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Integral transform method is widely used to solve the several differential equations with the
initial values or boundary conditions which are represented by integral equations. With this
purpose, the Sumudu transform was introduced as a new integral transform by Watugala to solve
some ordinary differential equations in control engineering. Later, it was proved that Sumudu
transform has very special and useful properties. In this paper we study this interesting integral
transform and its efficiency in solving the linear ordinary differential equations with constant and
nonconstant coefficients as well as system of differential equations.

1. Introduction

In the literature there are numerous integral transforms and widely used in physics,
astronomy as well as in engineering. In order to solve the differential equations, the integral
transform were extensively used and thus there are several works on the theory and
application of integral transform such as the Laplace, Fourier, Mellin, and Hankel, to name
but a few. In the sequence of these transform, in early 90’s Watugala [1] introduced a new
integral transform, named the Sumudu transform and further applied it to the solution
of ordinary differential equation in control engineering problems. For further detail and
properties about Sumudu transform (see [2–7]) and many others. The Sumudu transform
is defined over the set of the functions

A =
{
f(t) : ∃M,τ1, τ2 > 0,

∣∣f(t)∣∣ < Met/τj , if t ∈ (−1)j × [0,∞)
}
, (1.1)
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by the following formula

G(u) = S
[
f(t);u

]
=:
∫∞

0
f(ut)e−tdt, u ∈ (−τ1, τ2). (1.2)

The existence and the uniqueness was discussed in [5], for further details and properties of
the Sumudu transform and its derivatives we refer to [2] and applied this new transform to
solve the ordinary differential equations and control engineering problems, see [1, 8, 9].

Further, in [3], some fundamental properties of the Sumudu transform were
established. In [10], this new transformwas applied to the one-dimensional neutron transport
equation. In fact one can easily show that there is a strong relationship between double
Sumudu and double Laplace transforms see, [5]. In [6], the Sumudu transformwas extended
to the distributions and some of their properties were studied.

In [11, 12], some further fundamental properties of the Sumudu transform were
established. It turns out that the Sumudu transform has very special and useful properties
and further it can help with intricate applications in sciences and engineering, see, for
example, [10, 13]. Once more, Watugala’s work was followed by Weerakoon in [14, 15]
by introducing a complex inversion formula for the Sumudu transform. In fact in [5],
the existence and the uniqueness of Sumudu transform was discussed and some of the
fundamental relationship established. In [16, 17], the further properties of Sumudu transform
were studied and applied to the regular system of differential equations with convolution
terms, respectively.

In this study, our purpose is to show the applicability of this interesting new transform
and its efficiency in solving the linear ordinary differential equations with constant and non
constant coefficients.

The existence and the uniqueness of Sumudu transform was discussed in [5] we
reproduce as the next theorem that we will refer to it in the development of the present paper.

Theorem 1.1. If f is of exponential order, then its Sumudu transform S[f(t)] = F(u) is given by

F(u) =
∫∞

0
e−t/uf(t)dt, (1.3)

where 1/u = 1/η + i/τ . Then the integral exists in the right half plane η > K and ζ > L. Further,
if f(t) and g(t) are having Sumudu transforms and given by F(u) and G(u), respectively, and if
F(u) = G(u) then f(t) = g(t) where u is a complex number.

Theorem 1.2. Let f be Sumudu transformable and satisfy f(t) = 0 for t < 0. Then
limu→∞(S[f](u)) = 0.

Proof. Let f0(t) = f(t)[1−H(t− 1)], f1(t) = f(t)H(t− 1). Since f0 vanishes outside [0, 1], then
we have S[f](u) =

∫1
0 e

−t/uf(t)dt for any 1/u. Moreover, f = f0+f1,dom(S(f1)) = dom(S(f))
and S[f](u) =

∫1
0 e

−t/uf(t)dt + S(f1)(u) for all 1/u ∈ dom(S(f)). Let 1/u0 ∈ dom(S(f)) and
apply |S(f)(u)| ≤ Ae−c/u to f1 we conclude that there is a constant A such that

∣∣S(f)(u)∣∣ ≤
∫1

0
e−t/u

∣∣f(t)∣∣dt +Ae−1/u ∀ 1
u
≥ 1

u0
(1.4)
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as 1/u → ∞ the second term on the right clearly tends to zero. The same applies to the first
term.

Next we prove the following theorem that is very useful in the rest of this study.

Theorem 1.3. Let λ > −1. Then
(i) If f ∈ loc+ and limt→∞[f(t)/tλ] exists, so does lim1/u→ 0+[S[f(t)](u)/uλ+1] and one has

lim
t→∞

[
f(t)
tλ

]
=

1
Γ(λ + 1)

lim
1/u→ 0+

[
S
[
f(t)

]
(u)

uλ+1

]
. (1.5)

(ii) if f is Sumudu transformable and satisfies f(t) = 0 for t < 0 and if limt→ 0+[f(t)/tλ] also
lim1/u→∞[S[f(t)](u)/uλ+1] and one has

lim
t→ 0+

[
f(t)
tλ

]
=

1
Γ(λ + 1)

lim
1/u→∞

[
S
[
f(t)

]
(u)

uλ+1

]
. (1.6)

Proof. (i) Let f(t)/t → α as t → ∞. This implies that there are constants A and ρ > 0 such
that |f(t)|/tλ ≤ A for t > ρ. This further implies that e−t/uf(t) is integrable for all 1/u > 0 so
that we may write, if f(t) = 0 for t < c,

S
[
f(t)

]
(u) =

∫∞

c

e−t/uf(t)dt =
∫ρ

c

e−t/uf(t)dt +
∫∞

ρ

e−t/uf(t)dt, (1.7)

now it is easy to see that 1/uλ+1 time the first term on the right of (1.7) tends to zero as
1/u → 0+ and 1/uλ+1 times the second term on the right of (1.7) may be written for 1/u > 0
as follows:

1
uλ

∫∞

ρ/u

e−xf(ux)dx =
∫∞

ρ/u

xλe−x
f(ux)

(ux)λ
dx (1.8)

as 1/u → 0+ and f(ux)/(ux)λ tends to α and, since it is bounded in the range of integration
by the constant A. Then by the dominated convergence theorem and we conclude that

1
uλ+1

S
[
f(t)

]
(u) −→

∫∞

ρ/u

xλe−xα dx = αΓ(λ + 1) as
1
u
−→ 0+, (1.9)

which completes the proof.
(ii) Let f(t)/tλ → β as t → 0+. Since this function is a bounded in the neighborhood

of zero then there are constants B and σ > 0 such that |f(t)|/tλ ≤ B for 0 < t < σ. Using
a method similar to that in the proof of Theorem 1.3 we let f0 = f(t)[1 − H(t − σ)] and
f1(t) = f(t)H(t − σ). Then

S
[
f(t)

]
(u) =

∫σ

0
e−t/uf(t)dt + S

[
f1(t)

]
(u) for

1
u
∈ domS

[
f
]
, (1.10)
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and apply |S(f)(u)| ≤ Ae−c/u we have |S(f1)(u)| ≤ Ke−σ/u for some constant K and 1/u
sufficiently large, and therefore (1/uλ+1)S[f1(t)](u) → 0 as 1/u → ∞. Also, by a similar
argument to that used in (i) then 1/uλ+1 times the first term on the right of (1.10) tends to
βΓ(λ + 1) as 1/u → ∞,which completes the proof.

In the next proposition we prove the existence of Sumudu transform for the
derivatives. In fact similar results were also reported, for example, in [10, 12, 13] by using
different methods.

Proposition 1.4 (Sumudu transform of derivative). (i) Let f be differentiable on (0,∞) and let
f(t) = 0 for t < 0. Suppose that f ′ ∈ Lloc . Then f ′ ∈ Lloc, dom(Sf) ⊂ dom(f ′) and

S
(
f ′) = 1

u
S
(
f
) − 1

u
f(0+) for u ∈ dom

(
S
(
f
))
. (1.11)

(ii)More generally, if f is differentiable on (c,∞), f(t) = 0 for t < 0 and f ′ ∈ Lloc then

S
(
f ′) = 1

u
S
(
f
) − 1

u
e−c/uf(c+) for u ∈ dom

(
S
(
f
))
. (1.12)

Proof. We start by (1.2) as follows, the local integrability of implies that f(c+) exists, because,
if x > c,

f(x) = f(c + 1) −
∫ c+1

x

f ′(t)dt −→ f(c + 1) −
∫ c+1

c

f ′(t)dt as x −→ c+. (1.13)

Let u ∈ dom(S(f)). If ω ∈ D0 = {w : w differentiable and w(0) = 0}, integrating by part, we
have

1
u

∫
ω

(
t

λ

)
e−t/uf ′(t)dt =

1
u

∫∞

c

ω

(
t

λ

)
e−t/uf ′(t)dt

= lim
x→ c+

[
− 1
u
ω
(x
λ

)
e−x/uf(x)

]

− 1
u

∫∞

c

e−t/u
[
1
λ
ω′
(
t

λ

)
− 1
u
ω

(
t

λ

)]
f(t)dt.

(1.14)

Then we have

− 1
u
ω
( c
λ

)
e−c/uf(c+) −→ − 1

u
ω(0)e−c/uf(c+) as λ −→ ∞,

− 1
uλ

∫
e−t/uω′

(
t

λ

)
f(t)dt +

1
u2

∫
e−t/uω

(
t

λ

)
f(t)dt, −→ 0 +

1
u
ω(0)S

(
f
) (1.15)
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as λ → ∞ thus for any ω ∈ D0,

lim
λ→∞

[
1
u

∫
ω

(
t

λ

)
e−t/uf ′(t)dt

]
=

ω(0)
u

[
S
(
f
) − f(c+)

]
. (1.16)

This implies that e−t/uf ′(t) is convergent, that is, u ∈ dom(S(f)), and that

S
(
f ′) = 1

u
S
(
f
) − 1

u
e−c/uf(c+). (1.17)

In general case, if f is differentiable on (a, b) with a < b, and f(t) = 0 for t < a or t > b
and f ′ ∈ Lloc then, for all u

S
(
f ′) = 1

u
S
(
f
) − 1

u
e−a/uf(a+) +

1
u
e−b/uf(b). (1.18)

In the next example we show that Sumudu transform of a function can be obtained by using
the differential equations.

Example 1.5. Let y(t) = sinh(
√
t). Then

d

dt

[
ty′(t)

]
=

1
4
sinh

(√
t
)
+

1

4
√
t
cosh

(√
t
)
=

y(t)
4

+
y′(t)
2

, t > 0. (1.19)

Now by taking Sumudu transform we have

1
u
S
[
ty′(t)

]
(u) − k =

S
[
y(t)

]
(u)

4
+
S
[
y′(t)

]
(u)

2
, (1.20)

where k = limt→ 0+[tf ′(t)]. Then we have

1
u
S
[
ty′(t)

]
(u) =

S
[
y(t)

]
(u)

4
+

1
2u

S
[
y(t)

]
(u) (1.21)

on noting that f(0) = 0. Then it follows that

16uF ′(u) − (6 − u)F(u) = 0, (1.22)

and the solution given by

F(u) = C′e(1/4)u
√
u3, (1.23)
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replacing u by 1/s we obtain

S
[
sinh

(√
t
)]

(u) =
√
π

2s3/2
e1/4s (1.24)

on noting that Γ(3/2) = (1/2)Γ(1/2) =
√
π/2 and limt→ 0+(f(t)/

√
t) = limt→ 0+(sinh

√
t/
√
t) =

1. This shows that the solution of some differential equations with non constant coefficients
can be expressed as Sumudu transform.

In the next section we consider the Sumudu transform of higher derivatives and
representation in the matrix form. However, first of all we introduce the following notation.
Let P(x) =

∑n
k=0(ak/x

k) be a polynomial in 1/x, where n ≥ 0 and an /= 0 then we define
MP (x) to be the 1 × n matrix given by

MP (x) =
(
1
x

1
x2

1
x3

· · · 1
xn−1

)
⎛
⎜⎜⎜⎜⎜⎝

a1 a2 · · · an

a2 a3 · · an 0
a3 · · an 0 0
· · · · · ·
an 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

. (1.25)

Thus MP (x) defines a linear mapping of C
n into C in obvious way. We will write vectors

y in C
n as the row vectors or the column vectors interchangeably, whichever is convenient

although, when MP (x)y is to be compute and the matrix representation by (1.25) of MP (x)
is used, then of course y must be written as a column vector

MP (x)y =
n∑
i=1

1
xi

n−i∑
k=0

ai+kyk (1.26)

for any y = (y0, y1, . . . , yn−1) ∈ C
n. If n = 0, thenMP (x) is a unique linear mapping of {0} = C

0

into C (empty matrix). In general, if n > 0 and f is n − 1 times differentiable on an interval
(a, b),with a < b,we will write

ϕ
(
f ;a;n

)
=
(
f(a+), f ′(a+), . . . , f (n−1)(a+)

)
∈ C

n,

φ
(
f ; b;n

)
=
(
f(b−), f ′(b−), . . . , f (n−1)(b−)

)
∈ C

n.

(1.27)

If a = 0, we write ϕ(f ;n) for ϕ(f ; 0;n). If n = 0, we define

ϕ
(
f ;a; 0

)
= φ

(
f ;a; 0

)
= 0 ∈ C

0. (1.28)

Next we have the following proposition.
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Proposition 1.6 (Sumudu transform of higher derivatives). Let f be n times differentiable on
(0,∞) and let f(t) = 0 for t < 0. Suppose that f (n) ∈ Lloc . Then f (k) ∈ Lloc for 0 ≤ k ≤ n −
1,dom(Sf) ⊂ dom(Sf (n)) and, for any polynomial P of degree n,

P(u)S
(
y
)
(u) = S

(
f
)
(u) +MP (u)ϕ

(
y, n

)
(1.29)

for u ∈ dom(Sf). In particular

(
Sf (n)

)
(u) =

1
un

(
Sf
)
(u) −

(
1
un

,
1

un−1 , . . . ,
1
u

)
ϕ
(
f ;n

)
(1.30)

(with ϕ(f ;n) here written as a column vector). For n = 2 one has

(
Sf ′′)(u) = 1

u2

(
Sf
)
(u) − 1

u2
f(0+) − 1

u
f ′(0+). (1.31)

Proof. We use induction on n. The result is trivially true if n = 0, and the case n = 1 is
equivalent to the Proposition 1.4 (1.11). Now suppose that the result is true for some n ≥ 1 and
let P(x) =

∑n+1
k=0(ak/x

k) having degree n + 1 and writing in the form P(x) = a0 + (1/x)W(x),
whereW(x) =

∑n
k=0(ak+1/x

k). Then it follows that P(Ḋ)f = a0f +W(Ḋ)z therefore by using
Theorem 1.1 we have

S
[
P
(
Ḋ
)
f
]
(u) = a0S

[
f
]
(u) + S

[
W
(
Ḋ
)
z
]
(u) −MW(u)ϕ(z;n)

= a0S
[
f
]
(u) +W(u)

[
1
u
S
[
f
]
(u) − 1

u
f(0+)

]

−
n∑
i=1

1
ui

n−i∑
k=0

ai+k+1f
(k+1)(0+)

(1.32)

on using (1.26) and setting z(k) = f (k+1). Then the summation can be written in the form of

n∑
i=1

1
ui

n−i+1∑
k=1

ai+kf
(k)(0+) =

n+1∑
i=1

1
ui

n−i+1∑
k=0

ai+kf
(k)(0+)

− 1
u

[
1
un

an+1f(0+) +
n∑
i=1

1
ui−1aif(0+)

]

= MP (u)ϕ
(
f ;n

) − 1
u
W(u)f(0+).

(1.33)
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Thus we have

S
[
P
(
Ḋ
)
f
]
(u) =

[
a0 +W(u)

1
u

]
S
[
f
]
(u) − 1

u
W(u)f(0+)

−MP (u)ϕ
(
f ;n

)
+
1
u
W(u)f(0+)

= P(u)S
(
f
)
(u) −MP (u)ϕ

(
f ;n

)
.

(1.34)

In general, if f is differentiable on the open interval (a, b), and f(t) = 0 for t < a or
t > b then f (n) ∈ Lloc and

S
[
P
(
Ḋ
)
f
]
(u) = P(u)

(
Sf
)
(u) −MP (u)

[
e−a/uϕ

(
f ;a;n

) − e−b/uφ
(
f ; b;n

)]
(1.35)

for all u.
In particular case if we consider y(t) = sin(t) then clearly y′′+y = 0 and in the operator

form we write

(
D2 + 1

)
f = 0. (1.36)

Since dom(Sf) contain (0,∞) then on using (1.29) and (1.42) with n = 2 and P(x) = x2 + 1,
for u > 0,

0 =
(

1
u2

+ 1
)
S
(
f
) −

(
1
u

1
u2

)(
0 1
1 0

)(
0
1

)
. (1.37)

Since ϕ(y, 2) = (f(0), f ′(0)) = (0, 1). Thus we can obtain the same result without using
definitions or transforms table as

S[sin(t)H(t)] =
u

u2 + 1
. (1.38)

Now, in general form if we want to solve

any
(n) + an−1y(n−1) + an−2y(n−2) · · · + a0 = f ∗ g, (1.39)

then we rewrite in the form of

P
(
Ḋ
)
y = f ∗ g, (1.40)

under the initial condition

y(0) = y0, y′(0) = y1, . . . , y
(n−1)(0) = yn−1, (1.41)
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where y is n times differentiable on (0,∞), zero on (−∞, 0). Since y(k) is locally integrable
therefore Sumudu transformable for 0 ≤ k ≤ n and, for every such k, then on using the
Sumudu transform of (1.40) we have

MP (u)ϕ
(
y, n

)
=
(
1
u

1
u2

· · · 1
un

)
⎛
⎜⎜⎜⎜⎜⎝

a1 a2 · · · an

a2 a3 · · an 0
a3 · · an 0 0
· · · · · ·
an 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

·
·
·

yn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (1.42)

where P(u) = an/u
n+an−1/un−1+· · ·+a0, and the nonhomogeneous term is single convolution.

In particular, if n = 2 we have

(
a2

u2
+
a1

u
+ a0

)
S
(
y
)
(u) = S

(
f ∗ g)(u) +

(
1
u

1
u2

)(
a1 a2

a2 0

)(
y0

y1

)
. (1.43)

In order to get the solution of (1.40), we are taking inverse Sumudu transform for (1.29) as
follows:

y(t) = S−1
[(

f ∗ g)(u)
P(u)

]
+ S−1

[
MP (u)
P(u)

φ
(
y, n

)]
(1.44)

provided that the inverse exist for each terms in the right-hand side of (1.44).
Now, multiply the right-hand side of (1.40) by polynomial Ψ(t) =

∑n
k=0 t

k, we obtain
the following equation that is having non constant coefficients:

Ψ(t) ∗ [P(Ḋ)y] = f ∗ g, (1.45)

under the same initial conditions as above. By taking Sumudu transform for (1.45) and
inverse Sumudu transform we have

y = S−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F(u)G(u)
k!ukP(u)

+
1

P(u)

(
1
u

1
u2

· · · 1
un+1

)
⎛
⎜⎜⎜⎜⎜⎝

a1 a2 · · · an

a2 a3 · · an 0
a3 · · an 0 0
· · · · · .
an 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

·
·
·

yn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (1.46)

provided that the inverse transform exists. Now, if we substitute (1.46) into (1.45), we
obtain the non homogeneous term of (1.45) f ∗ g and polynomial in the form of Φ(t) =
−∑n

k=1(1/k!)t
k.
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In particular consider the differential equation in the form of

y′′′ − y′′ + 4y′ − 4y = et ∗ sin(t), t > 0,

y(0) = 1, y′(0) = 4, y′′(0) = 1.
(1.47)

On using (1.29) we have

(
1
u3

− 1
u2

+
4
u
− 4
)
S
(
y
)
(u) = uS

[
et
]
S[sin(t)] +MP (u)ϕ

(
y, 4

)
, (1.48)

MP (u)ϕ
(
y, 4

)
=
(
1
u

1
u2

1
u3

)
⎛
⎜⎜⎝

4 −1 1

−1 1 0

1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1

4

1

⎞
⎟⎟⎠ =

1
u
+

3
u2

+
1
u3

(1.49)

after simplifying (1.48), we have

Y (u) =
u5

(1 − u)(4u2 + 1)(1 − u + 4u2 − 4u3)
+

(
u2 + 3u + 1

)

(1 − u + 4u2 − 4u3)
. (1.50)

By replacing the complex variables u by 1/s then (1.50) becomes

Y

(
1
s

)
=

s

(s2 + 4)(s2 + 1)(s − 1)2
+

s
(
s2 + 3s + 1

)

(s2 + 1)(s − 1)
. (1.51)

To obtain the inverse Sumudu transform for (1.51) we use the following formula

S−1(Y (s)) =
1

2πi

∫ γ+i∞

γ−i∞
estY

(
1
s

)
ds

s
=
∑

residues
[
est

Y (1/s)
s

]
, (1.52)

for more details see [18]. Then the solution of (1.47) given by

y(t) =
1
6
cos(t) +

1
10

ett +
43
50

et − 2
75

cos(2t) +
38
25

sin(2t). (1.53)

Now if we multiply the right-hand side of (1.47) by t2∗ then the equation becomes

t2 ∗ (y′′′ − y′′ + 4y′ − 4y
)
= 2 cos(2t) − sin(2t), t > 0,

y(0) = 1, y′(0) = 4, y′′(0) = 1,
(1.54)

by applying similar method that we used above we obtain the solution of (1.54) in the form
of

y1 =
1
12

sin(t) +
27
25

et +
1
20

ett − 2
25

cos(2t) +
209
150

sin(2t). (1.55)
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Now, if we substitute the solution of nonconstant coefficient in (1.54) we obtain the solution
of the non homogeneous part of (1.54) plus the following terms −(1/2)t2.

In fact the Sumudu transform is also applicable to the system of differential equations,
see the details in [17].

Example 1.7. Solve for t > 0 the system of two equations

x′′ + 2y′ − 2x = − sin(t), x(0) = 1, x′(0) = 2,

y′′ − 2x′ − 2y = cos(t) − 2, y(0) = 0, y′(0) = 1.
(1.56)

The matrix

P(u) =

⎡
⎢⎢⎣

1
u2

− 2
2
u

− 2
u

1
u2

− 2

⎤
⎥⎥⎦, (1.57)

and we have det[P(u)] = 1/u4 + 4 which has degree 4 = N(P). Thus P regular. Now by
applying Sumudu transform to the above system we have

P(u)S
(
x
y

)
(u) =

⎡
⎢⎢⎣
− u

u2 + 1

−1 + 2u2

u2 + 1

⎤
⎥⎥⎦ + ΨP (u)ϕ

(
y,N(P)

)
, (1.58)

where ΨP (u)ϕ(y,N(P)) given by

ΨP (u)ϕ
(
y,N(P)

)
=

⎡
⎢⎣

1
u2

1
u

1
u

0

− 1
u

0
1
u2

1
u

⎤
⎥⎦

⎡
⎢⎢⎣

1
2
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎣
1 + 2u
u2

− 1
u

⎤
⎥⎦. (1.59)

Then we obtain

P(u)−1 =

⎡
⎢⎢⎢⎣

u2(1 − 2u2)

1 + 4u4

−2u3

1 + 4u4

2u3

1 + 4u4

u2(1 − 2u2)

1 + 4u4

⎤
⎥⎥⎥⎦. (1.60)

Equation (1.58) becomes

S

(
x
y

)
(u) = P−1(u)

⎡
⎢⎢⎣
− u

u2 + 1

−1 + 2u2

u2 + 1

⎤
⎥⎥⎦ + P−1(u)

[
ΨP (u)ϕ

(
y,N(P)

)]
, (1.61)
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finally, by taking inverse Sumudu transform (1.61) we obtain the solution of the system as
follows

x(t) = sin(t) + et cos(t),

y(t) = − cos(t) + et sin(t) + 1,
(1.62)

thus based on the above discussions we note that the Sumudu transform can be applied
for system of differential equations thus can be used in many engineering problems. Similar
applications can also be seen in [5, 10, 11, 13, 19].

Acknowledgments

The authors gratefully acknowledge that this research was partially supported by the
University Putra Malaysia under the Research University Grant Scheme 05-01-09-0720RU
and Fundamental Research Grant Scheme 01-11-09-723FR. The authors also thank the
referee(s) for very constructive comments and suggestions that improved the paper.

References

[1] G. K. Watugala, “Sumudu transform: a new integral transform to solve differential equations and
control engineering problems,” International Journal of Mathematical Education in Science and Technology,
vol. 24, no. 1, pp. 35–43, 1993.

[2] M. A. Asiru, “Sumudu transform and the solution of integral equations of convolution type,”
International Journal of Mathematical Education in Science and Technology, vol. 32, no. 6, pp. 906–910,
2001.

[3] M. A. Asiru, “Further properties of the Sumudu transform and its applications,” International Journal
of Mathematical Education in Science and Technology, vol. 33, no. 3, pp. 441–449, 2002.

[4] M. A. Asiru, “Classroom note: application of the Sumudu transform to discrete dynamic systems,”
International Journal of Mathematical Education in Science and Technology, vol. 34, no. 6, pp. 944–949, 2003.

[5] F. B.M. Belgacem, A. A. Karaballi, and S. L. Kalla, “Analytical investigations of the Sumudu transform
and applications to integral production equations,” Mathematical Problems in Engineering, no. 3-4, pp.
103–118, 2003.

[6] H. Eltayeb, A. Kiliçman, and B. Fisher, “A new integral transform and associated distributions,”
Integral Transforms and Special Functions, vol. 21, no. 5, pp. 367–379, 2010.

[7] V. G. Gupta and B. Sharma, “Application of Sumudu transform in reaction-diffusion systems and
nonlinear waves,” Applied Mathematical Sciences, vol. 4, no. 9, pp. 435–446, 2010.

[8] G. K. Watugala, “Sumudu transform: a new integral transform to solve differential equations and
control engineering problems,”Mathematical Engineering in Industry, vol. 6, no. 4, pp. 319–329, 1998.

[9] G. K. Watugala, “The Sumudu transform for functions of two variables,” Mathematical Engineering in
Industry, vol. 8, no. 4, pp. 293–302, 2002.

[10] A. Kadem, “Solving the one-dimensional neutron transport equation using Chebyshev polynomials
and the Sumudu transform,”Analele Universitatii din Oradea. Fascicola Matematica, vol. 12, pp. 153–171,
2005.

[11] F. B. M. Belgacem, “Boundary value problem with indefinite weight and applications,” International
Journal of Problems of Nonlinear Analysis in Engineering Systems, vol. 10, no. 2, pp. 51–58, 1999.

[12] F. B. M. Belgacem and A. A. Karaballi, “Sumudu transform fundamental properties investigations
and applications,” Journal of Applied Mathematics and Stochastic Analysis, pp. 1–23, 2006.

[13] M. G. M. Hussain and F. B. M. Belgacem, “Transient solutions of Maxwell’s equations based on
sumudu transform,” Progress in Electromagnetics Research, vol. 74, pp. 273–289, 2007.

[14] S. Weerakoon, “Complex inversion formula for Sumudu transform,” International Journal of
Mathematical Education in Science and Technology, vol. 29, no. 4, pp. 618–621, 1998.



Mathematical Problems in Engineering 13

[15] S. Weerakoon, “Application of Sumudu transform to partial differential equations,” International
Journal of Mathematical Education in Science and Technology, vol. 25, no. 2, pp. 277–283, 1994.
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