH partition resolve mixed(Pt, z, α, β, γ , η)
γ → 0, η → 0;
repeat

increase γi by δ if (Hi(z)/= 0 and γi < γi) for i = 1, . . . , p;
increase ηj by δ if (Gj(z)/≤ 0 and ηj < ηj) for j = 1, . . . , q;
for t = 0 to N

call RBTH MINLP (P (t)
t , z, α, β) to solve P (t)

t .
end for;

until a CMm of Pt is found or (γi > γi for all Hi(z)/= 0 and ηj > ηj for all Gj(z)/≤ 0).
return CMm of Pt if found;

end procedure

Algorithm 4: The partitioning and resolving procedure for finding CMm of Pt.

In brief, solving the original problem can be reduced to solvemultipleMINLPs defined
by P

(t)
t in formula (4.17) and to increase the penalties of violated global constraints defined in

formula (4.11). Therefore, by partitioning the original problem and solving each subproblem,
Theorem 4.4 leads to a significant reduction on computational complexity.

4.2. The Partitioning and Resolving Procedure

Algorithm 4 shows the partitioning and resolving procedure for finding the reverse bridge
points satisfying the conditions in Theorem 4.4. As is shown in the algorithm, γ∗ and η∗

are initialized firstly; the inner loop is then carried out to find a reverse bridge point of
MINLP P

(t)
t in each stage t, which can be implemented by the procedure RBTH MINLP, as

we introduced in Section 3. After all the subproblems are solved, the penalties corresponding
to the violated global constraints are increased in the outer loop. The process is repeated until
a CMm of Pt is found or γ∗∗ and η∗∗ are larger than their maximum bounds γ and η.

According to Theorems 4.2 and 4.4, we know that solving the original problem can be
reduced to solvemultipleMINLPs. For everyMINLP in stage t of original problem, algorithm
RBTH partition resolve mixed calls RBTH MINLP to solve it. Moreover, Theorem 3.4 has
proved that algorithm RBTH MINLP is sound and complete for solving MINLPs. Therefore,
the following theorem stands.

Theorem 4.5. Given a MINLP, if there exists a solution, the algorithm RBTH partition resolve
mixed can find the solution; if the algorithm finds a solution, then it must be the solution of the MINLP.

5. Numerical Simulation Results and Comparisons

All of our algorithms are coded in C, and in our simulation, numerical experiments
are performed on a PC with Pentium 3.0GHz Processor and 1.0GB memory. We first
compare our algorithm CPRBTH (RBTH under constraint partition) to two of the best CNLP
solvers, Lancelot [20] and SNOPT [21]. To test the performance of the proposed algorithms,
computational simulations are carried out with some well-studied benchmark problems
taken from the CUTE library [22]. These problems are all minimization problems. Some of
these problems were constructed by researchers to test optimization algorithms, while others

16 Mathematical Problems in Engineering

Table 2: Results of solving selected MINLP benchmarks from the MacMINLP library. Here nc and nv
represent the number of constraints and the number of variables, respectively. “—” means that no feasible
solutions were found in the time limit (3600 seconds). Numbers in bold represent the best solutions among
the three methods.

Test Problem MINLP-BB BARON CPOPT CPRBTH
ID nc nv Sol. Time Sol. Time Sol. Time Sol. Time
C-RELOAD-q-49 1430 3733 — — — −1.13 66.32 −1.13 59.25
C-RELOAD-q-104 3338 13936 — — — — −1.14 298.87 −1.14 110.22
Ex12.6.3 57 92 19.6 23 19.6 423.1 19.6 13.37 19.6 13.37
Ex12.6.5 76 130 15.1 4 10.3 845.5 10.6 3.19 10.4 2.1
PUMP 34 24 — — 131124 977 130788 81.25 130789 96.33
SPACE-960-i 6497 5537 — — — — 7.65E6 179.12 7.65E6 97.22
SPACE-960-ir 3617 2657 — — — — 7.64E6 132.96 7.64E6 96.34
SPACE-960 8417 15137 — — — — 7.84E6 1137.13 7.84E6 1311.13
SPACE-960-r 5537 12257 — — — — 5.13E6 91.56 5.13E6 87.34
STOCKCYCLE 97 480 — — 436341 n/a 119948.7 6.12 119948.6 5.47
TRIMLON4 24 24 12.2 10 8.3 11.0 8.3 1.66 8.3 2.77
TRIMLON6 36 48 18.8 19 15.6 1092.9 15.6 13.25 15.6 7.92
TRIMLON12 72 168 — — — — 95.5 298.11 95.5 345.50
TRIMLOSS4 64 105 10.8 99 — — 10.6 8.87 10.6 7.88
TRIMLOSS5 90 161 12.6 190 — — 10.7 75.31 10.6 78.87
TRIMLOSS6 120 215 — — — — 22.1 68.19 22.1 68.19
TRIMLOSS7 154 345 — — — — 26.7 58.14 26.8 37.22
TRIMLOSS12 384 800 — — — — 138.8 278.33 138.1 199.10

were from real applications, such as computer production planning in operations research.
For each instance, the algorithm is independently executed 15 times for comparison. The
experimental results are shown in Table 1. The first three columns show the problems IDs,
the number of constraints (nc), and the number of variables (nv). The last six columns show
the solutions (Sol.) and CPU times we obtain by using LANCELOT, SNOPT and CRBTH.
Both the CPU time and the solutions are the average of the measure of the 15 executions of
the algorithms. Numerical results indicate that the algorithm usually performs quite well in
terms of CPU time and quality of solution found.

We then compare our algorithm with three famous MINLP solvers, MINLP BB [23],
BARON [24], and CPOPT [9]. MINLP BB performs a branch and bound algorithm with
a sequential-quadratic-programming solver for solving continuous problems. BARON is a
MINLP solver implementing the branch and reduce algorithm. CPOPT is an MINLP solver
implementing the extended saddle point condition under constraint partition algorithm. To
test the performance of the proposed algorithms, computational simulations are carried out
with some well-studied benchmark problems taken from the MacMINLP library [25]. The
first three columns show the problems IDs, the number of constraints (nc), and the number
of variables (nv). The last eight columns show the solutions (Sol.) and CPU times we obtain
by MINLP BB, BARON, CPOPT, and CPRBTH. Both the CPU time and the solutions are
the average of the measure of the 15 executions of the algorithm. Because the results of
MINLP BB and BARON in [13] were obtained by submitting jobs to the NEOS server and
BARON’s site, respectively, we accept the results of [13]. The other two solvers were run on a
PC with Pentium 3.0GHz Processor and 1.0GB memory. The experimental results are shown

Mathematical Problems in Engineering 17

in Table 2. Compared to CPOPT, the solutions of CPRBTH are at least competitive, and the
running cost of CPRBTH is relatively lower.

6. Conclusion

RBTH is a necessary and sufficient condition for constrained local optima under a range of
penalties. In this paper, we first propose three algorithms to solve NLPs using RBTH and
then prove that these algorithms are both sound and complete. Additionally, we combine
RBTH with constraint partition to solve large-scale MINLPs. Specifically, we decompose the
constraints of MINLPs into some easier subproblems that are significant relaxations of the
original problem, each of which can be solved by using RBTH directly, and then resolve those
violated global constraints across the subproblems via RBTH. In the final part, we present an
algorithm for implementing this search procedure and also prove that the algorithm is sound
and complete for solving MINLPs under constraint partition. Experimental results also show
that our algorithm is both sound and complete.

Acknowledgments

This project was granted by the National Natural Science Foundation of China under Grant
nos. 60473042, 60573067, 60803102, and 60773097. The authors are grateful to the anonymous
reviewers for providing their detailed, thoughtful, and helpful comments on improving the
work presented here.

References

[1] A. M. Geoffrion, “Lagrangean relaxation for integer programming,”Mathematical Programming Study,
no. 2, pp. 82–114, 1974.

[2] J. F. Shapiro, “Generalized Lagrange multipliers in integer programming,” Operations Research, vol.
19, pp. 68–76, 1971.

[3] T. Wang, Global Optimization of Constrained Nonlinear Programming, Ph.D. thesis, Department of
Computer Science, University of Illinois, 2000.

[4] B. W. Wah, Y. Chen, and T. Wang, “Simulated annealing with asymptotic convergence for nonlinear
constrained optimization,” Journal of Global Optimization, vol. 39, no. 1, pp. 1–37, 2007.

[5] B. W. Wah and Z. Wu, “The theory of discrete Lagrange multipliers for nonlinear discrete
optimization,” in Proceedings of the Principles and Practice of Constraint Programming, pp. 28–42,
Springer, Berlin, Germany, 1999.

[6] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programming,” Operations Research,
vol. 8, pp. 101–111, 1960.

[7] M. A. Duran and I. E. Grossmann, “An outer-approximation algorithm for a class of mixed-integer
nonlinear programs,”Mathematical Programming, vol. 36, no. 3, pp. 307–339, 1986.

[8] W.-X. Gu and B. Li, “Effectivemethod for constrainedminimum—reverse bridge theorem,”Computers
& Mathematics with Applications, vol. 56, no. 10, pp. 2629–2637, 2008.

[9] Y. X. Chen, Solving nonlinear constrained optimization problems through constraint partitioning, Ph.D.
thesis, University of Illinois at Urbana-Champaign, 2005.

[10] B. W. Wah and Y. Chen, “Constraint partitioning in penalty formulations for solving temporal
planning problems,” Artificial Intelligence, vol. 170, no. 3, pp. 187–231, 2006.

[11] B. W. Wah, Y. Chen, and A. Wan, “Constrained global optimization by constraint partitioning and
simulated annealing,” in Proceedings of the International Conference on Tools with Artificial Intelligence
(ICTAI ’06), pp. 265–272, 2006.

18 Mathematical Problems in Engineering

[12] C. W. Hsu, B. W. Wah, R. Huang, and Y. X. Chen, “Constraint partitioning for solving planning
problems with trajectory constraints and goal preferences,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI ’07), pp. 1924–1929, 2007.

[13] B. W. Wah and Y. Chen, “Solving large-scale nonlinear programming problems by constraint
partitioning,” in Proceedings of the Principles and Practice of Constraint Programming (CP ’05), pp. 697–
711, 2005.

[14] B. W. Wah and Y. Chen, “Partitioning of temporal planning problems in mixed space using the
theory of extended saddle points,” in Proceedings of the International Conference on Tools with Artificial
Intelligence (ICTAI ’03), pp. 266–273, 2003.

[15] B. W. Wah and Y. X. Chen, “Subgoal partitioning and global search for solving temporal planning
problems inmixed space,” in Proceedings of the International Conference on Tools with Artificial Intelligence
(ICTAI ’04), pp. 767–790, 2004.

[16] Y. Chen, B. W. Wah, and C.-W. Hsu, “Temporal planning using subgoal partitioning and resolution in
SGPlan,” Journal of Artificial Intelligence Research, vol. 26, pp. 323–369, 2006.

[17] Y. X. Chen, C. W. Hsu, and B. W. Wah, “SGPlan: subgoal partitioning and resolution in planning,” in
Proceedings of the 4th International Planning Competition (IPC ’04), International Conference on Automated
Planning and Scheduling (ICAPS ’04), pp. 30–33, 2004.

[18] S. Lee and B. Wah, “Finding good starting points for solving structured and unstructured nonlinear
constrained optimization problems,” in Proceedings of the 20th International Conference on Tools with
Artificial Intelligence (ICTAI ’08), pp. 469–476, 2008.

[19] A. R. Conn, N. Gould, and Ph. L. Toint, “Numerical experiments with the LANCELOT package
(Release A) for large-scale nonlinear optimization,” Mathematical Programming, vol. 73, no. 1, pp. 73–
110, 1996.

[20] A. R. Conn, N. Gould, and Ph. L. Toint, “Numerical experiments with the LANCELOT package
(Release A) for large-scale nonlinear optimization,” Mathematical Programming, vol. 73, no. 1, pp. 73–
110, 1996.

[21] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: an SQP algorithm for large-scale constrained
optimization,” SIAM Journal on Optimization, vol. 12, no. 4, pp. 979–1006, 2002.

[22] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, “CUTE: constrained and unconstrained testing
environment,” ACM Transactions on Mathematical Software, vol. 21, no. 1, pp. 123–160, 1995.

[23] S. Leyffer, “Mixed integer nonlinear programming solver,” 2002, http://www.mcs.anl.gov/∼
leyffer/Solvers.html.

[24] N. V. Sahinidis, “BARON: a general purpose global optimization software package,” Journal of Global
Optimization, vol. 8, no. 2, pp. 201–205, 1996.

[25] S. Leyffer, “MacMINLP: AMPL collection of MINLP problems,” 2003, http://wiki.mcs.anl.gov/
leyffer/index.php/MacMINLP.

