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The differential transform method (DTM) is applied to the steady three-dimensional problem of a
condensation film on an inclined rotating disk. With similarity method, the governing equations
can be reduced to a system of nonlinear ordinary differential equations. The approximate solutions
of these equations are obtained in the form of series with easily computable terms. The velocity and
temperature profiles are shown and the influence of Prandtl number on the temperature profiles is
discussed in detail. The validity of our solutions is verified by the numerical results.

1. Introduction

Most phenomena in our world are essentially nonlinear and are described by nonlinear
equations. Some of them are solved using numerical methods and some are solved using
the analytic methods of perturbation [1, 2]. The numerical methods give discontinuous
points of a curve and thus it is often costly and time consuming to get a complete curve
of results and so in these methods, stability and convergence should be considered so as
to avoid divergence or inappropriate results. Besides, from numerical results, it is hard to
have a whole and essential understanding of a nonlinear problem. Numerical difficulties
additionally appear if a nonlinear problem contains singularities or has multiple solutions.
In the analytic perturbation methods, we should exert the small parameter in the equation.
Therefore, finding the small parameter and exerting it into the equation are deficiencies
of the perturbation methods. Recently, much attention has been devoted to the newly
developed methods to construct approximate analytic solutions of nonlinear equations
without mentioned deficiencies.
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One of the semiexact methods which does not need small parameters is the DTM;,
this method was first proposed by Zhou [3], who solved linear and nonlinear problems in
electrical circuit problems. Chen and Ho [4] developed this method for partial differential
equations and Ayaz [5] applied it to the system of differential equations; this method is very
powerful [6]. This method constructs an analytical solution in the form of a polynomial. It is
different from the traditional higher-order Taylor series method. The Taylor series method
is computationally expensive for large orders. The DTM is an alternative procedure for
obtaining analytic Taylor series solution of the differential equations. In recent years, the DTM
has been successfully employed to solve many types of nonlinear problems [7–14].

Removing of a condensate liquid from a cooled, saturated vapor is important in
engineering processes. Sparrow and Gregg [15] considered the removal of the condensate
using centrifugal forces on a cooled rotating disk. Followingvon Karman’s [16] study of
a rotating disk in an infinite fluid, Sparrow and Gregg transformed the Navier–Stokes
equations into a set of nonlinear ordinary differential equations and numerically integrated
for the similarity solution for several finite film thicknesses. Their work was extended by
adding vapor drag by Beckett et al. [17] and adding suction on the plate by Chary and
Sarma [18]. The problem is also related to chemical vapor deposition, when a thin fluid film
is deposited on a cooled rotating disk [19].

In this paper, the DTM is applied to find the totally analytic solution for the problem
of condensation or spraying on an inclined rotating disk and is compared with the numerical
solution and the homotopy analysis method (HAM). This problem was studied first by Wang
[20] in 2006, andRashidi and Dinarvand [21] applied the HAM for it; please also see [22, 23].
In this way, the paper has been organized as follows: in Section 2, the flow analysis and
mathematical formulation are presented. In Section 3, we extend the application of the DTM
to construct the approximate solutions for the governing equations. Section 4 contains the
results and discussion. The conclusions are summarized in Section 5.

2. Flow Analysis and Mathematical Formulation

Figure 1 shows a disk rotating in its own plane with angular velocity Ω. The angle between
horizontal axis and disk is β. A fluid film of thickness h is formed by spraying, with the
W velocity. We assume the disk radius is large compared to the film thickness such that
the end effects can be ignored. Vapor shear effects at the interface of vapor and fluid are
usually also unimportant. The gravitational acceleration, g, acts in the downward direction.
The temperature on the disk is Tw and the temperature on the film surface is T0. Besides, the
ambient pressure on the film surface is constant at p0 and we can safely say the pressure is
a function of z only. Neglecting viscous dissipation, the continuity, momentum and energy
equations for steady state are given in the following form:

ux + vy +wz = 0, (2.1)

uux + vuy +wuz = ν
(
uxx + uyy + uzz

)
+ g sin β, (2.2)

uvx + vvy +wvz = ν
(
vxx + vyy + vzz

)
, (2.3)

uwx + vwy +wwz = ν
(
wxx +wyy +wzz

)
− g cos β −

pz
ρ
, (2.4)

uTx + vTy +wTz = α
(
Txx + Tyy + Tzz

)
. (2.5)
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Figure 1: Schematic diagram of the problem.

In above equations, u, v, and w indicate the velocity components in the x, y, and z
directions, respectively; T denotes the temperature, ρ, ν, and α are the density, kinematic
viscosity and thermal diffusivity of the fluid, respectively. Supposing zero slip on the disk
and zero shear stress on the film surface, the boundary conditions are

u = − Ωy, v = Ωx, w = 0, T = Tw at z = 0,

uz = 0, vz = 0, w = − W, T = T0, p = p0 at z = h.
(2.6)

For the mentioned problem, Wang introduced the following transform [20]:

u = − Ωyg
(
η
)
+ Ωxf ′

(
η
)
+ gk

(
η
)

sin
β

Ω
,

v = Ωxg
(
η
)
+ Ωyf ′

(
η
)
+ gs

(
η
)

sin
β

Ω
,

w = − 2
√
Ω νf

(
η
)
,

T = ( T0 − Tw)θ
(
η
)
+ Tw,

(2.7)

where

η = z

√
Ω
ν
. (2.8)

Continuity (2.1) automatically is satisfied. Equations (2.2) and (2.3) can be written as follows:

f ′′′ −
(
f ′
)2 + g2 + 2ff ′′ = 0, (2.9)

g ′′ − 2gf ′ + 2fg ′ = 0, (2.10)

k′′ − kf ′ + sg + 2fk′ + 1 = 0, (2.11)

s′′ − gk − sf ′ + 2fs′ = 0. (2.12)
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If the temperature is a function of the distance z only, (2.5) becomes

θ′′ + 2Pr fθ′ = 0, (2.13)

where Pr = ν/α is the Prandtl number. The boundary conditions for (2.9)–(2.13) are

f(0) = 0, f ′(0) = 0, f ′′(δ) = 0,

g(0) = 1, g ′(δ) = 0,

k(0) = 0, k′(δ) = 0,

s(0) = 0, s′(δ) = 0,

θ(0) = 0, θ(δ) = 1,

(2.14)

and δ is the constant normalized thickness as

δ = h
√
Ω /ν. (2.15)

After the flow field is found, the pressure can be obtained by integrating (2.4)

p(z) = p0 + ρ
{
ν[wz(z) − wz(h)] −

[
w2(z) −w2(h)

]
/2 − g(z − h) cos β

}
. (2.16)

3. The Differential Transform Method

Basic definitions and operations of differential transformation are introduced as follows.
Differential transformation of the functionf(η) is defined as follows:

F(k) =
1
k!

[
dkf

(
η
)

dηk

]

η=η0

, (3.1)

in (3.1), f(η) is the original function and F(k) is the transformed function which is called
the T-function (it is also called the spectrum of the f(η) at η = η0, in the K domain). The
differential inverse transformation of F(k) is defined as

f
(
η
)
=
∞∑

k=0

F(k)
(
η − η0

)k
. (3.2)

combining (3.1) and (3.2), we obtain

f
(
η
)
=
∞∑

k=0

[
dkf

(
η
)

dηk

]

η=η0

(
η − η0

)k

k!
, (3.3)

equation (3.3) implies that the concept of the differential transformation is derived from
Taylor’s series expansion, but the method does not evaluate the derivatives symbolically.
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However, relative derivatives are calculated by an iterative procedure that is described by
the transformed equations of the original functions.

From the definitions of (3.1) and (3.2), it is easily proven that the transformed
functions comply with the basic mathematical operations shown in below. In real
applications, the function f(η) in (3.2) is expressed by a finite series and can be written as

f
(
η
)
=

N∑

k=0

F(k)
(
η − η0

)k
, (3.4)

equation (3.4) implies that
∑∞

k=N+1 F(k)(η − η0)
k is negligibly small, where N is series size.

Theorems to be used in the transformation procedure, which can be evaluated from
(3.1) and (3.2), are given below.

Theorem 3.1. If f(η) = g(η) ± h(η), then F(k) = G(k) ±H(k).

Theorem 3.2. If f(η) = cg(η), then F(k) = cG(k), where c is a constant.

Theorem 3.3. If f(η) = dng(η)/dηn, then F(k) = ((k + n)!/k!)G(k + n).

Theorem 3.4. If f(η) = g(η) h(η), then F(k) =
∑k

l=0 G(l)H(k − l).

Theorem 3.5. If f(η) = ηn,

F(k) = δD(k − n), where δD(k − n) =

⎧
⎨

⎩

1, k = n,

0, k /= 0.
(3.5)

Taking differential transform of (2.9)–(2.13), the following equations can be obtained

(k + 1)(k + 2)(k + 3)F(k + 3) −
k∑

r=0
[(k + 1 − r)(r + 1)F(r + 1)F(k + 1 − r)]

+
k∑

r=0
[G(r)G(k − r)] + 2

k∑

r=0
[(k + 2 − r)(k + 1 − r)F(k + 2 − r) F(r)] = 0,

(k + 2)(k + 1)G(k + 2) − 2
k∑

r=0
[(k + 1 − r)G(r)F(k + 1 − r)]

+ 2
k∑

r=0
(k + 1 − r)F(r)G(k + 1 − r) = 0,

(k + 2)(k + 1)K(k + 2) − 2
k∑

r=0
[(k + 1 − r)K(r)F(k + 1 − r)] +

k∑

r=0
[S(r)G(k − r)]

+ 2
k∑

r=0
[(k + 1 − r)F(r)K(k + 1 − r)] + δD(k) = 0,
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(k + 2)(k + 1)S(k + 2) −
k∑

r=0
[G(r)K(k − r)] −

k∑

r=0
[(k + 1 − r)S(r)F(k + 1 − r)]

+ 2
k∑

r=0
(k + 1 − r)F(r)S(k + 1 − r) = 0,

(k + 2)(k + 1)Θ(k + 2) + 2Pr
k∑

r=0
[(k + 1 − r)F(r)Θ(k + 1 − r)] = 0,

(3.6)

where F(k), G(k), K(k), S(k) and Θ(k) are the differential transforms of f(η), g(η), k(η),
s(η) and θ(η). The transforms of the boundary conditions are

F(0) = 0, F(1) = 0, F(2) = γ1,

G(0) = 1, G(1) = γ2,

K(0) = 0, K(1) = γ3,

S(0) = 0, S(1) = γ4,

Θ(0) = 0, Θ(1) = γ5,

(3.7)

where γi (i = 1, . . . , 5) are constants. For these constants, the problem is solved with (3.7) and
then the boundary conditions (2.14) are applied

f ′′(δ) = 0, g(δ) = 0, k(δ) = 0, s(δ) = 0, θ(δ) = 1. (3.8)

For δ = 0.5,N = 20, and Pr = 7, we have

γ1 = 0.24126840, γ2 = − 0.07866202, γ3 = − 0.04009537,

γ4 = − 0.49411375, γ5 = 2.05582108,
(3.9)

and the solutions of above equations (using the DTM) are as follows:

f
(
η
)
≈ 0.241268 η2 − 0.16666667 η3 + 0.00655517 η4 − 0.000103129 η5 − 0.00134038 η6

+ 0.000457075 η7 − 0.0000309189 η8 − 0.0000146493 η9 + 0.0000132522 η10

− 2.92946 × 10− 6η11 + 1.01173 × 10− 6 η12 − 9.04629 × 10−7η13 + 3.76003 × 10−7η14

− 9.76475 × 10− 8η15 + 4.35162 × 10− 8η16 − 2.3391 × 10− 8η17 + 8.10052 × 10− 9η18

− 2.49821 × 10− 9η19 + 1.08501 × 10− 9η20,
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g
(
η
)
≈ 1 − 0.078662 η + 0.160846 η3 − 0.0864964 η4 + 0.00524414 η5 − 0.00272464 η6

+ 0.00160609 η7 − 0.000479669 η8 + 0.000107813 η9 − 0.0000908193 η10

+ 0.000044882 η11 − 0.0000122088 η12 + 3.99763 × 10−6η13 − 2.17641 × 10− 6η14

+ 8.28203 × 10−7η15 − 2.3808 × 10−7η16 + 8.39076 × 10− 8η17 − 3.48713 × 10− 8η18

+ 1.16737 × 10− 8η19 − 3.36121 × 10− 9η20,

k
(
η
)
≈ 0.494114 η − 0.5 η2 + 0.00668256 η3 − 0.000262832 η4 + 0.00382819 η5

− 0.000849056 η6 − 0.000144438 η7 − 0.000412106 η8 + 0.000326912 η9

− 0.0000725119 η10 + 0.0000170146 η11 − 0.0000173481 η12 + 7.70124 × 10− 6 η13

− 1.83103 × 10− 6η14 + 7.05439 × 10−7η15 − 1.23679 × 10− 6η16 + 4.90306 × 10−7η17

− 1.93933 × 10−7η18 + 8.19309 × 10− 8η19 − 3.38424 × 10− 8η20,

s
(
η
)
≈ − 0.0400954 η + 0.0823523 η3 − 0.0449057 η4 + 0.00263481 η5 − 0.0000438053 η6

− 0.000312347 η7 + 0.0000427222 η8 − 5.44922 × 10−6η9 + 0.0000350801 η10

− 0.0000178174 η11 + 3.30275 × 10− 6η12 − 2.08021 × 10− 6η13 + 1.83037 × 10− 6η14

− 6.80866 × 10−7η15 + 1.99374 × 10−7η16 − 1.10268 × 10−7η17 + 5.62782 × 10− 8η18

− 1.9123 × 10− 8η19 + 6.79324 × 10− 9η20,

θ
(
η
)
≈ 2.05582 η − 0.578672 η4 + 0.239846 η5 − 0.00628892 η6 + 0.186224 η7 − 0.16809 η8

+ 0.0434017 η9 − 0.0511522 η10 + 0.0686 η11 − 0.0343928 η12 + 0.0176617 η13

− 0.0206345 η14 + 0.0150924 η15 − 0.00758758 η16 + 0.0057454 η17 − 0.00479229 η18

+ 0.00281121 η19 − 0.00165154 η20.

(3.10)

4. Results and Discussion

Graphical representation of the obtained results is very useful to demonstrate the efficiency
and accuracy of the DTM for above problem. Figures 2–7 show the normalized velocity
profiles f(η), f ′(η), g(η), k(η), and s(η) obtained by the DTM and the HAM (5th-order
approximation) in comparison with the numerical solution by the fifth-order Runge-Kutta
method. The HAM solutions are obtained from [21]. In Figures 2–7, we can see a very good
agreement between the DTM and numerical results. In Table 1, the analytical results of DTM
and HAM are compared with numerical method. Table 1 indicates that the results obtained
by the DTM have six digits precision with the numerical solutions. So, it is obvious that
the DTM reaches a very high accuracy in comparison with the HAM for similar values of
series size (On the other hand, the accuracy of the HAM results increases when the order of
approximation increases). In Figure 8, CPU time is considered for two methods. This figure
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Figure 2: The normalized radial velocity profiles (f(η) andf ′(η)) for the rotating flow obtained by the
DTM and the HAM (5th-order approximation) in comparison with the numerical solution, when δ = 1.

elucidates that CPU time of the DTM is smaller than the HAM. It should be mentioned that
the DTM has some problems in solving the boundary value problems which have boundary
conditions at infinity; on the other hand, with the HAM one can easily solve this kind of
problems.

The normalized temperature profiles for different values of the Prandtl number are
represented in Figure 9. The Prandtl number ranges from 0.01 for liquid metals, to 7 for water
and to more than 100 for some oils. From Figure 9, it can be seen that the DTM solution
contains all of groups. This figure elucidates that series size increase with Pandtl number. In
Figure 10, the DTM solutions of the normalized temperature profiles are obtained for different
values of series size.

5. Conclusions

In this paper, the DTM was applied successfully to find the analytical solution of steady
three-dimensional problem of condensation film on inclined rotating disk. The results show
that the differential transform method does not require small parameters in the equations,
so the limitations of the traditional perturbation methods can be eliminated. The reliability
of the method and reduction in the size of computational domain give this method a
wider applicability. Therefore, this method can be applied to many nonlinear integral and
differential equations without linearization, discretization or perturbation. It should be
mentioned that the DTM has some problems in solving the boundary value problems which
have boundary conditions at infinity, on the other hand with the HAM one can easily solve
this kind of problems.
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Figure 3: The normalized radial velocity profiles (g(η)) for the rotating flow obtained by the DTM and the
HAM (5th-order approximation) in comparison with the numerical solution, when δ = 1.
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Figure 4: The normalized radial velocity profiles (f(η) andf ′(η)) for the rotating flow obtained by the
DTM and the HAM (5th-order approximation) in comparison with the numerical solution, when δ = 0.5.
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Figure 5: The normalized radial velocity profiles (g(η)) for the rotating flow obtained by the DTM and the
HAM (5th-order approximation) in comparison with the numerical solution, when δ = 0.5.
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Figure 6: The normalized velocity profiles for the draining flow (k(η)) and lateral flow (s(η)) obtained by
the DTM and the HAM (5th-order approximation) in comparison with the numerical solution, when δ = 1.
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Figure 7: The normalized velocity profiles for the draining flow (k(η)) and lateral flow (s(η)) obtained
by the DTM and the HAM (5th-order approximation) in comparison with the numerical solution, when
δ = 0.5.
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Figure 8: Comparison between CPU times of the DTM and the HAM (5th-order approximation) in
computation of f(η).
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Figure 9: The normalized temperature profiles (θ(η)) obtained by the DTM for different values of the
Prandtl number, when δ = 0.5.

0 0.1 0.2 0.3 0.4 0.5

η

DTM, (N = 5)
DTM, (N = 10)
DTM,(N = 15)

DTM, (N = 20)
DTM, (N = 25)
Numerical

0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ
(η
)

Figure 10: The normalized temperature profiles (θ(η)) obtained by the DTM for different values of series
size, when δ = 0.5, Pr = 140.
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Table 1: The analytic results of f(η), g(η), k(η)and s(η) at different values of series size compared with the
numerical results, when δ = 1.

η N = 5 N = 10 N = 15 N = 20
DTM HAM DTM HAM DTM HAM DTM HAM Numerical

f(η)

0.2 0.012109 0.025333 0.012829 0.015790 0.012824 0.013583 0.012824 0.012675 0.012824
0.4 0.043688 0.093354 0.046554 0.057037 0.046536 0.049058 0.046535 0.045894 0.046535
0.6 0.088436 0.192237 0.094802 0.115414 0.094765 0.099494 0.094762 0.093341 0.094762
0.8 0.14108 0.310623 0.152095 0.18384 0.152036 0.159107 0.152032 0.149674 0.152032
1 0.197281 0.438095 0.213659 0.256624 0.213582 0.223019 0.213575 0.210237 0.213575

g(η)

0.2 0.926037 0.8692 0.927126 0.906846 0.926989 0.913032 0.926994 0.916605 0.926994
0.4 0.860691 0.752533 0.863394 0.826667 0.863116 0.837423 0.863125 0.843679 0.863125
0.6 0.809872 0.6612 0.814989 0.767516 0.814561 0.780547 0.814575 0.788272 0.814575
0.8 0.777414 0.6032 0.785359 0.732751 0.784778 0.746104 0.784796 0.754295 0.784795
1 0.766044 0.583333 0.775603 0.721816 0.774925 0.734846 0.774945 0.743051 0.774944

k(η)

0.2 0.160806 0.199372 0.158485 0.175442 0.158442 0.171012 0.158444 0.168154 0.158444
0.4 0.283364 0.355359 0.278667 0.30897 0.27858 0.301266 0.278584 0.296762 0.278584
0.6 0.369227 0.465866 0.362176 0.400584 0.362040 0.391304 0.362047 0.386586 0.362047
0.8 0.419793 0.5306 0.41076 0.452406 0.410574 0.443034 0.410583 0.438927 0.410583
1 0.436365 0.551389 0.426452 0.468504 0.426232 0.443034 0.426244 0.455797 0.426243

−s(η)

0.2 0.046495 − 0.04397 0.044369 0.002434 0.044329 0.016543 0.044332 0.037467 0.044332
0.4 0.087213 − 0.07162 0.083042 0.009616 0.082966 0.032601 0.082971 0.070290 0.082971
0.6 0.118325 − 0.08646 0.112294 0.017710 0.112187 0.044910 0.112194 0.094853 0.112194
0.8 0.137666 − 0.09219 0.130157 0.023955 0.130029 0.052118 0.130038 0.109565 0.130038
1 0.144217 − 0.09305 0.136051 0.026361 0.135916 0.054308 0.135926 0.114315 0.135925

Nomenclature

f, g, k, s and θ: Nondimensional functions of η
F(k): Differential transforms of f(η)
G(k): Differential transforms of g(η)
K(k): Differential transforms of k(η)
S(k): Differential transforms of s(η)
Θ(k): Differential transforms of θ(η)
g: Gravitational acceleration
h: Thickness of fluid film
W : Velocity of spraying
Pr: Prandtl number
p0: Ambient pressure on the film surface
T: Temperature
T0: Temperature on the film surface
Tw: Temperature on the disk
u: Velocity components in the x direction
v: Velocity components in the y direction
w: Velocity components in the z direction.
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Greek symbols

Ω: Angular velocity
α: Thermal diffusivity of the fluid
β: Angle between horizontal axis and disk
γi (i = 1, ..., 5): Constants of the DTM
η: Nondimensional variable
δ: Constant normalized thickness.
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