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In this paper, we present a simulation of chemical vapor deposition with metallic bipolar plates.
In chemical vapor deposition, a delicate optimization between temperature, pressure and plasma
power is important to obtain homogeneous deposition. The aim is to reduce the number of real-life
experiments in a given CVD plasma reactor. Based on the large physical parameter space, there are
a hugh number of possible experiments. A detailed study of the physical experiments in a CVD
plasma reactor allows to reduce the problem to an approximate mathematical model, which is the
underlying transport-reaction model. Significant regions of the CVD apparatus are approximated
and physical parameters are transferred to the mathematical parameters. Such an approximation
reduces the mathematical parameter space to a realistic number of numerical experiments. The
numerical results are discussed with physical experiments to give a valid model for the assumed
growth and we could reduce expensive physical experiments.

1. Introduction

We motivate our study by simulating the growth of a thin film by PE-CVD (plasma-
enhanced chemical vapor deposition) processes; see [1, 2]. Such technical processes are very
complex and real-life experiments are enormously extensive and expensive. Based on a large
physical parameter space, the number of possible experiments involves at least the variation
of all possible parameters. Such a large number of experiments can be reduced with the
help of numerical experiments based on a mathematical model. Such modelling results are
based on interdisciplinary work by engineers, mathematicians, and physicists. We derive a
multiphysics model, that includes a simplification of the dominant physical processes, that
is, transport of the reactive species in the gas phase and their deposition rates at the target
layer.
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The approximation between the mathematical parameters and physical parametes
can be done by a regression method, such that we can verify the physical experiments.
Such approximations help to study the physical experiments with simulation tools which
are cheaper and can predict the more appropriate experiments which should be done to
understand and control the physical processes.

In the following, we introduce the PE-CVD process and the important trends in
modelling it.

A gas exposed to an electric field under low pressure conditions (<5 Torr) results
in a nonequilibrium plasma; see [3, 4]. Such ionized media, known as “cold” plasma or
glow discharges, are powerful surface-modification tools in Material Science and Technology.
Low-pressure plasmas allow to modify the surface chemistry and properties of materials
compatible with a low-medium vacuum, through a PE-CVD process; see the applications
in [4, 5].

Here, PE-CVD processes are attractive methods, because of their reproducible
chemical processes that can be controlled by pressure, temperature, and by additional
precursor gases. Such methods have been developed in recent years and there is an interest
in producing high-temperature films; see [2].

We consider models that are related to mesoscopic scales [6], with respect to flows
close to the wafer surface, where a wafer is the target material (e.g., metal or ceramic) for
deposition, [2]. We assume that the wafer is a homogeneous medium and that the surface
can be modelled as a porous medium [7].

The physical experiments are used to measure the influence of temperature, pressure
and plasma power on deposition rates; see [8]. Here the plasma reactor chamber of an NIST
GEC reference cell is used and for the hybrid ICP/CCP-RF plasma source, a double spiral
antenna is used; see [8]. Such experiments are important but the variation of all possible
parameters is very extensive.

Mathematically, we apply an interpolation between physical and mathematical
parameters to verify our simulation model. Based on the smaller mathematical parameter
space, we can allow much more experiments and obtain via the regression function
the resulting parameters to the physical experiments. Such switching between numerical
experiments and physical experiments reduces the experiments to a possible amount and
we can optimize the deposition process.

The numerical results are discussed and applied to validation problems and real-life
problems. We discuss an application involving the deposition of SiC thin films on a metallic
plate.

The paper is organized as follows.
In Section 2, we present our mathematical model and a possible reduced model

for further approximations. In Section 3, we discuss the physical experiments of the CVD
process. The numerical methods of the transport-reaction equation and their parameter
approximation to the physical model are described in Section 4. The numerical experiments
are given in Section 5. In Section 6, we briefly summarize our results.

2. Mathematical Model

In the next, we discuss the derivation of our model.
We start by developing a multiphase model in the following steps:

(i) standard transport model (one phase),
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Figure 1: Vertically impinging CVD reactor.

(ii) flow model (flow field of plasma medium),

(iii) multiphase model with mobile and immobile zones.

In each part of the model, we can refine the transport processes of the deposition gaseous
species or reaction gaseous species depending on the influence of flow field, plasma zones
and precursor gases.

A schematic test geometry of the CVD reactor is given in Figure 1.

2.1. Standard Transport Model

In the following, the models are discussed in terms of far-field and near-field problems, which
take into account the scales of the model.

Two different types of model can be discussed:

(1) convection-diffusion-reaction equations [6] (far-field problem),

(2) Boltzmann-Lattice equations [9] (near-field problem).

The modelling is governed by the Knudsen Number, whereby the Knudsen number is a
dimensionless number and defines the ratio of the molecular mean free path length to a
representative physical length scale.

Kn =
λ

L
, (2.1)

where λ is the mean free path and L is the representative physical length scale. This length
scale could be, for example, the radius of a body in a fluid. Here, we deal with small Knudsen
Numbers Kn ≈ 0.01− 1.0 for a convection-diffusion-reaction equation and a constant velocity
field, whereas for, large Knudsen Numbers Kn ≥ 1.0, we deal with a Boltzmann equation
[2]. From modelling the gaseous transport of the deposition species, we consider the pure
far-field model and assume a continuum flow field; see [10].
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Such assumptions lead to transport equations that can be treated with a convection-
diffusion-reaction equation owing to a constant velocity field, thus:

∂

∂t
c +∇F − Rg = q(x, t), in Ω × [0, t],

F = vc −D∇c,
(2.2)

c(x, t) = c0(x), on Ω,

c(x, t) = c1(x, t), on ∂Ω × [0, t],
(2.3)

where c is the molar concentration of the reaction gases (called species) and F is the flux
of the species. v is the flux velocity through the chamber and porous substrate [7]. D is the
diffusion matrix and Rg is the reaction term. The initial value is given as c0 and we assume a
Dirichlet boundary with the function c1(x, t) sufficiently smooth. q(x, t) is a source function
depending on time and space and represents the inflow of the species.

The parameters of the equation are derived as follows. Diffusion in the modified CVD
process is given by Knudsen diffusion [11]. We consider the overall pressure in the reactor as
200 Pa and the substrate temperature (or wafer surface temperature) is about 600–900 K. The
pore size in the homogeneous substrate is assumed to be 80 nm. The homogeneous substrate
can be either a porous medium, for example, a ceramic material, see [11], or a dense plasma,
assumed to be very dense and stationary; see [1]. For such media, we can derive diffusion
based on Knudsen diffusion.

The diffusion is described by

D =
2εμKνr

3RT
, (2.4)

where ε is the porosity, μK is the shape factor of Knudsen diffusion, r is the average pore
radius, R and T are the gas constant and temperature, respectively, and ν is the mean
molecular speed, given by

ν =

√
8RT
πW

, (2.5)

where W is the molar mass of the diffusive gas.
For homogeneous reactions during the CVD process, we consider a constant reaction

of Si, Ti, and C species given as

3Ti + Si + 2C −→ Ti3SiC2, (2.6)

where Si3TiC2 is a MAX-phase material, see [12], which deposits on the wafer surface. For
simplicity, we do not consider the intermediate reaction with the precursor gases [1] and
we assume we are dealing with a compound gas 3Ti + Si + 2C; see [13]. Therefore we can
concentrate on the transport of one species.
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Figure 2: Gas chamber of the CVD apparatus.

The reaction rate is then given by

λ = kr
[3Si]M[Ti]N[2C]O

[Si3TiC2]L
, (2.7)

where kr is the apparent reaction constant and L,M,N,O are the reaction orders of the
reactants.

A schematic overview of the one-phase model is presented in Figure 2. Here, the gas
chamber of the CVD apparatus is shown, which is modelled by a homogeneous medium.

2.2. Flow Field

The flow field is derived in which the velocity is used for the transport of species. The
velocity in the homogeneous substrate is modelled by a porous medium [14, 15]. We assume
a stationary or low reactivity medium, for example, nonionized or low-ionized plasma or less
reactive precursor gas. Further, the pressure can be assumed to have the Maxwell distribution
[1]:

p = ρbT, (2.8)

where ρ is the density, b is Boltzmann’s constant, and T is the temperature.
The model equations are based on mass and momentum conservation equations,

where we assume conservation of energy. Because of the low temperature and low pressure
environment, we assume the gaseous flow has a nearly liquid behaviour. Therefore, the
derivation of the velocity can be given by Darcy’s law:

v = −k
μ

(
∇p − ρg

)
, (2.9)
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where v is the velocity of the fluid, k is the permeability tensor, μ is the dynamic viscosity, p
is the pressure, g is the vector of gravity, and ρ is the density of the fluid.

We use the continuum equation of the particle density and obtain the equation of the
system, which is given as a flow equation:

∂t
(
φρ

)
+∇ ·

(
ρv

)
= Q, (2.10)

where ρ is the unknown particle density, φ is the effective porosity, and Q is the source-term
of the fluid. We assume a stationary fluid and consider only divergence-free velocity fields,
that is,

∇ · v(x) = 0, x ∈ Ω. (2.11)

The boundary conditions for the flow equation are given as

p = pr
(
t, γ

)
, t > 0, γ ∈ ∂Ω,

n · v = mf

(
t, γ

)
, t > 0, γ ∈ ∂Ω,

(2.12)

where n is the normal unit vector with respect to ∂Ω, where we assume that the pressure pr
and flow concentration mf are prescribed by Dirichlet boundary conditions [15].

From the nearly stationary fluids, we assume that the conservation of momentum for
velocity v is given [15, 16]. Therefore, we can neglect the computation of the momentum for
the velocity.

Remark 2.1. For flow through a gas chamber, for which we assume a homogeneous medium
and nonreactive plasma, we have considered a constant flow [17]. A further simplification is
given by the very small porous substrate, for which we can assume the underlying velocity
in a first approximation as constant [2].

Remark 2.2. For a nonstationary media and reactive or ionized plasma, we have to take into
account the relations for electrons in thermal equilibrium. Such a spatial variation can be
considered by modelling electron drift. Such modelling of the ionized plasma is done with
the Boltzman relation [1].

2.3. Multiphase Model: Mobile and Immobile Zones

More complicated processes such as retardation, adsorption, and dissipation processes, the
gaseous species are modelled with multiphase equations. We take into account the fact that
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the concentration of species can be given in mobile and immobile versions, depending on
their different reactive states; see [7]. From these behaviours, we have to model the transport
and adsorbed state of species; see also Figure 3. Here, the mobile and immobile phases of the
gas concentration are shown at a macroscopic scale in the porous medium.

The model equations are given as combinations of transport and reaction equations
(coupled partial and ordinary differential equations) as

φ∂tc
L
i +∇ ·

(
vcLi −D

e(i)∇cLi
)
= g

(
−cLi + c

L
i,im

)
− λi,iφcLi +

∑
k=k(i)

λi,kφc
L
k + Q̃i, (2.13)

φ∂tc
L
i,im = g

(
cLi − c

L
i,im

)
− λi,iφcLi,im +

∑
k=k(i)

λi,kφc
L
k,im + Q̃i,im, (2.14)

where i = 1, . . . ,M and M denotes the number of components.
The parameters in (2.13) are further described; see also [18].
The effective porosity is denoted by φ and describes the portion of the porosity

of the aquifer that is filled with plasma, and we assume a nearly fluid phase. The
transport term is indicated by the Darcy velocity v, which presents the flow direction
and absolute value of the plasma flux. The velocity field is divergence-free. The decay
constant of the ith species is denoted by λi. k(i) therefore denotes the indices of the other
species.

Remark 2.3. The concentrations in the mobile zones is modelled with convection-diffusion-
reaction equations, see also Section 2.1, while the concentration in the immobile zones are
modelled with reaction equations. These two phases represent the mobility of the gaseous
species through homogeneous media, where the concentrations in the immobile zones are at
least the lost amounts of depositable gases.
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2.4. Simplified Model: Far-Field Model

We concentrate on a far-field model and assume continuum flow and that the transport
equations can be treated by a convection-diffusion-reaction equation with a constant velocity
field:

∂

∂t
c +∇F − Rg = 0, in Ω × [0, t],

F = vc −D∇c,

c(x, t) = c0(x), on Ω,

c(x, t) = c1(x, t), on ∂Ω × [0, t],

(2.15)

where c is the molar concentration and F is the flux of the species. v is the flux velocity
through the chamber and porous substrate [7].D is the diffusion matrix andRg is the reaction
term. The initial value is given as c0 and we assume a Dirichlet boundary with the function
c1(x, t) sufficiently smooth.

Remark 2.4. The focus on the dominant far field processes in the gas phase involving the
reactive species reduces enormously the physical parameter space. Such a realistic reduction
with respect to the experiments can also simplify the underlying mathematical model
and concentrate on a defined number of experiments. Such experiments can validate the
switching between physical and mathematical parameter space and allow to foresee the
important processes in the gas phase.

3. Physical Experiments

The base of the experimental setup is the plasma reactor chamber of an NIST GEC reference
cell. The spiral antenna of a hybrid ICP/CCP-RF plasma source was replaced by a double
spiral antenna [8]. This reduces the asymmetry of the magnetic field due to the superposition
of the induced fields of both antennas. Also, the power coupling to the plasma increases
and enhances the efficiency of the source. A set of MKS mass flow-controllers allow any
defined mixture of gaseous precursors. Even the flows of liquid precursors with high vapor
pressure are controlled by this system. All other liquid and all solid precursors will be directly
transported to the chamber by a controlled carrier gas flow. Besides the precursor flow, the
density can also be changed by varying the pressure inside the recipient. Controlling the
pressure is achieved with a valve between the recipient and vacuum pumps. In addition, a
heated and insulated substrate holder was mounted. Thus, a temperature up to 800◦C and a
bias voltage can be applied to the substrate. While the pressure and RF power determine
the undirected particle energy (plasma temperature), the bias voltage adds, only to the
charged particles, energy directed at the substrate. Apart from the pressure and RF power
control, the degree of ionization and number as well as size of molecular fractions can be
controlled.

Altogether, this setup provides as free process parameters:

(i) pressure (typically 10−1-10−2 mbar),

(ii) precursor composition (TMS,TMS + H2,TMS + O2),
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Table 1

Test PR
[mbar]

ϑS
[C]

PPlasma
[W]

φ(TMS)
[SCCM]

φ(H2)
[SCCM]

Ratio
[C:Si]

Mass
(growth) [g]

Time
[min]

080701-01-VA 9.7E-2 400 900 10.23 0 0.97811 0.00012 120
080718-01-VA 1.1E-1 400 900 10.00 0 1.00174 0.00050 130
080718-02-VA 4.5E-2 400 900 10.00 0 1.24811 0.00070 110
080618-01-VA 4.3E-2 400 500 10.23 0 1.32078 127
080716-01-VA 1.1E-1 400 500 10.00 0 1.42544 0.00250 120
080715-02-VA 1.1E-1 400 100 10.00 0 1.58872 0.00337 122
080804-01-VA 4.5E-2 400 100 10.00 0 2.91545 0.00356 129
080630-01-VA 9.9E-2 800 900 10.23 0 1.09116 0.00102 120
080807-01-VA 4.5E-2 800 900 10.00 0 1.18078 0.00118 120
080625-01-VA 3.9E-2 800 500 10.23 0 1.06373 120
080626-01-VA 9.3E-2 800 500 10.23 0 1.12818 0.00174 130
080806-01-VA 4.8E-2 800 100 10.00 0 1.73913 0.00219 121
080715-01-VA 1.1E-1 800 100 10.00 0 1.62467 0.00234 120
081016-01-VA 1.0E-1 600 300 10.00 0 1.72898 0.00321 123
081020-01-VA 1.1E-1 600 300 10.00 50 1.49075 0.00249 114
081028-01-VA 1.1E-1 600 300 10.00 15 1.53549 0.00273 120
081023-01-VA 1.1E-1 600 300 10.00 10 1.54278 0.00312 127
081027-01-VA 1.1E-1 600 300 10.00 5.5 1.55818 0.00277 126
081024-01-VA 1.1E-1 600 300 10.00 3.5 1.64367 0.00299 120
081022-01-VA 1.0E-1 600 300 10.00 2.5 1.69589 0.00318 127

(iii) precursor flow-rate (ranging from SCCM to SLM),

(iv) RF Power (up to 1100 W),

(v) substrate temperature (RT–800◦C),

(vi) bias voltage (DC, unipolar and bipolar pulsed, floating).

During all experiments, the process was observed by optical emission spectroscopy (OES)
and mass spectroscopy (MS). The stoichiometry of the deposited films was analyzed ex situ
in a scanning electron microscope (SEM) by energy dispersive X-ray analysis (EDX).

Realisation of Physical Experiments

The following parameters are used for the physical experiments. Such a reduction allows to
concentrate on the important flow and transport processes in the gas phase. Further, we apply
the underlying mathematical model (far field model, see Section 2.4) such that we can switch
between physical and mathematical parameters.

Precursor: Tetramethylsilan (TMS),

Substrate: VA-Steel,

Film at substrate: Si Cx (see Table 1).

We apply the parameters shown in Table 2 for interpolation of the substrate tempera-
ture.

For the substrate temperature and plasma power, see Table 3.
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Table 2

Temperature Ratio (SiC:C)

400 2.4: 1
600 1.5: 1
700 1.211: 1
800 1.1: 1

Table 3

Temperature [C] Power [W] Ratio (SiC:C)

400 900 1: 0.97
400 500 1.3: 1
800 900 1.18: 1

Remark 3.1. In the process, the temperature and power of the plasma are important and
experiments show that these are significant parameters. Based on these parameters, we
initialize the mathematical model and interpolate the flux and reaction parts.

4. Numerical Methods

In this section, we discuss the numerical methods. To accelerate our numerical methods, we
combined the numerical and analytical parts in the solver processes.

4.1. Discretization and Solver Methods

For space-discretization of the PDEs, we apply finite-volume methods in mass conserved
discretization schemes and for time-discretization of the resulting ODEs we apply Runge-
Kutta methods or BDF methods. To accelerate the solver process, we combine the numerical
and analytical parts of the solutions.

4.1.1. Discretization Method for Convection Equation

We deal with the following convection equation

∂tRc − v · ∇c = 0, (4.1)

where R is the retardation factor and presents the retention of the concentration; see also
(2.2). v is the velocity. We have a simple boundary condition c = 0 for the inflow and outflow
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boundary and the initial values are given as c(xj, 0) = c0
j (x). We use a piecewise constant

discretization method with the upwind discretization done in [19] and get

VjRc
n+1
j = VjRcnj − τ

n
∑

k∈out(j)

vjkc
n
j + τ

n
∑

k∈in(j)

cnkvkj ,

VjRc
n+1
j = cnj

(
RVj − τnνj

)
+ τn

∑
k∈in(j)

cnkvkj .
(4.2)

The explicit time discretization has to fulfill the discrete minimum-maximum property [19]
and we get the following restriction on time steps:

τj =
RVj

νj
, τn ≤ min

j=1,...,I
τj . (4.3)

To obtain improved spatial discretization methods and apply larger time steps, we introduce
a reconstruction with linear polynomials as a higher test-function in the next subsection.

4.1.2. Discretization Method for Convection-Reaction Equation Based on Embedded
One-Dimensional Analytical Solutions

We apply Godunov’s discretization method, compare for example, [20], and extend the
formulation to the analytical solution of convection-reaction equations. We reduce the
multidimensional equation to one-dimensional equations and solve each equation exactly.
The one-dimensional solution is multiplied by the underlying volume to give the mass
formulation. The one-dimensional mass is embedded in the multidimensional mass
formulation and we obtain the discretization of the multidimensional equation.

The algorithm is given in the following manner:

∂tcl +∇ · vlcl = −λlcl + λl−1cl−1, with l = 1, . . . , m. (4.4)

The velocity vector v is divided by Rl. The initial conditions are given by c0
1 = c1(x, 0), else

c0
l = 0 for l = 2, . . . , m and the boundary conditions are trivial cl = 0 for l = 1, . . . , m.

We first calculate the maximum time step for cell j and concentration i with the use of
the total outward fluxes:

τi,j =
VjRi

νj
, νj =

∑
k∈out(j)

vjk. (4.5)

We get the restricted time step with the local time steps of cells and their components

τn ≤ min
i=1,...,m
j=1,...,I

τi,j . (4.6)
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The velocity of the discrete equation is given by

vi,j =
1
τi,j

. (4.7)

We calculate the analytical solution of the mass, compare for example, [18], and we get

mn
i,jk,out = mi,out

(
a, b, τn, v1,j , . . . , vi,j , R1, . . . , Ri, λ1, . . . , λi

)
,

mn
i,j,rest = m

n
i,j f

(
τn, v1,j , . . . , vi,j , R1, . . . , Ri, λ1, . . . , λi

)
,

(4.8)

where a = VjRi(cni,jk − c
n
i,jk′

), b = VjRic
n
i,jk′

, and mn
i,j = VjRic

n
i,j . Furthermore, cn

i,jk′
is the

concentration at the inflow and cn
i,jk

is the concentration at the outflow boundary of cell j.
The discretization with the embedded analytical mass is calculated by:

mn+1
i,j −m

n
i,rest = −

∑
k∈out(j)

vjk

νj
mi,jk,out +

∑
l∈in(j)

vlj

νl
mi,lj,out, (4.9)

where vjk/νj is the retransformation of the total mass mi,jk,out into the partial mass mi,jk. In
the next time step, the mass is given as mn+1

i,j = Vj cn+1
i,j and in the old time step it is the rest

mass for concentration i. The proof is given in [18]. In the next section, we derive an analytical
solution for the benchmark problem, compare for example, [21, 22].

In the next subsection, we introduce the discretization of the diffusion-dispersion-
equation.

4.1.3. Discretization of the Diffusion-Dispersion-Equation

We discretize the diffusion-dispersion-equation with implicit time-discretization and finite-
volume method for the following equation:

∂tRc − ∇ · (D∇c) = 0, (4.10)

where c = c(x, t) with x ∈ Ω and t ≥ 0. The diffusion-dispersion tensor D = D(x,v) is given
by the Scheidegger approach, compare for example, (4.15). The velocity is given as v. The
retardation factor is R > 0.0.

The boundary-values are denoted by n · D∇c(x, t) = 0, where x ∈ Γ is the boundary
Γ = ∂Ω, compare for example, [23]. The initial conditions are given by c(x, 0) = c0(x).

We integrate (4.10) over space and time and derive

∫
Ωj

∫ tn+1

tn
∂tR(c)dt dx =

∫
Ωj

∫ tn+1

tn
∇ · (D∇c)dt dx. (4.11)
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The time-integration is done by the backward-Euler method and the diffusion-dispersion
term is lumped, compare for example, [18].

∫
Ωj

(
R
(
cn+1

)
− R(cn)

)
dx = τn

∫
Ωj

∇ ·
(
D∇cn+1

)
dx. (4.12)

Equation (4.12) is discretized over space by using Green’s formula.

∫
Ωj

(
R
(
cn+1

)
− R(cn)

)
dx = τn

∫
Γj
D n · ∇cn+1dγ, (4.13)

where Γj is the boundary of the finite-volume cell Ωj . We use an approximation in space,
compare for example, [18].

The spatial integration of (4.13) is done by the mid-point rule over finite boundaries
and is given by

VjR
(
cn+1
j

)
− VjR

(
cnj

)
= τn

∑
e∈Λj

∑
k∈Λe

j

∣∣∣Γejk
∣∣∣nejk ·De

jk∇c
e,n+1
jk , (4.14)

where |Γe
jk
| is the length of the boundary-element Γe

jk
. The gradients are calculated with the

piecewise finite-element function φl, see [24], and we obtain

∇ce,n+1
jk

=
∑
l∈Λe

cn+1
l ∇φl

(
xejk

)
. (4.15)

We use the difference notation for the neighbour points j and l, compare for example, [25],
and obtain the discretized equation:

VjR
(
cn+1
j

)
− VjR

(
cnj

)
= τn

∑
e∈Λj

∑
l∈Λe\{j}

⎛
⎝∑

k∈Λe
j

∣∣∣Γejk
∣∣∣nejk ·De

jk∇φl
(
xejk

)⎞⎠(
cn+1
j − cn+1

l

)
, (4.16)

where j = 1, . . . , m.

4.2. Interpolation and Regression of Experimental Dates

To simulate the physical experiments with the assumed model, we have to approximate
the parameters of the numerical model. We apply interpolation and regression schemes to
approximate between the mathematical and physical parameters.

Here, we concentrate on the reaction rates of species Si, C, and H.
The physical data of temperature and pressure are used and validation simulations are

done to obtain the rate of deposition.
Next we have to interpolate the parameters of the numerical model.
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Table 4: Physical and mathematical parameters.

Physical parameter Mathematical parameter
Temperature, pressure, power Velocity, diffusion, reaction
T, p,W V,D, λ

(1) Lagrangian Interpolation

We assume an interpolation at Ω = [a1, b1] × · · · × [ad, bd].

T =
∑
ν∈K

f
(
xtν

)
Ltν, (4.17)

where the Lagrangian function is given as

Ltν(x) = π
d
i=1π

m
μ=0,μ /= νi

xi − x[ai,bi]
μ

x
ν
[ai ,bi]
i

− xμ[ai,bi]
. (4.18)

(2) Linear Regression (Least squares approximation)

Here, we have points with values and we assume we have the best approximation by
minimization:

S =
m∑
k=1

(
yk − Ln(xk)

)2
, (4.19)

where m ≥ n and Ln is a function that is constructed by the least squares algorithm; see [26].

Remark 4.1. To apply larger parameter spaces, we can generalise to multivariate regression
methods see [27]. Here we compute approximations between higher dimensional matrix
spaces.

5. Numerical Experiments

For all the experiments, we have the following parameters of the model, discretization and
solver methods.

We apply interpolation and regression methods to couple the physical parameters to
the mathematical parameters; see Figure 4 and Table 4.

Parameters of the Equation.

In the following, we list the parameters for our simulation tool UG; see [28]. The software
toolbox has a flexible user interface to allow a large number of numerical experiments
and approximations to the known physical parameters. The model parameters are given in
Table 5.
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Physical experiments
Physical parameters

Mathematical experiments
Mathematical parameters

Interpolation or regression

Figure 4: Coupling of physical and mathematical parameter space.

Table 5: Model-Parameters.

Density ρ = 1.0
Mobile porosity φ = 0.333
Immobile porosity 0.333
Diffusion D = 0.0
Longitudinal dispersion αL = 0.0
Transversal dispersion αT = 0.00
Retardation factor R = 10.0e − 4 (Henry rate).
Velocity field v = (0.0,−4.0 · 10−8)t.
Decay rate of species of 1st EX λAB = 1 · 10−68.
Decay rate of species of 2nd EX λAB = 2 · 10−8, λBNN = 1 · 10−68.
Decay rate of species of 3rd EX λAB = 0.25 · 10−8, λCB = 0.5 · 10−8.

Geometry (2d domain) Ω = [0, 100] × [0, 100].

Boundary Neumann boundary at top, left and right boundaries.
Outflow boundary at bottom boundary

Discretization Method:

Finite-volume method of 2nd order are given with the parameters in Table 6.

Time Discretization Method:

Crank-Nicolson method of 2nd order are given with the parameters in Table 7.

Solver Method:

In the following, we deal with test examples which are approximations of physical experi-
ments. The parameters of the solvers are given in Table 8.
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Table 6: Spatial discretization parameters.

Spatial step size Δxmin = 1.56,Δxmax = 2.21
Refined levels 6
Limiter Slope limiter

Test functions Linear test function reconstructed with
neighbor gradients

Table 7: Time discretization parameters.

Initial time step Δtinit = 5 · 107

Controlled time step Δtmax = 1.298 · 107,Δtmin = 1.158 · 107

Number of time steps 100, 80, 30, 25

Time step control Time steps are controlled with the
Courant-Number CFLmax = 1

5.1. Test Experiment 1: Interpolation with Temperature

In the test example, we deal with the following reaction:

2SiC + 4H→ λSiC + CH4 + Si. (5.1)

Here, we have physical experiments and approximate temperature parameters T = 400,
600, 800.

We compute the SiC : C ratio at a given temperature T = 400, 600, 800 with the UG
program and fit to the parameter λ.

We use a Lagrangian formula to compute λ for the new temperatures T = 500, 700 and
apply the ratio of the simulated new parameters. These values can be given back to physical
experiments; see Table 9.

One Source

The parameters of the source concentration are given in Table 10. In Figure 5, we present the
concentration of one point source at (50,20) with number of time steps being equal to 25.

In Figure 6, we show the deposition rates of one point source at (50,20), with number
of time steps being equal to 25. The rate of concentrations is given in Table 12.

Nine Point Sources

In this experiment, we apply nine point sources.
The parameters of the source concentration are given in Table 11. In Figure 7, we

present the concentration with nine point sources in a short time.
In Figure 8, we show the deposition rate with the nine point sources, with number of

time steps being equal to 25. The rate of concentrations is given in Table 13.

81-Point Sources

In this experiment, we apply 81 point sources.



Mathematical Problems in Engineering 17

Table 8: Solver methods and their parameters.

Solver BiCGstab (Bi conjugate gradient method)
Preconditioner Geometric Multi-grid method

Smoother Gauss-Seidel method as smoothers for the
Multi-grid method

Basic level 0
Initial grid Uniform grid with 2 elements
Maximum Level 6
Finest grid Uniform grid with 8192 elements

Table 9: Computed and experimental fitted parameters from UG simulations.

T λ (fitted) λ (interpolated) Ratio(SiC:C) (computed with UG)
400 1/2 · 10−8 2.4: 1
500 0.35 · 10−8 1.85: 1
600 1/4 · 10−8 1.5: 1
700 0.171 · 10−8 1.211: 1
800 1/8 · 10−8 1.1: 1

Table 10: Parameters of source concentration.

Point source at position (x, y) = (50, 20)
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1 · 108

Amount of permanent source concentration csource = 1.0
Number of time steps 25

(a) (b)

Figure 5: One point source at (50,20) with number of time steps being equal to 25.

Table 11: Parameters of source concentration.

9 point sources at position X = 10, . . . , 90, Y = 20
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1 · 108

Amount of permanent source concentration csource = 1.0
Number of time steps 25
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Figure 6: Deposition rates in case of one point source at (50,20) with number of time steps being equal
to 25.

Table 12: Rate of concentration.

RATE
SiCsource,max : SiCtarget,max

9 · 106 : 6.5 · 106 = 1.38

The parameters of the source concentration are given in Table 14. In Figure 9, we
present the concentration with 81 point sources.

In Figure 10, we show the deposition rates with 81 point sources, with number of time
steps equal to 80. The rate of concentrations is given in Table 15.

Line Source

In this part, we will perform experiments with a line source. The parameters of the line source
are given in Table 16.

In Figure 11, we present the results with a line source, x ∈ [5, 95], y ∈ [20, 25] with
number of time steps equal to 25.

In Figure 12, we show the deposition rates with (a) the line source, x is from 5 to 95,
and y is from 20 to 25. The rate of concentrations is given in Table 17.

5.2. Test Experiment 2: Interpolation with Temperature and Power

In the next experiment, we fit the mathematical parameters to the temperature and power of
the physical experiments.

We deal with the reaction:

2SiC + 4H−→λSiC + CH4 + Si. (5.2)
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(a) (b)

Figure 7: Nine point sources with number of time steps being equal to 25.
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Figure 8: Deposition rates in case of nine point sources, with number of time steps being equal to 25.

Table 13: Rate of concentration.

RATE
SiCsource,max : SiCtarget,max

9 · 106 : 6.7 · 106 = 1.34

Table 14: Parameters of source concentration.

81 point sources at position X = 10, 11, 12, . . . , 90, Y = 20
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1 · 108

Amount of permanent source concentration csource = 1.0
Number of time steps 80

Table 15: Rate of concentration.

RATE
SiCsource,max : SiCtarget,max

1.5 · 107 : 1.5 · 107 = 1
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(a) (b)

Figure 9: 81 point sources with number of time steps equal to 80.
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Figure 10: Deposition rates in case of 81 point sources, with number of time steps equal to 80.

In this case, we have a table which has values for the temperature and power of the plasma
and for the ratio between the sources.

We have to interpolate λ to the physical parameters temperature T and power of
plasma P . In Table 18, the interpolated parameters are given.

One Source

The parameters of the source concentration are given in Table 19. In Figure 13, we present the
concentration of one point source at (50,20) with number of time steps being equal to 25.

In Figure 14, we show the deposition rates with one point source at (50,20), with
number of time steps being equal to 25. The rate of concentrations is given in Table 20.

Nine Point Sources

In this experiment, we apply nine point sources.
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Table 16: Parameters the source concentration.

Line source at position x ∈ [5, 95], y ∈ [20, 25]
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1 · 108

Amount of permanent source concentration csource = 1.0
Number of time steps 25

(a) (b)

Figure 11: Line source with number of time steps being equal to 25.

The parameters of the source concentration are given in Table 21. In Figure 15, we
present the concentration of the nine point sources in a short time.

In Figure 16, we show the deposition rates of nine point sources, with number of time
steps being equal to 25.

81-Point Sources

In this experiment, we apply 81 point sources.
The parameters of the source concentration are given in Table 23. In Figure 17, we

present the concentration with 81 point sources.
In Figure 18, we show the deposition rates with 81 point sources, with number of time

steps equal to 100. The rate of concentrations is given in Table 22.

Line Source

In this part, we will perform an experiments with a line source, x ∈ [5, 95], y ∈ [20, 25].
In Figure 19, we present the result of the line source, x ∈ [5, 95], y ∈ [20, 25], with

number of time being steps equal to 30.
In Figure 20, we show the deposition rates with a line source, with x from 5 to 95, and

y from 20 to 30.

5.3. Test Experiment 3: Regression with Temperature and Power

In the next experiment, we apply a more flexible approximation method to obtain the
parameters of the mathematical method. We apply a regression and fit to all the physical
parameters, because we are not restricted to a given interpolation grid.
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Figure 12: Deposition rates in case of line source, x ∈ [5, 95], y ∈ [20, 25].

Table 17: Rate of concentration.

RATE
SiCsource,max : SiCtarget,max

4.7 · 107 : 4 · 107 = 1.17

Table 18: Computed (C) and experimentally fitted (F) parameters from UG simulations.

T P λ Ratio (SiC:C) Computed Ratio
400 900 S. 1/10 · 10−8 F.1: 0.97 1.01
400 500 S. 1/5 · 10−8 F.1.3: 1 1.33
400 100 1/2 · 10−8 C.2.4: 1
600 300 1/4 · 10−8 C.1.5: 1
800 500 1/8 · 10−8 C.1: 1
800 900 S.1/5.7 · 10−8 F.1.18: 1 1.252

Table 19: Parameters of source concentration.

Point source at position (x, y) = (50, 20)
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1 · 108

Amount of permanent source concentration csource = 1.0
Number of time steps 25

Table 20: Rate of concentration.

RATE
SiCsource,max : Ctarget,max

3 · 106 : 3 · 106 = 1
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(a) (b) (c) (d)

Figure 13: One point source at (50,20) with number of timesteps being equal to 25.
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Figure 14: Deposition rates in case of one point source at (50,20), with number of time steps being equal
to 25.

Table 21: Parameters of source concentration.

Nine point sources at position (x = 10, 20, 30, 40, 50, 60, 70, 80, 90;y = 20)
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1 · 108

Amount of permanent source concentration csource = 1.0
Number of time steps 25

(a) (b) (c) (d)

Figure 15: Nine point sources with number of time steps being equal to 25.
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Figure 16: Deposition rates in case of nine point sources, with number of time steps being equal to 25.

Table 22: Rate of concentration.

RATE
SiCsource,max : Ctarget,max

3.106 : 3.106 = 1

Table 23: Parameters of source concentration.

81 point sources at position X = 10, 11, 12, 000, 90;Y = 20.
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1 · 108

Amount of permanent source concentration csource = 1.0
Number of time steps 100

(a) (b) (c) (d)

Figure 17: 81 point sources with number of time steps equal to 100.

Table 24: Rate of concentration.

RATE
SiCsource,max : Ctarget,max

7.5 · 106 : 7 · 106 = 1.07



Mathematical Problems in Engineering 25

0

2e + 06

4e + 06

6e + 06

8e + 06

1e + 07

1.2e + 07

1.4e + 07

0 2e + 08 4e + 08 6e + 08 8e + 08 1e + 09 1.2e + 09 1.4e + 09

SiC at point 50 18
C at point 50 18

SiC at point 50 2
C at point 50 2

Figure 18: Deposition rates in case of 81 point sources, with number of time steps equal to 100.

Table 25: Parameters of source concentration.

Line source at position x ∈ [5, 95], y ∈ [20, 25]
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1 · 108

Amount of permanent source concentration csource = 1.0
Number of time steps 25

The reaction is given as
A → B and B → C and we apply to 2SiC + 4H → SiC + CH4 + Si.
We computed the ratio SiC : C for temperatures T = 400, 600, 800 and plasma powers

100, 300, 500, 900 and fit the simulated ratio given by the UG program to the mathematical
model with a reaction parameter λ.

We use linear regression, see Section 4, and compute λ for the new temperatures T =
450, 500, 800 and apply the ratio of the simulated new parameters. These values can be given
back to the physical experiments; see Table 24.

One Source

Here, we take points sources.
In Figure 21, we present the concentration in the one-point source experiment.
In Figure 22, we show the deposition rates in the one-point source experiment.

Nine Point Sources

Here, we take nine point sources of both concentrations.
In Figure 23, we present the concentration of the nine point sources experiment.
In Figure 24, we show the deposition rates of the nine point sources experiment.
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Table 26: Rate of concentration.

RATE
SiCsource,max : Ctarget,max

1.8 · 107 : 2.2 · 107 = 0.81

Table 27: Parameters of source concentration.

T P Exact λ Regression λ Exact ratio
(SiC:C)

Regression ratio
(SiC:C)

400 900 1e-09 1.703e-09 1:0.97 0.835
400 500 0.2e-08 2.903e-09 1.3:1 1.616
400 100 0.5e-08 4.103e-09 2.4:1 2.011
600 300 0.25e-08 3.303e-09 1.5:1 1.774
800 500 0.125e-8 2.503e-09 1:1 1.192
800 900 0.175e-8 1.303e-09 1.2:1 1.132
500 500 2.803e-09 1.58
600 600 2.4030e-09 1.433
800 800 1.603e-09 1.206
400 400 3.203e-09 1.715
450 450 2.703e-09 1.57
800 100 3.703e-09 1.93

Table 28: Parameters of source concentration.

Point source of SiC at position (x, y) = (50, 20)
Point source of H at position (x, y) = (50, 20)
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1 · 108

Amount of permanent source concentration csource = 1.0
Number of time steps 100

Table 29: Rate of concentration.

RATE
Csource,max : SiCtarget,max

1.8 · 107 : 1 · 107 = 1.8

Table 30: Parameters of source concentration.

Nine point sources of SiC at position (x = 10, 20, 30, 40, 50, 60, 70, 80, 90;y = 20)
Nine point sources of SiC at position (x = 10, 20, 30, 40, 50, 60, 70, 80, 90;y = 20)
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1 · 108

Amount of permanent source concentration csource = 1.0
Number of time steps 25

Table 31: Rate of concentration.

RATE
Csource,max : SiCtarget,max

5 · 106 : 4.4 · 106 = 1.13
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(a) (b) (c) (d)

Figure 19: Line source with number of time steps being equal to 25.
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Figure 20: Deposition rates in case of line source, x ∈ [5, 95], y ∈ [20, 25].

(a) (b) (c)

(d) (e) (f)

Figure 21: One point source experiment.
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Figure 22: Deposition rates in case of one-point source experiment.

(a) (b) (c)

Figure 23: Nine-point source experiment.

81-Point Sources, thalf = 2 · 108

In this first experiment, the value of temperature is 400 deg C and λ is 0.5 · 10−8.
Here, we take the concentration of SiC as a point source, and the concentration of H as

a line source.
In Figure 25, we present the concentration of the 81-point source experiment.
In Figure 26, we show the deposition rates in the 81 point source experiment.

Remark 5.1. The regression method is more flexible for approximating to the physical
parameters. We obtain numerical results for different parameter studies, that are fitted to the
physical experiments. The first test examples with multiple sources and temperature regions
which are interesting to physicists are simulated. Here, we have coupled a mathematical
model to a physical experiment and studied the near region of the deposition process.
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Figure 24: Deposition rates in case of nine-point source experiment.

Table 32: Parameters of source concentration.

81 point sources of SiC at position X = 10, 11, 12, 000, 90;Y = 20
Line source of H at position x ∈ [5, 95], y ∈ [20, 25]
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1 · 108

Amount of permanent source concentration Sicsource = 1.0,Hsource = 0.20
Number of time steps 100

(a) (b) (c) (d)

(e) (f)

Figure 25: 81-point source experiment.
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Figure 26: Deposition rates in case of 81 point source experiment.

Table 33: Rate of concentration.

RATE
Csource,max : SiCtarget,max

1.8 · 107 : 0.75 · 107 = 2.4

6. Conclusions

We present a numerical simulation of a CVD process for depositing SiC films. Based
on the different scales of physical and mathematical experiments, we apply a parameter
approximation to fit the physical experiment to the mathematical experiment. Numerical
approximations to the experimental data include the new parameters of the mathematical
model. Such experiments allow to reduce the number of physical experiments to an
acceptable number and give engineers and experimentalists a mathematical tool for
predicting complex physical processes.

The first numerical results show predictions of physical experiments with a transport-
reaction equation of the deposition process.

The temperature of the target and power of the plasma are chosen in such manner that
the simulation results can help find the optimal deposition conditions. Furthermore, multiple
sources obtain the best results with homogeneous layer deposition.

Such numerical simulations help to predict the deposition rates of the underlying
film, for example, SiC. In future, we will analyze the validity of the models with more
complicated precursor gases. Here the outstanding multivariate analysis will be important
for approximating a large number of parameters.
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Nomenclature

φ: effective porosity [−]
cLi : concentration of ith gaseous species in plasma chamber
cLi,im: concentration of ith gaseous species in immobile zones of plasma chamber phase

[mol/mm3]
v: velocity in plasma chamber [mm/nsec]
De(i): element-specific diffusion-dispersion tensor [mm2/nsec]
λi,i: decay constant of ith species [1/nsec]
Q̃i: source term of ith species [mol/(mm3 nsec)]
g: exchange rate between mobile and immobile concentrations [1/nsec].
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