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This work aims to study some dynamical problems in the framework of nonlinear theory
of micromorphic thermoelastic solids. First, the continuous dependence of smooth admissible
thermodynamic processes upon initial state and supply terms is investigated in the region of state
space where the internal energy is a convex function and the elastic material behaves as a definite
conductor of heat. Then, a uniqueness result is demonstrated.

1. Introduction

Motivated by experimental studies, various continuous models of deformable bodies have
been proposed in literature in order to describe the thermomechanical behavior of media
with microstructure. In the micromorphic theory introduced by Eringen and Şuhubi [1] and
Eringen [2], a material body is envisioned as a collection of a large number of deformable
particles (subcontinua or microcontinua). Each particle possesses finite size and directions
representing its microstructure. The microdeformation gives rise to extra degrees of freedom.
Thus, the particle has nine independent degrees of freedom describing both rotations and
stretches, in addition to the three classical translational degrees of freedom of its center.

Many deformable solids point to the necessity for the incorporation of micromotions
into mechanics. Porous solids with deformable grains and pores, composites, polymers with
deformable molecules, crystals, solids with microcracks, dislocation and disclinations, and
biological tissues (bones and muscles) are just a few examples of deformable solids which
require the degrees of freedom given by the micromorphic theory. As a consequence, the
micromorphic mechanics is the subject of detailed studies both from theoretical and practical
reasons. In the linear context, uniqueness theorems have been proved by Soós [3] and Ieşan
[4], variational principles have been established by Maugin [5] and Nappa [6], applications



2 Mathematical Problems in Engineering

to earthquake problems have been suggested by Teisseyre [7], Dresen et al. [8], and Teisseyre
et al. [9], plane harmonic waves have been studied by Eringen [2], reciprocal and existence
theorems have been demonstrated by Ieşan [4], and material constants for isotropic materials
have been determined by Chen and Lee [10].

On the other hand, the theory has been generalized to mixtures of micromorphic
materials by Twiss and Eringen [11, 12], to higher-grade materials by Eringen [13],
and to electromagnetic micromorphic thermoelastic solids by Eringen [14]. Moreover, the
constitutive theory of micromorphic thermoplasticity has been formulated by Lee and Chen
[15], the concept of material forces was extended to micromorphic theory by Lee and Chen
[16], the problem of heat flow in a micromorphic continua with microtemperatures has been
investigated by Ieşan and Nappa [17].

This paper deals with the nonlinear micromorphic thermoelasticity. The main purpose
is to investigate the stability of smooth thermodynamic processes. In this sense, we use the
method developed for nonlinear thermoelastic solids which are nonconductor of heat by
Dafermos [18] and updated later by Chiriţă [19] to heat-conducting thermoelastic materials.
In the general context of heat-conducting nonlinear micromorphic solids, we prove the
continuous dependence of smooth admissible thermodynamic processes upon initial state
and supply terms. We present also a uniqueness theorem. Both results are obtained in the
region of state space where the internal energy is a convex function and the elastic material
behaves as a definite conductor of heat.

We recall that the Dafermos method has been utilized recently to prove continuous
dependence results for nonconductor-of-heat mixtures [20–22] and for materials with voids
[23].

The paper is organized as follows. In the next section, we recall the basic equations
of the nonlinear theory of micromorphic thermoelasticity. Then, in Section 3, we use the
consequences of the second law of thermodynamics to prove a uniqueness theorem and
the continuous dependence of smooth thermodynamic processes upon initial state and body
loads.

2. Basic Formulation

We consider a micromorphic continuum, and we assume that at time t0 the body occupies
the region B of the Euclidean three-dimensional space and is bounded by a piecewise
smooth surface ∂B. Following [2], a point C in the body is characterized by its rectangular
coordinatesX1,X2, X3, in a fixed system of rectangular Cartesian axesOXK,K = 1, 2, 3, and a
deformable vector Ξ. One writes C(X,Ξ). Deformation carries C(X,Ξ) to c(x, ξ) in the spatial
configuration at time t, where x1, x2, and x3 are the rectangular coordinates with respect to a
new coordinate Cartesian system oxi, i = 1, 2, 3, and ξ is the vector attached to c. The motion
can be expressed as

xi = xi(X, t), ξi = χiK(X, t)ΞK, X ∈ B, t ∈ I, (2.1)

where, and henceforth, the summation convention on repeated indices is understood and
I = [t0, t1), t1 > t0.
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The inverse motion can be written as

XK = XK(x, t), ΞK = �Ki(x, t)ξi, (2.2)

where

χiK�Kj = δij , χiK�Li = δKL. (2.3)

In what follows ḟ denotes the material time rate of f . Moreover, we use the notations
fK = ∂f/∂XK and fi = ∂f/∂xi.

The balance laws of micromorphic continua can be expressed as follows [1, 2]:

(i) the conservation of mass:

ρ0 = Jρ or ρ̇ + ρvi,i = 0, (2.4)

where ρ0(X) and ρ(x, t) are the mass densities at time t0 and at present time, respectively,
J = det(∂xi/∂XK), and vi are the components of velocity vector;

(ii) the conservation of micromorphic inertia:

ikl = IKLχkKχlL, IKL = ikl�Kk�Ll or
dikl
dt

= ikmνlm + ilmνkm, (2.5)

where νkl is the microgyration tensor defined by

νij = χ̇iK�Kj, (2.6)

and IKL(X) are the components of the inertia stress tensor at time t0 and ikl(x, t) are the
components of the microinertia tensor at time t. Clearly, IKL(X) and ikl(x, t) are symmetric
and positive definite;

(iii) the balance of momentum:

tji,j + ρfi = ρv̇i, (2.7)

(iv) the balance of moment of momentum:

mkij,k + tji − sji + ρlij = ρσij , (2.8)
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(v) the balance of energy:

ρė = tjivi,j +mkijνij,k +
(
sji − tji

)
νij + qi,i + ρr, (2.9)

where t, m, s, σ, e, q are the stress tensor, moment stress tensor, microstress average, spin
inertia, internal energy, and heat input, respectively, and f, l, r are the body force, external
body moment, and heat source, respectively. The tensor s is symmetric, that is, sij = sji. The
spin inertia σij may be expressed as

σij = IKLχ̈iKχjL = imj(ν̇im + νinνnm). (2.10)

The second law of thermodynamics is written as

ρθη̇ − qi,i − ρr + 1
θ
qiθ,i ≥ 0, (2.11)

where η is the entropy density and θ is the absolute temperature.
The above formulation is described in detail in the book by Eringen [2]. Since we deal

with micromorphic solids, we reformulate the basic equations in Lagrangean description.
Thus, introducing the Piola-Kirchhoff tensors

TKi = JXK,jtji, MKiL = JXK,j�Lkmjik, QK = JXK,iqi,

SKi = JXK,jsji, LiK = �Kjlij ,
(2.12)

and making the notation

GiL = �Lj
[
xj,K(SKi − TKi) − χjM,KMKiM

]
, (2.13)

then, with the help of the relations (2.4), (2.6), and (2.10) and the identity

(
xi,K
J

)

,i

= 0, (2.14)

we obtain the equations of motion

TKi,K + ρ0fi = ρ0ẍi,

MKiL,K −GiL + ρ0LiL = ρ0IKLχ̈iK,
(2.15)

the energy equation

ρ0ė = TKivi,K +MKiLχ̇iL,K +GiKχ̇iK +QK,K + ρ0r, (2.16)
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and the inequality

ρ0θη̇ −QK,K − ρ0r + 1
θ
QKθ,K ≥ 0. (2.17)

Introducing Helmholtz’s free energy ψ as

ψ = e − θη, (2.18)

then, with the help of (2.15), the energy equation can be expressed as

d

dt

[
ρ0

(
ψ + θη +

1
2
vivi +

1
2
IKLχ̇iKχ̇iL

)]
=
(
TKivi +MKiLχ̇iL +QK

)
,K

+ ρ0
(
fivi + LiLχ̇iL + r

)
.

(2.19)

Moreover, from (2.16), (2.17), and (2.18), we deduce

−ρ0
(
ψ̇ + ηθ̇

)
+ TKivi,K +MKiLχ̇iL,K +GiKχ̇iK +

1
θ
QKθ,K ≥ 0. (2.20)

The response of a micromorphic thermoelastic solid is characterized by the following
constitutive equations:

ψ = ψ̂(�), TLj = T̂Lj(�), GjL = ĜjL(�), MLjP = M̂LjP (�),

η = η̂(�), QL = Q̂L(�),
(2.21)

where

� =
{
xi,K,χiK, χiK,M,θ, θ,K;XK

}
(2.22)

and ψ̂, T̂Lj , ĜjL, M̂LjP , η̂, and Q̂L are sufficient smooth functions.
We assume that there is no kinematical constraint. Then, it follows from the inequality

(2.20) that

ψ = ψ̂
(
xi,K, χiK, χiK,M, θ;XK

)
, QL = Q̂L(�),

TLj = ρ0
∂ψ̂

∂xj,L
, GjL = ρ0

∂ψ̂

∂χjL
, MKjL = ρ0

∂ψ̂

∂χjL,K
, η = −∂ψ̂

∂θ
,

(2.23)

Q̂L

(
xi,K, χiK, χiK,M, θ, 0;XK

)
= 0. (2.24)

The inequality (2.20) reduces to

Q̂Kθ,K ≥ 0. (2.25)
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3. Uniqueness and Continuous Dependence

In this section, we establish a uniqueness result and the continuous dependence of smooth
thermodynamic processes upon initial state and supply terms.

We assume that B is a bounded region and that ∂B is sufficiently regular to assure the
common laws of transformation of surface integrals. We will employ the following notations:
NK are the components of the unit outward normal vector to the surface ∂B; I denotes the
time interval [t0, t1), where t1 may be infinity; the symbol | · | denotes a norm, either in
Euclidean vector space or in a tensor space, while || · ||L2(B) denotes the L2-norm.

Definition 3.1. By a thermodynamic process on B × I one means an ordered array of functions
{xi, χiL, θ, ψ, TKi, GiL,MKiL, η,QK, fi, LiL, r} which satisfy the equations of motion (2.15), the
energy equation (2.19), and the constitutive relations (2.21).

Definition 3.2. A thermodynamic process will be called admissible if it also satisfies the
Clausius-Duhem inequality (2.17). From the previous section it follows that the Clausius-
Duhem inequality (2.17) holds for all admissible processes in B×I if and only if (2.23), (2.24),
and (2.25) are satisfied.

For admissible thermodynamic processes, one may write the energy equation in
reduced form

ρ0θη̇ = QK,K + ρ0r. (3.1)

Definition 3.3. One will say that U = {xi, χiL, θ} is an admissible state corresponding to the
load (fi, LiL, r) if {xi, χiL, θ, ψ, TKi, GiL,MKiL, η,QK, fi, LiL, r} is an admissible thermodynamic
process. The admissible state U = {xi, χiL, θ} is smooth if xi, χiL, and θ are functions of class
C2.

Let U = {xi, χiL, θ} and U = {xi, χiL, θ} be two smooth admissible states on B × I

corresponding to the loads (fi, LiL, r) and (fi, LiL, r), respectively. We define the functionD(·)
on I by

D =
∫

B

[
1
2
ρ0(vi − vi)(vi − vi) + 1

2
ρ0IKL

(
χ̇iK − χ̇iK

)(
χ̇iL − χ̇iL

)
+ ρ0ψ − ρ0ψ

−TKi(xi,K − xi,K) −GiK

(
χiK − χiK

) −MKiL

(
χiL,K − χiL,K

)
+ ρ0η

(
θ − θ

)]
dV,

(3.2)

where

vi = ẋi, ψ = ψ̂
(
xi,K, χiK, χiK,M, θ; XK

)
, QL = Q̂L

(
xi,K, χiK, χiK,M, θ, θ,K; XK

)
,

TLj = ρ0
∂ψ

∂xj,L
, GjL = ρ0

∂ψ

∂χjL
, MKjL = ρ0

∂ψ

∂χjL,K
, η = −∂ψ

∂θ
.

(3.3)
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On account of (2.23) and (3.3) it is easy to see that D is of quadratic order in

∥∥∥v − v, χ̇ − χ̇, F − F,χ − χ, γ − γ , θ − θ
∥∥∥
L2(B)

, (3.4)

where F = (xi,K), χ = (χiK), and γ = (χiL,K). The evolution in time of this function is described
by the following.

Theorem 3.4. If U = {xi, χiL, θ} and U = {xi, χiL, θ} are two smooth admissible states on B × I
corresponding to the loads (fi, LiL, r) and (fi, LiL, r) in L

∞(B × I), then

Ḋ =
∫

∂B

ΓdA +
∫

B

[
Λ +Z + ρ0

(
fi − fi

)
(vi − vi) + ρ0

(
LiL − LiL

)(
χ̇iL − χ̇iL

)

+
ρ0
θ
(r − r)

(
θ − θ

)
− 1

θθ

(
QK,K + ρ0r

)(
θ − θ

)2
]
dV,

(3.5)

where

Γ=
[(
TKi − TKi

)
(vi − vi)+

(
MKiL −MKiL

)(
χ̇iL − χ̇iL

)
+
1
θ

(
QK −QK

)(
θ − θ

)]
NK, (3.6)

Λ= ẋi,K

[

TKi − TKi − ∂TKi
∂xj,L

(
xj,L − xj,L

) − ∂TKi
∂χjL

(
χjL − χjL

)

− ∂TKi
∂χjL,M

(
χjL,M − χjL,M

)
− ∂TKi

∂θ

(
θ − θ

)]

+χ̇iK

[

GiK−GiK − ∂GiK

∂xj,L

(
xj,L − xj,L

)− ∂GiK

∂χjL

(
χjL − χjL

)
− ∂GiK

∂χjL,M

(
χjL,M − χjL,M

)

−∂GiK

∂θ

(
θ − θ

)]

+ χ̇iL,K

[

MKiL −MKiL − ∂MKiL

∂xj,M

(
xj,M − xj,M

)

−∂MKiL

∂χjM

(
χjM − χjM

)
− ∂MKiL

∂χjM,N

(
χjM,N − χjM,N

)
− ∂MKiL

∂θ

(
θ − θ

)]

− ρ0θ̇
[

η − η − ∂η

∂xi,K
(xi,K − xi,K) −

∂η

∂χiK

(
χiK − χiK

)

− ∂η

∂χiL,K

(
χiL,K − χiL,K

)
− ∂η

∂θ

(
θ − θ

)]

,

(3.7)

Z=−
(
QK −QK

)(θ − θ
θ

)

,K

. (3.8)
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Proof . From (3.2) we obtain

Ḋ =
∫

B

{
d

dt

[
ρ0

(
ψ + θη +

1
2
vivi +

1
2
IKLχ̇iKχ̇iL

)]

− d

dt

[
ρ0

(
ψ + θη +

1
2
vivi +

1
2
IKLχ̇iKχ̇iL

)]

− ρ0
(
viv̇i + v̇ivi − 2viv̇i

)
− ρ0IKL

(
χ̇iKχ̈iL + χ̈iKχ̇iL − 2χ̇iKχ̈iL

)

− ṪKi(xi,K − xi,K) − ĠiK

(
χiK − χiK

) − ṀKiL

(
χiL,K − χiL,K

)

− TKi
(
ẋi,K − ẋi,K

)
−GiK

(
χ̇iK − χ̇iK

)
−MKiL

(
χ̇iL,K − χ̇iL,K

)

− ρ0θ̇
(
η − η) − ρ0θ

(
η̇ − η̇

)}
dV.

(3.9)

Using the balance laws (2.15) and (2.19), we may write (3.9) in the form

Ḋ =
∫

B

{[(
TKi − TKi

)
(vi − vi) +

(
MKiL −MKiL

)(
χ̇iL − χ̇iL

)]

,k

+ ρ0
(
fi − fi

)
(vi − vi) + ρ0

(
LiL − LiL

)(
χ̇iL − χ̇iL

)
+ R + P

}
dV,

(3.10)

where

R = −ṪKi(xi,K − xi,K) + ẋi,K
(
TKi − TKi

)
− ṀKiL

(
χiL,K − χiL,K

)

+ χ̇iL,K
(
MKiL −MKiL

)
− ĠiK

(
χiK − χiK

)
+ χ̇iK

(
GiK −GiK

)

− ρ0θ̇
(
η − η) + ρ0η̇

(
θ − θ

)
,

P = ρ0r +QK,K − ρ0r −QK,K − ρ0
(
η̇θ + η̇θ − 2η̇θ

)
.

(3.11)

It follows from (3.3) that

ṪKi =
∂TKi
∂xj,L

ẋj,L +
∂TKi
∂χjL

χ̇jL +
∂TKi
∂χjL,M

χ̇jL,M +
∂TKi

∂θ
θ̇,

ĠiK =
∂GiK

∂xj,L
ẋj,L +

∂GiK

∂χjL
χ̇jL +

∂GiK

∂χjL,M
χ̇jL,M +

∂GiK

∂θ
θ̇,

ṀKiL =
∂MKiL

∂xj,M
ẋj,M +

∂MKiL

∂χjM
χ̇jM +

∂MKiL

∂χjM,N

χ̇jM,N +
∂MKiL

∂θ
θ̇,

η̇ =
∂η

∂xi,K
ẋi,K +

∂η

∂χiK
χ̇iK +

∂η

∂χiK,L
χ̇iK,L +

∂η

∂θ
θ̇.

(3.12)
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With the help of (3.12) and (3.3), we find that

R = Λ. (3.13)

On the other hand, using (3.1), we have

P = ρ0r +QK,K − ρ0r −QK,K +
θ

θ

(
QK,K + ρ0r

)
− θ

θ

(
QK,K + ρ0r

)

−
(
QK,K + ρ0r

)(θ

θ
− 2 +

θ

θ

)

=
ρ0
θ
(r − r)

(
θ − θ

)

+

[(
QK −QK

)θ − θ
θ

]

,K

−
(
QK −QK

)(θ − θ
θ

)

,K

− 1

θθ

(
QK,K + ρ0r

)
(θ − θ)2.

(3.14)

Collecting (3.10), (3.13), and (3.14) and using (3.6), (3.7), and (3.8) and the divergence
theorem we conclude that (3.5) holds. The proof is complete.

From (2.21), it follows that

QK = QK +KKL

(
θ,L − θ,L

)
+�K +Q0

K, (3.15)

where

KKL =
∂Q̂K

∂θ,L

(
�

)
, � =

(
xi,M, χiM, χiM,N, θ, θ,M;XM

)
, (3.16)

and �K is given by

�K = BKiL(xi,L − xi,L) + CKiL
(
χiL − χiL

)
+ EKiLM

(
χiL,M − χiL,M

)
+ αK

(
θ − θ

)
, (3.17)

BKiL =
∂Q̂K

∂xi,L

(
�

)
, CKiL =

∂Q̂K

∂χiL

(
�

)
, EKiLM =

∂Q̂K

∂χiL,M

(
�

)
, αK =

∂Q̂K

∂θ

(
�

)
. (3.18)

In (3.15), Q0
K is a function of order o(),  being defined by

 =
∣∣
∣F − F

∣∣
∣ + |χ − χ| + |γ − γ | +

∣∣
∣θ − θ

∣∣
∣ + |g − g|, (3.19)

where F = (xi,K), χ = (χiK), γ = (χiL,K), and g = (θ,K).
Let us introduce the following definition for a definite heat conductor material (see

Chiriţă [19]).
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Definition 3.5. One says that the admissible stateU resides in the region where the material is
a definite heat conductor if

kKLζKζL > 0, (3.20)

for any nonzero ζK , where kKL is given by

kKL =
1
2

(
KKL +KLK

)
. (3.21)

We introduce the following notation:

y(t) = ‖
(
F − F,χ − χ, γ − γ , θ − θ

)
(·, t)‖L2(B), t ∈ I. (3.22)

Theorem 3.6. Let U = {xi, χiL, θ} be a smooth admissible state residing in the region where the
material is a definite conductor of heat. Then there exist the positive constants δ,m1, andm2 with the
following property: if U = {xi, χiL, θ} is any smooth admissible process defined on B × I, such that

 =
∣∣∣F − F

∣∣∣ + |χ − χ| + |γ − γ | +
∣∣∣θ − θ

∣∣∣ + |g − g| < δ, (3.23)

on B × I, then
∫

B

ZdV ≤ −m1‖(g − g)(·, t)‖2L2(B) +m2y
2(t), t ∈ I. (3.24)

Proof. In view of (3.8), (3.15), and (3.21), it follows that

Z = − 1
θ

(
QK −QK

)(
θ,K − θ,K

)
+

1
θ2
θ,K

(
QK −QK

)(
θ − θ

)

= − 1
θ
kKL

(
θ,K − θ,K

)(
θ,L − θ,L

)
+ � + o

(
2
)
,

(3.25)

where

� = − 1
θ
�K

(
θ,K − θ,K

)
+

1
θ2
θ,K

[
KKL

(
θ,L − θ,L

)
+�K

](
θ − θ

)
. (3.26)

Using the arithmetic-geometric inequality

2ab ≤ a2β2 + b2β−2, for all nonzero constant β, (3.27)
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Schwarz’s inequality, and (3.17), we deduce

2
∫

B

�dV ≤
(
β21 + β

2
2 + β

2
3 + β

2
4

)
‖(g − g)(·, t)‖2L2(B)

+
(
M2

1β
−2
1 + γ21

)
‖
(
F − F

)
(·, t)‖

2

L2(B)
+
(
M2

2β
−2
2 + γ22

)
‖(χ − χ)(·, t)‖2L2(B)

+
(
M2

3β
−2
3 + γ23

)
‖(γ − γ)(·, t)‖2L2(B)

+
(
M2

4β
−2
4 +N2

1γ
−2
1 +N2

2γ
−2
2 +N2

3γ
−2
3 +N2

)
‖
(
θ − θ

)
(·, t)‖

2

L2(B)
,

(3.28)

where βp, (p = 1, 2, 3, 4) and γs, (s = 1, 2, 3) are arbitrary nonzero constants and

M1 = max
∣∣∣θ−1B

∣∣∣, M2 = max
∣∣∣θ−1C

∣∣∣, M3 = max
∣∣∣θ−1E

∣∣∣,

M4 = max
∣
∣∣∣θ

−1α + θ−2K
T
g
∣
∣∣∣, N1 = max

∣
∣∣∣θ

−2BT
g
∣
∣∣∣, N2 = max

∣
∣∣∣θ

−2CTg
∣
∣∣∣,

N3 = max
∣
∣∣∣θ

−2ETg
∣
∣∣∣, N2 = 2max

∣∣
∣θ−2αg

∣∣
∣.

(3.29)

In view of (3.20), we conclude that there exists a positive constant λ such that

−
∫

B

1
θ
kKL

(
θ,K − θ,K

)(
θ,L − θ,L

)
dV ≤ −λ‖(g − g)(·, t)‖2L2(B), t ∈ I. (3.30)

Collecting (3.25), (3.28), and (3.30), we conclude that there exists a positive constant δ with
the property that whenever (3.23) holds, we have

∫

B

Z dV ≤ −m1‖(g − g)(·, t)‖2L2(B) + c1‖
(
F − F

)
(·, t)‖

2

L2(B)

+ c2‖(χ − χ)(·, t)‖2L2(B) + c3‖(γ − γ)(·, t)‖2L2(B) + c4‖
(
θ − θ

)
(·, t)‖

2

L2(B)
,

(3.31)

where

m1 = λ − 1
2

(
β21 + β

2
2 + β

2
3 + β

2
4

)
, 2c1 = M2

1β
−2
1 + γ21 , 2c2 =M2

2β
−2
2 + γ22 ,

2c3 =M2
3β

−2
3 + γ23 , 2c4 = M2

4β
−2
4 +N2

1γ
−2
1 +N2

2γ
−2
2 +N2

3γ
−2
3 +N2.

(3.32)

Now, taking the constants βp, (p = 1, 2, 3, 4) such thatm1 > 0 and setting

m2 = max{c1, c2, c3, c4}, (3.33)

from (3.22) and (3.31), we obtain (3.24), and the proof is complete.
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Following [18], we introduce the following.

Definition 3.7. One says that the admissible state U = {xi, χiL, θ} resides in the convexity
region of the internal energy if the following two conditions are satisfied:

(i) for each (X, t) ∈ B × I, there exists a positive constant μ such that

∂ψ

∂xi,Kxj,L
ΥiKΥjL +

∂ψ

∂χiKχjL
ΩiKΩjL +

∂ψ

∂χiK,MχjL,N
ΦiKMΦjLN + 2

∂ψ

∂xi,KχjL
ΥiKΩjL

+ 2
∂ψ

∂xi,KχjL,M
ΥiKΦjLM + 2

∂ψ

∂χiKχjL,M
ΩiKΦjLM ≥ μ(ΥiKΥiK + ΩiKΩiK + ΦiKLΦiKL),

(3.34)

for all ΥiK, ΩiK, and ΦiKL

(ii) and

∂η

∂θ
> 0. (3.35)

Our study on stability and uniqueness is based on the following Gronwall-type
inequality [18].

Lemma 3.8. Assume that the nonnegative functions z(t) ∈ L∞[0, s] and g(t) ∈ L1[0, s] satisfy the
inequality

z2(τ) ≤M2z2(0) + 2
∫ τ

0

[(
α + 2βτ

)
z2(t) +Ng(t)z(t)

]
dt, τ ∈ [0, s] (3.36)

with α, β,M, andN being nonnegative constants. Then

z(s) ≤
[
Mz(0) +N

∫ s

0
g(t)dt

]
exp

(
σs + βs2

)
, (3.37)

where σ = α + β/α.

Now, we are ready to state the following stability result.

Theorem 3.9. LetU = {xi, χiK, θ} be a smooth admissible state on B×I corresponding to the loading
(fi, LiL, r) ∈ L∞(B × I) and residing in the region where the internal energy is a convex function and
the material is a definite conductor of heat. Then there exist the positive constants δ̃0, α0,M0, andN0

with the following property: ifU = {xi, χiK, θ} is any smooth admissible state on B × I corresponding
to the loading (fi, LiK, r) ∈ L∞(B × I), such that

 =
∣∣∣F − F

∣∣∣ + |χ − χ| + |γ − γ | +
∣∣∣θ − θ

∣∣∣ + |g − g| < δ̃0, (3.38)
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on B × I, and

[(
TKi − TKi

)
(vi − vi) +

(
MKiL −MKiL

)(
χ̇iL − χ̇iL

)
+
1
θ

(
QK −QK

)(
θ − θ

)]
NK = 0,

on ∂B × I,
(3.39)

then for any s ∈ I, one has

z0(s) ≤
[
M0z0(0) +N0

∫ s

0
g0(t)dt

]
exp(α0s), (3.40)

where

z0(s) =
∥∥
∥
(
v − v, F − F,χ − χ, χ̇ − χ̇, γ − γ , θ − θ

)
(·, s)

∥∥
∥
L2(B)

,

g0(s) =
∥∥∥
(
f − f,L − L,r − r

)
(·, s)

∥∥∥
L2(B)

.

(3.41)

Proof. From (3.6) and (3.39), we have Γ = 0. In view of (3.5), (3.7), (3.24), and Schwarz
inequality, it follows that there exist the positive constants δ, ν1, and ν2 such that whenever
(3.23) holds, we have

Ḋ(t) ≤ ν1y2(t) + ν2g0(t)w(t), t ∈ I, (3.42)

where y(t) is defined in (3.22) and

w(t) = ‖
(
v − v, χ̇ − χ̇, θ − θ

)
(·, t)‖L2(B). (3.43)

Let us fix s ∈ I and integrate (3.42) over [0, τ], with τ ∈ [0, s]. Then, we have

D(τ) ≤ D(0) + ν1

∫ τ

0
z20(t)dt + ν2

∫ τ

0
g0(t)z0(t)dt. (3.44)

Here we used the inequalities y(t) ≤ z0(t) andw(t) ≤ z0(t), t ∈ I.
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On the other hand, in view of (2.23) and (3.3), we obtain

ρ0ψ − ρ0ψ − TKi(xi,K − xi,K) −GiK

(
χiK − χiK

) −MKiL

(
χiL,K − χiL,K

)
+ ρ0η

(
θ − θ

)

=
ρ0
2

[
∂ψ

∂xi,K∂xj,L
(xi,K − xi,K)

(
xj,L − xj,L

)

+
∂ψ

∂χiK∂χjL

(
χiK − χiK

)(
χjL − χjL

)

+
∂ψ

∂χiK,M∂χjL,N

(
χiK,M − χiK,M

)(
χjL,N − χjL,N

)

+ 2
∂ψ

∂xi,K∂χjL
(xi,K − xi,K)

(
χjL − χjL

)

+ 2
∂ψ

∂xi,K∂χjL,M
(xi,K − xi,K)

(
χjL,M − χjL,M

)

+ 2
∂ψ

∂χiK∂χjL,M

(
χiK − χiK

)(
χjL,M − χjL,M

)]

+
1
2
∂η

∂θ

(
θ − θ

)2
+ o

(∣
∣∣F − F

∣
∣∣
2
+ |χ − χ|2 + |γ − γ |2 +

∣
∣∣θ − θ

∣
∣∣
2
)
.

(3.45)

It follows from (3.2), (3.34), (3.35), and (3.45) that there exist the positive constants δ0 and ν3
such that whenever

∣∣∣F − F
∣∣∣ + |χ − χ| + |γ − γ | +

∣∣∣θ − θ
∣∣∣ < δ0, (3.46)

we have

ν3z0(t) ≤ 2D(t), t ∈ I. (3.47)

Setting δ̃0 = min(δ, δ0) in (3.38), from (3.44) and (3.47), we obtain

ν3z
2
0(τ) ≤ 2D(0) + 2ν1

∫ τ

0
z20(t)dt + 2ν2

∫ τ

0
g0(t)z0(t)dt. (3.48)

Using the estimate

D(0) ≤ ν4z0(0), ν4 > 0, (3.49)

and the notations

M2
0 =

2ν4
ν3

, α0 =
ν1
ν3
, N0 =

ν2
ν3
, (3.50)
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then (3.48) implies that

z20(τ) ≤M2
0z0(0) + 2

∫τ

0

[
α0z

2
0(t)dt +N0g0(t)z0(t)

]
dt. (3.51)

An application of Lemma 3.8 completes the proof.

A direct consequence of the above theorem is the following uniqueness result.

Theorem 3.10. LetU andU be as in Theorem 3.9. Assume that the corresponding body loads coincide
on B × I andU andU originate from the same state, namely,

xi(X, 0) = xi(X, 0), vi(X, 0) = vi(X, 0), χiL(X, 0) = χiL(X, 0),
χ̇iL(X, 0) = χ̇iL(X, 0), θ(X, 0) = θ(X, 0),

X ∈ B. (3.52)

Then, U andU coincide on B × I.
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