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We use an approximation method to study the solution to a nonlinear heat conduction equation in a
semi-infinite domain. By expanding an energy density function (defined as the internal energy per
unit volume) as a Taylor polynomial in a spatial domain, we reduce the partial differential equation
to a set of first-order ordinary differential equations in time. We describe a systematic approach to
derive approximate solutions using Taylor polynomials of a different degree. For a special case, we
derive an analytical solution and compare it with the result of a self-similar analysis. A comparison
with the numerically integrated results demonstrates good accuracy of our approximate solutions.
We also show that our approximation method can be applied to cases where boundary energy
density and the corresponding effective conductivity are more general than those that are suitable
for the self-similar method. Propagation of nonlinear heat waves is studied for different boundary
energy density and the conductivity functions.

1. Introduction

The nonlinear heat equation, as given in (1.1), has applications in various branches of science
and engineering, including thermal processing of materials [1], liquid movement in porous
media [2], and radiation heat wave [3]. In particular, radiation heat wave plays an important
role in indirect drive inertial confinement fusion (ICF) [4] and has a potential application
in measurement of opacity [5] and equation of state [6], of hot and dense materials. In this
paper, we focus on analysis of nonlinear heat waves governed by a nonlinear heat equation
in a semi-infinite domain, with zero initial condition and a prescribed boundary condition
at the origin. In principle, a semi-infinite solid extends to infinity in all but one direction.
As a result, a single identifiable surface characterizes a semi-infinite solid as illustrated in
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Figure 1. The semi-infinite solid provides a useful idealization for two types of practical
problems in transient heat conduction. For instance, it may be used to determine transient
heat transfer near the surface of the earth or to approximate the transient response of a finite
solid, such as a thick slab. For the slab application, the approximation would be reasonable
for the early portion of the transient near the surface. In many applications, if a thermal
change is imposed at the surface, a one-dimensional temperature wave will be propagated by
heat conduction within the semi-infinite solid. Specifically, we study the 1D nonlinear heat
conduction equation:

ρ(T)cp(T)
∂T(x, t)
∂t

=
∂

∂x

(
k(T)

∂T

∂x

)
, (1.1)

where ρ is density, cp is the specific heat at constant pressure, and k is thermal conductivity. In
this paper, we assume all of them depend only on temperature T(x, t). Following Zel’dovich
and Raizer [3], we introduce internal energy per unit volume

E(T) =
∫T

0
ρ(θ)cp(θ)dθ, (1.2)

then the temperature can be solved as a function of the energy density E(x, t)

T(x, t) = T(E), (1.3)

and the nonlinear heat conduction equation can be rewritten in terms of E,

∂E(x, t)
∂t

=
∂

∂x

(
ke(E)

∂E

∂x

)
, (1.4)

where

ke(E) = k(E)
dT

dE
(1.5)

is considered as effective heat conductivity in this paper. By virtue of (1.2) and (1.3), we have
a one-to-one function correspondence between the temperature T and the energy density E.

With the heat flux J(x, t) defined as

J(x, t) = −ke(E)
∂E

∂x
, (1.6)

equation (1.4) can be equivalently written as

∂E

∂t
= −∂J(x, t)

∂x
. (1.7)
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Figure 1: Schematic of a semi-infinite body.

We choose the initial and boundary conditions as

T(x, 0) = 0 for x > 0,

T(0, t) = T0(t)
(1.8)

or correspondingly

E(x, 0) = 0, for x > 0, (1.9)

E(0, t) = E0(t). (1.10)

Also, we assume that the effective heat conductivity ke(E) tends to zero with the energy
density E; therefore, the thermal wave has a finite extension and a definite front [3]. With
x = h(t) as the front coordinate of thermal wave at time t, we have

E(x, t)|x≥h(t) = ke(E)|x≥h(t) = J(x, t)|x≥h(t) = 0. (1.11)

Analytical solutions can be obtained for materials that possess constant thermophys-
ical properties. However, when the thermophysical properties are affected by temperature,
finite-difference techniques or elaborate analytical procedures need to be employed. For
example, Barbaro et al. [7] applied the Kirchhoff transform to the enthalpy formulation of
the heat conduction equation to obtain approximate solutions for temperature-dependent
thermal properties. The solutions compared favorably with those produced by numerical
techniques. Singh et al. [8] used a meshless element-free Galerkin method to obtain numerical
solutions of a semi-infinite solid with temperature-dependent thermal conductivity. A
quasilinearization scheme is adopted to avoid iterations, and for the time integration the
backward-difference procedure was employed.

Further, a variety of analytic techniques [9] have been applied to the nonlinear
heat conduction problems with temperature-dependent thermal conductivity. One of main
approaches is the similarity analysis. Marshak [10] was the first to obtain a self-similar
solution to the nonlinear radiation heat conduction equation. Zel’dovich and Razier [3] gave
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a thorough and clear account of the propagation of thermal wave using self-similar method.
Recently, Sigel et al. [11–14] extended the self-similar approach and applied it to experimental
study of the ablative and nonablative radiation thermal wave. However, all self-similar
schemes impose restriction on the choices of boundary temperature and heat conductivity.
Specifically, in order to obtain a self-similar solution to the parabolic differential equation,
boundary temperature was assumed to be either an exponential [10] or a power function [3]
of time and conductivity was assumed to be a power function of temperature. This limited
the application of self-similar method to more general and realistic cases. Another approach,
initiated by Parlange, is based on the observation that even though the conductivity may be a
complicated function, its integral is far easier to handle. By assuming such a chosen integral
a quadratic polynomial in spatial coordinate, Parlange et al. [2] obtained approximate
analytical solution of the nonlinear diffusion equation for arbitrary boundary conditions.

In this paper, we propose to analyze an integral with respect to the spatial variable
involving energy density E directly. First an integral form of the nonlinear diffusion equation
is derived. Due to the strong nonlinear nature of the problem considered here, the profile of
the energy density has a sharp wave front. This allows us to approximate the integrals in the
new formulation by expanding the energy density as Taylor polynomial of spatial variable
from the boundary point to the wave front. Then we derive a system of ordinary differential
equations governing the evolution of wave front and energy density profile approximately.
These will be illustrated in Section 2. Approximation using a linear Taylor expansion will be
described in Section 2.1. One advantage of our approach is that it can be improved by simply
expanding the energy density as a higher-order polynomial, as discussed in Section 2.2.
In addition, our method has no requirements on the form of boundary temperature and
conductivity, or correspondingly, no requirements on the form of boundary energy density
and effective conductivity. (As mentioned earlier, all self-similar methods do.) In general,
our method is suitable for many different function forms describing the dependency of
heat conductivity on energy density, as long as it equals zero when energy density is zero
(e.g., ke = k0(E + bE2 + · · · )). Therefore, our method is more general as compared with
the self-similar method. To illustrate the idea, several examples are studied in Section 3,
demonstrating good agreement between numerical and our approximate solutions of the heat
conduction equation. Finally, we make concluding remarks in Section 4.

2. Approximation Method

We start with a derivation of an integral formulation of our nonlinear heat wave problem
described by (1.4) and (1.9)–(1.11). Integrating (1.7) from 0 to x, one finds

∂

∂t

[∫x
0
E(ζ, t)dζ

]
= J0(t) − J(x, t), (2.1)

where

J0(t) = J(0, t) = −ke(E0)E1(t), (2.2)

E1(t) =
∂E(x, t)
∂x

∣∣∣∣
x=0

. (2.3)
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We define

S(E) =
∫E

0
ke(ζ)dζ, (2.4)

and from (1.6) we may write the heat flux as

J(x, t) = −∂S(E)
∂x

. (2.5)

Also it can be verified that

S(x, t)|x=h(t) = S(E)|E=0 = 0. (2.6)

Substituting (2.5) into (2.1) and integrating (2.1) from 0 to x, we obtain

∂

∂t

[∫x
0
dη

∫η
0
E(ζ, t)dζ

]
= S(x, t) − S(E0) + J0(t)x. (2.7)

Noting that

∂

∂t

[∫x
0
dη

∫η
0
E(ζ, t)dζ

]
=
∂

∂t

[∫x
0
(x − ζ)E(ζ, t)dζ

]

= x
∂

∂t

[∫x
0
E(ζ, t)dζ

]
− ∂

∂t

[∫x
0
ζE(ζ, t)dζ

]
,

(2.8)

then substituting (2.8) and (2.1) into (2.7) results in

∂

∂t

[∫x
0
ζE(ζ, t)dζ

]
= S(E0) − S(x, t) − J(x, t)x. (2.9)

Notice that (2.9) is an equivalent integral form of the nonlinear heat conduction equation
(1.4).

Substituting x = h(t) and the boundary condition (1.11) and (2.6) into (2.9) and (2.1)
gives

d

dt

[∫h
0
ζE(ζ, t)dζ

]
= S(E0), (2.10)

d

dt

[∫h
0
E(ζ, t)dζ

]
= J0(t). (2.11)

It should be noted that up to this point no approximation has been made. We now show that
we can systematically approximate the integrals in (2.10) and (2.11) using Taylor polynomials
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of a different degree for E(x, t) about the boundary point x = 0. This approach leads to an
approximation method for solving the nonlinear heat conduction equation. What follows
next is a derivation of the linear approximation, using the Taylor polynomial of degree 1 for
E(x, t). Higher-order approximation will be described in Section 2.2.

2.1. Linear Approximation

We first study the integral term in (2.11), which represents the area under the energy density
curve. It is well known that when the heat conductivity k(T) is a strong nonlinear function
of temperature T , or correspondingly, when the effective heat conductivity ke(E) is a strong
nonlinear function of energy densityE, the solution to the nonlinear heat conduction equation
exhibits a sharp front. So the integral represented as an area under the energy density function
curve can be approximated by the area under the linear expansion of the energy density from
the boundary point (x = 0) to the wave front (x = h(t)). A similar analysis may be applied
to the integral in (2.10). Therefore, to approximate the integral terms in (2.10) and (2.11), we
expand the energy density E(x, t) as a linear function of x:

E(x, t) ≈ E0(t) + E1(t)x, 0 ≤ x ≤ h(t), (2.12)

where h(t) is the wave front, and E0(t) and E1(t) are defined in (1.10) and (2.3). Notice that
E0(t) is known from the boundary condition (1.10) so that we have two unknown functions
of time, E1(t) and h(t) only. In order to obtain two equations to close the system, we substitute
(2.12) and (2.2) into (2.10) and (2.11). This yields

d

dt

(
E0

2
h2 +

1
3
E1h

3
)

= S(E0), (2.13)

d

dt

(
E0h +

E1

2
h2
)

= −ke(E0)E1. (2.14)

Integrating (2.13) and using the initial condition

h(t)|t=0 = E1h
3
∣∣∣
t=0

= 0, (2.15)

we may solve for h2 in the form

h2 = G(t)
(
E0

2
+
E1h

3

)−1

, (2.16)

where

G(t) =
∫ t

0
S(E0(t1))dt1. (2.17)



Mathematical Problems in Engineering 7

From (2.14), we have

h
d

dt

[
h

(
E0 +

E1h

2

)]
= −ke(E0)E1h (2.18)

or

h2 d

dt

(
E0 +

E1h

2

)
+

1
2

(
E0 +

E1h

2

)
d
(
h2)
dt

= −ke(E0)E1h. (2.19)

Using (2.16), we get

G(t)
(
E0

2
+
E1h

3

)−1 d

dt

(
E0 +

E1h

2

)
+

1
2

(
E0 +

E1h

2

)
d

dt

[
G(t)

(
E0

2
+
E1h

3

)−1
]
= −ke(E0)E1h

(2.20)

or

G(t)
(
E0

2
+
E1h

3

)−1
[

1
2
− 1

6

(
E0 +

E1h

2

)(
E0

2
+
E1h

3

)−1
]
d

dt
(E1h)

= −ke(E0)E1h −
1
2

(
E0 +

E1h

2

)(
E0

2
+
E1h

3

)−1
[
dG(t)
dt

− G(t)
2

(
E0

2
+
E1h

3

)−1dE0

dt

]

−G(t)
(
E0

2
+
E1h

3

)−1dE0

dt
.

(2.21)

Substituting (2.17) into (2.21) yields

[
1
2
− 1

6

(
E0 +

E1h

2

)(
E0

2
+
E1h

3

)−1
]
d

dt
(E1h)

= −ke(E0)E1h

G(t)

(
E0

2
+
E1h

3

)
− 1

2G(t)

(
E0 +

E1h

2

)[
S(E0) −

G(t)
2

(
E0

2
+
E1h

3

)−1dE0

dt

]
− dE0

dt

(2.22)

or

d

dt
(E1h) =

[
1
2
− 1

6

(
E0 +

E1h

2

)(
E0

2
+
E1h

3

)−1
]−1

×
{
−ke(E0)E1h

G(t)

(
E0

2
+
E1h

3

)
− 1

2G(t)

(
E0 +

E1h

2

)
S(E0)

+

[
1
4

(
E0 +

E1h

2

)(
E0

2
+
E1h

3

)−1

− 1

]
dE0

dt

}
.

(2.23)
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Equation (2.23) is a nonlinear ordinary differential equation for E1h. It is easy to
understand that the approximate expansion (2.12) is suitable only for the case of h(t) > 0.
From (2.15), (2.23) is valid only for t > 0. For the initial time, we may simply assume that

d

dt
(E1h)

∣∣∣∣
t=0

= E1h|t=0 = 0. (2.24)

With E0 given in the boundary condition (1.10), E1h can be solved from (2.23), (2.24),
and (2.17). Then the heat wave front h will be available from (2.16) and E1 from E1h and h.
Finally, the approximate values of the energy density E can be estimated using (2.12) and
(1.11).

2.2. Higher-Order Approximation

To improve our approximation to the solution of the nonlinear heat conduction equation,
we extend our linear approximation method, as described in Section 2.1, to higher order.
Following a procedure similar to that in Section 2.1, it is easy to see that the integral term
in (2.11) can be calculated more accurately by expanding the energy density as a quadratic
polynomial of x and we can obtain more accurate wave fronts and energy density profiles. In
general, we may expand the energy density E(x, t) as a Taylor polynomial of degree up to M
(M ≥ 2) in x:

E(x, t) =
M∑
j=0

Ej(t)xj , 0 ≤ x ≤ h(t), (2.25)

Ej(t) =
1
j!
∂jE(x, t)
∂xj

∣∣∣∣∣
x=0

. (2.26)

In this case, we have M + 1 unknowns, E1(t), E2(t), . . . , EM(t), and h(t). (E0(t) is known from
the boundary condition (1.10).) Substituting (2.25) and (2.2) into (2.10) and (2.11) provides
two equations:

d

dt

⎡
⎣M∑
j=0

Ej(t)
j + 2

hj+2

⎤
⎦ = S(E0), (2.27)

d

dt

⎡
⎣M∑
j=0

Ej(t)
j + 1

hj+1

⎤
⎦ = −ke(E0)E1(t). (2.28)

In order to close the system, we need (M−1) more equations. Using (2.4), the heat conduction
equation (1.4) can be written as

∂E(x, t)
∂t

=
∂2S(x, t)
∂x2

. (2.29)
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For positive integer l = 2, . . . ,M, we study

d

dt

[∫h
0
ζlE(ζ, t)dζ

]
. (2.30)

We show in Appendix A that, together with (2.27) and (2.28), this approach leads to the
following M + 1 equations:

h2 = G(t)

⎛
⎝M∑

j=0

Ejh
j

j + 2

⎞
⎠
−1

, (2.31)

M∑
j=1

⎡
⎣ 1
j + 1

− 1
2
(
j + 2

)
(

M∑
i=0

Eih
i

i + 1

)(
M∑
i=0

Eih
i

i + 2

)−1
⎤
⎦h2d

(
Ejh

j
)

dt

= −S1(t)h +

⎡
⎣1

4

(
M∑
i=0

Eih
i

i + 1

)(
M∑
i=0

Eih
i

i + 2

)−1

− 1

⎤
⎦h2dE0

dt
− 1

2

(
M∑
i=0

Eih
i

i + 1

)(
M∑
i=0

Eih
i

i + 2

)−1

S(E0),

(2.32)

M∑
j=1

⎡
⎣ 1
j + l + 1

− l + 1
2
(
j + 2

)
(

M∑
i=0

Eih
i

i + l + 1

)(
M∑
i=0

Eih
i

i + 2

)−1
⎤
⎦h2d

(
Ejh

j
)

dt

=

⎡
⎣ l + 1

4

(
M∑
i=0

Eih
i

i + l + 1

)(
M∑
i=0

Eih
i

i + 2

)−1

− 1
l + 1

⎤
⎦h2dE0

dt

− l + 1
2

(
M∑
i=0

Eih
i

i + l + 1

)(
M∑
i=0

Eih
i

i + 2

)−1

S(E0) + l(l − 1)
M+1∑
j=0

Sj(t)hj

j + l − 1
, l = 2, . . . ,M,

(2.33)

where

Sj(t) =
1
j!
∂jS(x, t)
∂xj

∣∣∣∣∣
x=0

= Sj
(
E0, E1 · · ·Ej

)
, 0 ≤ j ≤M, (2.34)

and SM+1(t) is determined by

M+1∑
j=0

Sj(t)hj = 0. (2.35)

Equations (2.31), (2.32), and (2.33) form a close set for the M + 1 unknowns
E1(t) · · ·EM(t), and h(t). OnceE1(t) · · ·EM(t), and h(t) are available, the energy density profile
can be determined from (2.25) and (1.11).
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For the case of a quadratic approximation, M = 2, as shown in Appendix B, we may
get

h2 = G(t)

(
E0

2
+
E1h

3
+
E2h

2

j + 2

)−1

, (2.36)

d

dt
(E1h) =

1
h2

C0B2 − C2B0

A0B2 −A2B0
=

1
G(t)

⎛
⎝ 2∑

j=0

Ejh
j

j + 2

⎞
⎠C0B2 − C2B0

A0B2 −A2B0
, (2.37)

d

dt

(
E2h

2
)
=

1
h2

A0C2 −A2C0

A0B2 −A2B0
=

1
G(t)

⎛
⎝ 2∑

j=0

Ejh
j

j + 2

⎞
⎠A0C2 −A2C0

A0B2 −A2B0
, (2.38)

where

A0 =
1
2
− 1

6

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1

,

B0 =
1
3
− 1

8

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1

,

(2.39)

C0 = −S1h +

⎡
⎣1

4

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1

− 1

⎤
⎦h2dE0

dt

− 1
2

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1

S(E0),

(2.40)

A2 =
1
4
− 1

2

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1

,

B2 =
1
5
− 3

8

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1

,

(2.41)

C2 =

⎡
⎣3

4

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1

− 1
3

⎤
⎦h2dE0

dt

− 3
2

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1

S(E0) + 2
3∑
j=0

Sj(t)hj

j + 1
,

(2.42)
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and the S1h, S2h
2, and S3h

3 terms that appeared in (2.40) and (2.42) are given by

S1h = h
∂S(x, t)
∂x

∣∣∣∣
x=0

= ke(E0)E1h,

S2h
2 =

h2

2
∂2S(x, t)
∂x2

∣∣∣∣∣
x=0

=
1
2
k′e(E0)(E1h)

2 + ke(E0)E2h
2,

S3h
3 = −

[
S2h

2 + S1h + S(E0)
]
.

(2.43)

Here (2.36), (2.37), and (2.38), forming a close set of equations for h2, E1, and E2, constitutes
the formulas of the quadratic approximation.

3. Comparison with Self-Similar Solution and Numerical Results

In this section, we do comparison of our approximation, described in Section 2, with both
the self-similar method and a direct numerical integration of (1.4), (1.9), and (1.10). First we
consider the case where

ke(E) = ke0E
n, (3.1)

E0 = Λ0 exp(2αt). (3.2)

This is a well-known problem studied by Marshak using self-similar method in [10]. Here,
we derive and compare analytically our linear approximate solution described in Section 2.1
with the Marshak’s self-similar solution. Notice from (2.4) that

S(E) =
ke0E

n+1

n + 1
, (3.3)

and from (2.17) and (3.2) that

G(t) =
∫ t

0

ke0Λn+1
0

n + 1
exp[2α(n + 1)t1]dt1 =

ke0Λn+1
0

2α(n + 1)2

{
exp[2α(n + 1)t] − 1

}
. (3.4)

When t is large, we have from (3.2)

G ≈
ke0E

n+1
0

2α(n + 1)2
. (3.5)
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Substituting (3.1)–(3.3) and (3.5) into (2.23), we obtain

d

dt

(
γnE0

)
=

[
1
2
− 1

6

(
1 +

γn
2

)(1
2
+
γn
3

)−1
]−1

×
{
−2α(n + 1)2E0

(
1
2
+
γn
3

)
− α(n + 1)E0

(
1 +

γn
2

)

+ 2α

[
1
4

(
1 +

γn
2

)(1
2
+
γn
3

)−1

− 1

]
E0

}
,

(3.6)

where

γn(t) =
E1h

E0
. (3.7)

A constant solution to (3.6) can be determined by

γn =

[
1
2
− 1

6

(
1 +

γn
2

)(1
2
+
γn
3

)−1
]−1

×
{
−(n + 1)2

(
1
2
+
γn
3

)
− n + 1

2

(
1 +

γn
2

)
+

[
1
4

(
1 +

γn
2

)(1
2
+
γn
3

)−1

− 1

]}
.

(3.8)

Solving for γn, we have

γn =
3n(2n + 3) +

√
9n2(2n + 3)2 − 24(n + 1)2(n + 2)

8(n + 1)2
− 3

2
. (3.9)

Substituting (3.9) and (3.5) into (2.16) yields

h2 =
12

3n(2n + 3) +
√

9n2(2n + 3)2 − 24(n + 1)2(n + 2)

ke0E
n
0

α (3.10)

or

h =

⎡
⎢⎣ 12n2

3n(2n + 3) +
√

9n2(2n + 3)2 − 24(n + 1)2(n + 2)

⎤
⎥⎦

1/2

hMar ≡ Cnh
Mar, (3.11)

where the Marshak’s solution, hMar, is given by

hMar =
1
n

√
ke0E

n
0

α
. (3.12)
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Figure 2: Ratio between the linear approximation and the Marshak’s solution, as a function of n.

Since we have

⎡
⎢⎣ 12n2

3n(2n + 3) +
√

9n2(2n + 3)2 − 24(n + 1)2(n + 2)

⎤
⎥⎦

1/2

−→ 1, as n −→ ∞, (3.13)

equation (3.11) indicates that our linear approximate solution tends to Marshak’s result when
n becomes large and in general we have

1 >
h

hMar
> 0.81, for n ≥ 1.2. (3.14)

In Figure 2, we plot Cn against n to show the limiting behavior as given in (3.13).
Now we perform numerical comparisons. These include comparisons of our approxi-

mate solutions with self-similar solution and with the numerically integrated solutions. Four
examples will be given. In the first example, we choose, in (3.1) and (3.2), ke0 = Λ0 = 1,
n = 4, and α = 0.9 so that ke(E) = E4 and E0(t) = exp(1.8t). For this example, both our linear
approximation and Marshak’s self-similar solution are suitable and are given in (3.11) and
(3.12), respectively. In Figure 3, we show the heat wave front h as a function of time from
numerically integrated (solid line), linear approximate (dashed line), quadratic approximate
(dotted line), and Marshak’s (dotted-dashed line) solutions. Both Marshak’s and our two
approximate solutions agree well with the numerically integrated result. Marshak’s solution
is perhaps slightly more accurate than our linear approximation. However, we see a clear
improvement of our quadratic approximation over the linear case and it becomes comparable
in accuracy with the Marshak’s solution. Here we point out that our approximation method
has advantage in two aspects. First, our method has already been systematically extended
to higher-order approximation (see Section 2.2) and we have shown clear improvement in
accuracy from linear to quadratic approximations. Second, notice that the self-similar method
that Marshak used to derive his solution is only suitable for the conductivity being a power
function of energy density and boundary energy density being either an exponential [10]
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Figure 3: Heat wave front for numerical integrated (solid), linear approximate (dashed), quadratic
approximate (dotted), and Marshak’s (dotted-dashed) solutions as a function of time for the case where
E0(t) = exp(1.8t) and ke(E) = E4.
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Figure 4: Heat wave front for numerical integrated (solid), linear approximate (dashed), and quadratic
approximate (dotted) solutions as a function of time for the case where E0(t) = 1 and effective conductivity
is given by (3.15).

or a power function [3] of time. Our approximation method described in Section 2 does not
have these restrictions. In particular, as mentioned earlier, our method is suitable for many
different function forms describing the dependency of heat conductivity on energy density, as
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Figure 5: Same as Figure 4 for the case where ke(E) = 400E4 and boundary energy density is given by
(3.16).
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E(0, t) = t0.5 − sin(6πt0.5)/6π

Exact
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Figure 6: Same as Figure 4 for the case boundary energy density is given by (3.16) and effective
conductivity given by (3.15).

long as it equals zero when energy density is zero. To demonstrate this idea, we choose in the
second example, a constant boundary energy density E0(t) = 1 and an effective conductivity

ke(E) = 10E2.5

(
1 +

10E2.5

7

)
exp
(

2E2.5
)
+ 40E4.5

(
1 +

9E4.5

11

)
exp
(
E4.5
)
. (3.15)
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Figure 7: Wave-front velocity as a function of time for the case in Figure 5.
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Figure 8: Boundary energy density as a function of time for the case in Figure 7.

This effective conductivity is remarkably different from pure power law of energy density.
Therefore, self-similar method is not suitable (and Marshak’s solution is not available).
However, our approximate solutions are still available. The third example corresponds to
effective conductivity, ke(E) = 400E4, and boundary energy density,

E0(t) =
√
t −

sin
(

6π
√
t
)

6π
. (3.16)

This time, effective conductivity is a pure power law of energy density, but the boundary
energy density is neither a pure exponential nor a power law function of time. Finally, in
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Figure 9: Evolution of heat wave over the entire field for the case in Figure 5.
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sin(6πt0.5)/6π

ke(E) = 10E2.5(1 + 10E2.5/7)exp(2E2.5)

+ 40E4.5(1 + 9E4.5/11)exp(E4.5)

Figure 10: Evolution of heat wave over the entire field for the case in Figure 6.

order to construct a stringent test case, we combine, in the fourth example, the effective
conductivity from the second example and boundary energy density from the third example
as given in (3.15) and (3.16), respectively. Again, self-similar method is not suitable for both
of these last two examples; while our approximation method is. In Figures 4, 5, and 6, we
show the heat wave front as a function of time from the numerically integrated (solid line),
the linear approximate (dashed line), and the quadratic approximate (dotted line) solutions
for examples 2, 3, and 4, respectively. One observes a good agreement of our two approximate
solutions to the numerically integrated result for all three examples, including the stringent
test case of the example 4. This demonstrates that our approach can provide approximate
solutions of nonlinear heat conduction equation for more general conductivity and boundary
energy density.
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Next, in Figure 7 we show velocity values of the heat wave as a function of time from
numerically integrated (solid line), the linear approximate (dashed line), and the quadratic
approximate (dotted line) solutions for the third example. The boundary energy density
for this example, given by (3.16), is demonstrated in Figure 8. It is interesting to note that
the behavior of velocity of heat wave is strongly influenced by the boundary condition. As
shown in Figures 7 and 8, when the boundary energy density increases rapidly with time,
the heat wave will accelerate; when the boundary energy density increases slowly with
time, the velocity of heat wave will decrease. Finally, in order to view the evolution of the
nonlinear heat wave over the entire field for this example, we plot, in Figure 9, the numerical
solution of the energy density versus x at different times. Figure 10 is a similar plot for the
solution of energy density in example 4. In both cases, the nonlinear heat wave accelerates
and decelerates according to the rapid and slow increases of the boundary energy density at
the origin, respectively.

4. Conclusion

We have developed an approximation method for solving nonlinear heat conduction
problem. Comparison with both self-similar and numerical integrated solutions confirms the
accuracy of our approximate results and it also indicates that our approximation method is
suitable and efficient for more general and realistic cases since it assumes no restriction on
the form of boundary energy density and heat conductivity. The consistent improvement of
the quadratic approximation over the linear one observed in all of the Figures 3–7 indicates
that our method can be systematically extended to achieve higher order of accuracy. Finally,
our approximation results also reveal a strong dependence of the heat wave velocity on the
boundary energy density.

Through our method, we have reduced a mathematical problem with a partial
differential equation, which may be considered as an infinite number of ordinary differential
equations, to a set of finite number of ordinary differential equations. In particular, for the
linear approximation given in Section 2.1, the problem is reduced to only one nonlinear
ordinary differential equation (2.23) and an algebraic equation (2.16). These provide
opportunity for further study of the nonlinear dynamics of the problem. The mathematical
formulas, such as (2.16) resulted from our approximation method, could also useful in
engineering practices.

The idea in our approximation method is quite general, as it can be applied to any
nonlinear physical processes in which the solution exhibits wave front behavior. This makes
our approximation methodology possibly be useful in many application fields, including
fluid dynamics, combustion, and environmental and material sciences.

Appendices

A. Derivation of Governing Equations for
Higher-Order Approximation

We show here that we can obtainM−1 equations from (2.30). Together with (2.27) and (2.28),
we obtain M + 1 equations.
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For positive integers l = 2, . . . ,M, we do integration by part in (2.30) and use (2.29) to
obtain

d

dt

[∫h
0
xlE(x, t)dx

]
= hlE(h, t)

dh

dt
+
∫h

0
xl
∂E(x, t)

∂t
dx

= hlE(h, t)
dh

dt
+
∫h

0
xl
∂2S(x, t)
∂x2

dx

= hlE(h, t)
dh

dt
+ xl

∂S(x, t)
∂x

∣∣∣∣
x=h

x=0
− l
∫h

0
xl−1 ∂S(x, t)

∂x
dx

= hlE(h, t)
dh

dt
+ xlJ(x, t)

∣∣∣x=h
x=0
− l xl−1S(x, t)

∣∣∣x=h
x=0

+ l(l − 1)
∫h

0
xl−2S(x, t)dx

= hlE(h, t)
dh

dt
+ hl J(x, t)|x=h − lhl−1S(x, t)|x=h + l(l − 1)

∫h
0
xl−2S(x, t)dx.

(A.1)

Substituting (1.11), (2.6), and (2.25) into (A.1) yields

d

dt

⎡
⎣M∑
j=0

Ej(t)hj+l+1

j + l + 1

⎤
⎦ = l(l − 1)

∫h
0
xl−2S(x, t)dx, l = 2, . . . ,M. (A.2)

Noting that from (1.9) S(x, t) is a function of energy density E, we may expand S(x, t) as a
polynomial of x. Since

S(x, t) = S(E),

ke(E) =
dS(E)
dE

,

∂S(x, t)
∂x

= ke(E)
∂E(x, t)
∂x

,

∂2S(x, t)
∂x2 =

∂

∂x

[
ke(E)

∂E(x, t)
∂x

]
=
∂ke(E)
∂x

∂E(x, t)
∂x

+ ke(E)
∂2E(x, t)
∂x2

= k′e(E)
[
∂E(x, t)
∂x

]2

+ ke(E)
∂2E(x, t)
∂x2

,

(A.3)

where

k′e(E) ≡
dke(E)
dE

, (A.4)
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so

S(x, t)|x=0 = S(E(0, t)) = S(E0),

∂S(x, t)
∂x

∣∣∣∣
x=0

= ke(E0)E1(t),

1
2
∂2S(x, t)
∂x2

∣∣∣∣∣
x=0

=
1
2
k′e(E0)E2

1(t) + ke(E0)E2(t).

(A.5)

Here we have used (2.26). It is easy to show that any of ∂jS(x, t)/∂xj |x=0 can be represented
as a function of E0(t), E1(t) · · ·Ej(t). With E0(t), E1(t) · · ·EM(t), and boundary condition (2.6)
given, we may approach S(x, t) as

S(x, t) =
M+1∑
j=0

Sj(t)xj , 0 ≤ x ≤ h(t), (A.6)

where

Sj(t) =
1
j!
∂jS(x, t)
∂xj

∣∣∣∣∣
x=0

= Sj
(
E0, E1 · · ·Ej

)
, for 0 ≤ j ≤M, (A.7)

and SM+1(t) is determined by

M+1∑
j=0

Sj(t)hj = 0. (A.8)

Substituting (A.6) into (A.2) gives

d

dt

⎡
⎣M∑
j=0

Ej(t)hj+l+1

j + l + 1

⎤
⎦ = l(l − 1)

M+1∑
j=0

Sj(t)hj+l−1

j + l − 1
, l = 2, . . . ,M, (A.9)

or

h2 d

dt

⎛
⎝M∑

j=0

Ejh
j

j + l + 1

⎞
⎠ +

l + 1
2

⎛
⎝M∑

j=0

Ejh
j

j + l + 1

⎞
⎠d
(
h2)
dt

= l(l − 1)
M+2∑
j=0

Sj(t)hj

j + l − 1
, l = 2, . . . ,M.

(A.10)

Integrating (2.27) and using (2.17) yields

h2 = G(t)

⎛
⎝M∑

j=0

Ejh
j

j + 2

⎞
⎠
−1

, (A.11)
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so

d
(
h2)
dt

= S(E0)

⎛
⎝M∑

j=0

Ejh
j

j + 2

⎞
⎠
−1

−G(t)

⎛
⎝M∑

j=0

Ejh
j

j + 2

⎞
⎠
−2⎛
⎝M∑

j=0

1
j + 2

d
(
Ejh

j
)

dt

⎞
⎠

= S(E0)

⎛
⎝M∑

j=0

Ejh
j

j + 2

⎞
⎠
−1

− h
2

2

⎛
⎝M∑

j=0

Ejh
j

j + 2

⎞
⎠
−1
dT0

dt

− h2

⎛
⎝M∑

j=0

Ejh
j

j + 2

⎞
⎠
−1⎛
⎝M∑

j=1

1
j + 2

d
(
Ejh

j
)

dt

⎞
⎠.

(A.12)

Substituting (A.11) and (A.12) into (A.10), we get

M∑
j=1

⎡
⎣ 1
j + l + 1

− l + 1
2
(
j + 2

)
(

M∑
i=0

Eih
i

i + l + 1

)(
M∑
i=0

Eih
i

i + 2

)−1
⎤
⎦h2d

(
Ejh

j
)

dt

=

⎡
⎣ l + 1

4

(
M∑
i=0

Eih
i

i + l + 1

)(
M∑
i=0

Eih
i

i + 2

)−1

− 1
l + 1

⎤
⎦h2dE0

dt

− l + 1
2

(
M∑
i=0

Eih
i

i + l + 1

)(
M∑
i=0

Eih
i

i + 2

)−1

S(E0) + l(l − 1)
M+1∑
j=0

Sj(t)hj

j + l − 1
, l = 2, . . . ,M.

(A.13)

Similarly, substituting (A.11) and (A.12) into (2.28) yields

M∑
j=1

⎡
⎣ 1
j + 1

− 1
2
(
j + 2

)
(

M∑
i=0

Eih
i

i + 1

)(
M∑
i=0

Eih
i

i + 2

)−1
⎤
⎦h2d

(
Ejh

j
)

dt

= −S1(t)h +

⎡
⎣1

4

(
M∑
i=0

Eih
i

i + 1

)(
M∑
i=0

Eih
i

i + 2

)−1

− 1

⎤
⎦h2dE0

dt
− 1

2

(
M∑
i=0

Eih
i

i + 1

)(
M∑
i=0

Eih
i

i + 2

)−1

S(E0).

(A.14)

Equations (A.11), (A.14), and (A.13) are equations (2.31), (2.32), and (2.33), respectively.
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B. Derivation of Governing Equations for Quadratic Approximation

For the case of quadratic approximation, M = 2. Therefore, l = 2 only in (2.33). In particular,
(2.33) and (2.32) reduce, respectively, to

⎡
⎣1

4
− 1

2

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1
⎤
⎦h2d(E1h)

dt
+

⎡
⎣1

5
− 3

8

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1
⎤
⎦h2d

(
E2h

2)
dt

= 2
4∑
j=0

Sj(t)hj

j + 1
+

⎡
⎣3

4

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1

− 1
3

⎤
⎦h2dE0

dt

− 3
2

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1

S(E0),

(B.1)
⎡
⎣1

2
− 1

6

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1
⎤
⎦h2d(E1h)

dt
+

⎡
⎣1

3
− 1

8

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1
⎤
⎦h2d

(
E2h

2)
dt

= −S1(t)h +

⎡
⎣1

4

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1

− 1

⎤
⎦h2dE0

dt

− 1
2

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1

S(E0).

(B.2)

Setting M = 2 in (2.31), we find that

h2 = G(t)

(
E0

2
+
E1h

3
+
E2h

2

j + 2

)−1

. (B.3)

Define

A0 =
1
2
− 1

6

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1

,

B0 =
1
3
− 1

8

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1

,

C0 = −S1h +

⎡
⎣1

4

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1

− 1

⎤
⎦h2dE0

dt

− 1
2

(
2∑
i=0

Eih
i

i + 1

)(
2∑
i=0

Eih
i

i + 2

)−1

S(E0),
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A2 =
1
4
− 1

2

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1

B2 =
1
5
− 3

8

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1

,

C2 =

⎡
⎣3

4

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1

− 1
3

⎤
⎦h2dE0

dt

− 3
2

(
2∑
i=0

Eih
i

i + 3

)(
2∑
i=0

Eih
i

i + 2

)−1

S(E0) + 2
3∑
j=0

Sj(t)hj

j + 1
,

(B.4)

where

S1h = h
∂S(x, t)
∂x

∣∣∣∣
x=0

= ke(E0)E1h,

S2h
2 =

h2

2
∂2S(x, t)
∂x2

∣∣∣∣∣
x=0

=
1
2
k′e(E0)(E1h)

2 + ke(E0)E2h
2,

S3h
3 = −

(
S2h

2 + S1h + S(E0)
)
.

(B.5)

Solving (d/dt)(E1h) between (B.1) and (B.2) yields

d

dt
(E1h) =

1
h2

C0B2 − C2B0

A0B2 −A2B0
=

1
G(t)

⎛
⎝ 2∑

j=0

Ejh
j

j + 2

⎞
⎠C0B2 − C2B0

A0B2 −A2B0
. (B.6)

Similarly for (d/dt)(E2h
2),

d

dt

(
E2h

2
)
=

1
h2

A0C2 −A2C0

A0B2 −A2B0
=

1
G(t)

⎛
⎝ 2∑

j=0

Ejh
j

j + 2

⎞
⎠A0C2 −A2C0

A0B2 −A2B0
. (B.7)

Equations (B.3), (B.6), and (B.7) are (2.36), (2.37), and (2.38), respectively.
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