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This paper presents a new recursive filter to joint fault and state estimation of a linear time-
varying discrete systems in the presence of unknown disturbances. The method is based on
the assumption that no prior knowledge about the dynamical evolution of the fault and the
disturbance is available. As the fault affects both the state and the output, but the disturbance
affects only the state system. Initially, we study the particular case when the direct feedthrough
matrix of the fault has full rank. In the second case, we propose an extension of the previous case
by considering the direct feedthrough matrix of the fault with an arbitrary rank. The resulting filter
is optimal in the sense of the unbiased minimum-variance (UMV) criteria. A numerical example
is given in order to illustrate the proposed method.

1. Introduction

This paper is concerned with the problem of joint fault and state estimation of linear time-
varying discrete-time stochastic systems in the presence of unknown disturbances. In spite of
the presence of the unknown inputs, the robust estimate of the state and the fault enables us
to implement a Fault Tolerant Control (FTC). A simple idea consists of using an architecture
FTC resting on the compensation of the effect of the fault; see, for example, [1].

Initially, we refer to the unknown input filtering problem largely treated in the
literature by two different approaches. The first approach was based on the augmentation
of the state vector with an unknown input vector. However, this approach assumes that the
model for the dynamical evolution of the unknown inputs is available. When the statistical
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properties of the unknown input are perfectly known, the augmented state Kalman filter
(ASKF) is an optimal solution. To reduce computation costs of the ASKF, Friedland [2]
developed the two-stage Kalman filter (TSKF). This latter is optimal only for a constant bias.
Many authors have extended Friedland’s idea to treat the stochastic bias, for example, [3–5].
Recently, Kim et al. [6, 7] have developed an adaptive two-stage Kalman filter (ATSKF). The
second approach treats the case when we do not have a prior knowledge about the dynamical
evolution of the unknown input. Kitanidis [8] was the first to solve this problem using
the linear unbiased minimum-variance (UMV). Darouach et al. [9] extended Kitanidis’s
filter using a parameterizing technique to have an optimal estimator filter (OEF). Hsieh
[10] has developed an equivalent to Kitanidis’s filter noted robust two-stage Kalman filter
(RTSKF). Later, Hsieh [11] developed an optimal minmum variance filter (OMVF) to solve
the performance degradation problem encountered in OEF. Gillijns and Moor [12] have
treated the problem of estimating the state in the presence of unknown inputs which affect the
system model. They developed a recursive filter which is optimal in the sense of minimum-
variance. This filter has been extended by the same authors [13] for joint input and state
estimation to linear discrete-time systems with direct feedthrough where the state and the
unknown input estimation are interconnected. This filter is called recursive three-step filter
(RTSF) and is limited to direct feedthrough matrix with full rank. Recently, Cheng et al. [14]
proposed a recursive optimal filter with global optimality in the sense of unbiased minimum-
variance over all linear unbiased estimators, but this filter is limited to estimate the state (i.e.,
no estimate of the unknown input). In [15], the author has extended an RTSF-noted ERTSF,
where he solved a general case when the direct feedthrough matrix has an arbitrary rank.

In this paper, we develop a new recursive filter to joint fault and state estimation
for linear stochastic, discrete-time, and time-varying systems in the presence of unknown
disturbances. We assume that the unknown disturbances affect only the state equation. While,
the fault affects both the state and the output equations, as well, we consider that the direct
feedthrough matrix has an arbitrary rank [15].

This paper is organized as follows. Section 2 states the problem of interest. Section 3 is
dedicated to the design of the proposed filter. In Section 4, the obtained filter is summarized.
An illustrative example is presented in Section 5. Finally, in Section 6 we conclude our
obtained results.

2. Statement of the Problem

Assume the following linear stochastic discrete-time system:

xk+1 = Akxk + Bkuk + Fxkfk + E
x
kdk +wk,

yk = Hkxk + F
y

k fk + vk,
(2.1)

where xk ∈ Rn is the state vector, yk ∈ Rm is the observation vector, uk ∈ Rr is the known
control input, fk ∈ Rp is the additive fault vector, and dk ∈ Rq is the unknown disturbances.
wk and vk are uncorrelated white noise sequences of zero-mean and covariance matrices
are Qk ≥ 0 and Rk > 0, respectively. The disturbance dk is assumed to have no stochastic
description and must be decoupled. The initial state is uncorrelated with the white noises
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processeswk and vk and x0 is a Gaussian random variable with E[x0] = x̂0 and E[(x0−x̂0)(x0−
x̂0)

T ] = Px0 where E[·] denotes the expectation operator. The matrices Ak, Bk, Fx
k

, Ex
k
, Hk, and

F
y

k
are known and have appropriate dimensions. We consider the following assumptions:

(i) A1: (Hk,Ak) is observable,

(ii) A2:n > m ≥ p + q,

(iii) A3: 0 < rank(Fyk ) ≤ p,

(iv) A4: rank(HkE
x
k−1) = rank(Ex

k−1) = q.

The objective of this paper is to design an unbiased minimum-variance linear
estimator of the state xk and the fault fk without any information concerning the fault fk
and the unknown disturbances dk. We can consider that the filter has the following form:

x̂k/k−1 = Ak−1x̂k−1 + Bk−1uk−1 + Fxk−1
̂fk−1, (2.2)

̂fk = Kf

k

(

yk −Hkx̂k/k−1
)

, (2.3)

x̂k = x̂k/k−1 +Kx
k

(

yk −Hkx̂k/k−1
)

, (2.4)

where the gain matrices Kf

k ∈ Rp×m and Kx
k ∈ Rn×m are determined to satisfy the following

criteria.

Unbiasedness

The estimator must satisfy

E
[

˜fk
]

= E
[

fk − ̂fk
]

= 0, (2.5)

E[x̃k] = E[xk − x̂k] = 0. (2.6)

Minimum-Variance

The estimator is determined such that

(i) the mean square errors E[ ˜fk ˜fTk ] is minimized under the constraint (2.5);

(ii) the trace{Pxk = E[x̃kx̃Tk ]} is minimized under the constraints (2.5) and (2.6).

3. Filter Design

In this section, the fault and the state estimation are considered in the presence of the
unknown disturbance in two cases with respect to assumption A3. Section 3.1 is dedicated to
deriving a UMV state and fault estimation filter if matrix Fyk has full rank (i.e., rank(Fyk ) = p).
A general case will be solved by an extension of the UMV state and fault estimation filter in
Section 3.2.
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3.1. UMV Fault and State Estimation

In this subsection, we will study a particular case when the rank(Fy
k
) = p. The gain matrices

K
f

k and Kx
k will be determined as that (2.3) and (2.4) can give an unbiased estimation of fk

and xk. In the next, the UMV fault and state estimation are solved.

3.1.1. Unbiased Estimation

The innovation error has the following form

ỹk : = yk −Hkx̂k/k−1 = Fy
k
fk +HkE

x
k−1dk−1 + ek, (3.1)

where

ek = Hk
˜xk/k−1 + vk, (3.2)

˜xk/k−1 = Ak−1x̃k−1 + Fxk−1
˜fk−1 +wk−1. (3.3)

The fault estimation error and the state estimation error are, respectively, given by

˜fk : = fk − ̂fk

=
(

I −Kf

k
F
y

k

)

fk −K
f

k
HkE

x
k−1dk−1 −K

f

k
ek,

(3.4)

x̃k : = xk − x̂k

=
(

I −Kx
kHk

)

˜xk/k−1 −Kx
kF

y

k
fk −

(

Kx
kHkE

x
k−1 − E

x
k−1

)

dk−1 −Kx
kvk.

(3.5)

The estimators x̂k and ̂fk are unbiased if Kf

k and Kx
k satisfy the following constraints:

K
f

k
Gk = Fk, (3.6)

Kx
kGk = Γk, (3.7)

where Gk = [Fy
k

HkE
x
k−1], Fk = [Ip 0] and Γk = [0 Ex

k−1].

Lemma 3.1. Let rank(Fyk ) = p; under the assumptions A2 and A4, the necessary and sufficient
condition so that the estimators (2.3) and (2.4) are unbiased as matrix Gk is full column rank, that is,

rank(Gk) = rank
(

F
y

k
HkE

x
k−1

)

= p + q. (3.8)
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Proof. Equations (3.6) and (3.7) can be written as

⎡

⎣

K
f

k

Kx
k

⎤

⎦Gk =

[

Fk
Γk

]

. (3.9)

The necessary and sufficient condition for the existence of the solution to (3.9) is

rank

⎡

⎢

⎢

⎣

Fk
Γk

Gk

⎤

⎥

⎥

⎦

= rank(Gk). (3.10)

We clarify (3.10), and we obtain

rank

⎡

⎢

⎢

⎣

Ip 0

0 Ex
k−1

F
y

k
HkE

x
k−1

⎤

⎥

⎥

⎦

= rank
(

F
y

k
HkE

x
k−1

)

. (3.11)

However, the matrix on the left of the equality has a rank equal to p + q. According to
assumptionsA2,A4 and rank(Fy

k
) = p, this can be easily justified by considering that the faults

and the unknown disturbances have an independent influences. The condition to satisfy is
thus given by (3.8).

3.1.2. UMV Estimation

In this subsection, we propose to determine the gain matrices Kf

k and Kx
k by satisfying the

unbiasedness constraints (2.5) and (2.6).

(a) Fault Estimation

Equation (3.1) will be written as

ỹk = Gk

[

fk

dk−1

]

+ ek. (3.12)

Since, ek does not have unit variance and ỹk does not satisfy the assumptions of the Gauss-
Markov theorem [16], the least-square (LS) solutions do not have a minimum-variance.
Nevertheless, the covariance matrix of ek has the following form:

Ck = E
[

ek eTk
]

= HkP
x

k/k−1H
T
k + Rk, (3.13)

where P
x

k/k−1 = E[˜xk/k−1
˜x
T

k/k−1].
For that, fk can be obtained by a weighted least-square (WLS) estimation with a

weighting matrix C−1
k

.
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Theorem 3.2. Let ˜xk/k−1 be unbiased; the matrix Ck is positive definite and the matrix Gk is full
column rank; then to have a UMV fault estimation, the matrix gain Kf

k
is given by

K
f∗
k

= FkG∗k, (3.14)

where G∗k = (GT
kC
−1
k Gk)

−1GT
kC
−1
k .

Proof. Under that Ck is positive definite and an invertible matrix Sk ∈ Rm×m verifes SkSTk =
Ck, so we can rewrite (3.12) as follow.

S−1
k ỹk = S−1

k Gk

[

fk

dk−1

]

+ S−1
k ek. (3.15)

If the matrix Gk is full column rank, that is, rank(Gk) = p + q, then the matrix GT
kC
−1
k Gk is

invertible. Solving (3.15) by an LS estimation is equivalent to solve (3.12) by WLS solution:

̂f∗k = Fk(GT
kC
−1
k Gk)

−1
GT
kC
−1
k ỹk. (3.16)

In this way, we can consider that S−1
k ek has a unit variance and (3.15) can satisfy the

assumptions of the Gauss-Markov theorem. Hence, (3.16) is the UMV estimate of fk.

In this case, the fault estimation error is rewritten as follows:

˜f∗k = −Kf∗
k
ek. (3.17)

Using (3.17), the covariance matrix Pfk is given by

P
f∗
k

= E
[

˜f∗k
˜f∗Tk

]

= Kf∗
k
CkK

f∗T
k

= Fk(GT
kC
−1
k Gk)

−1FTk . (3.18)

(b) State Estimation

In this part, we propose to obtain an unbiased minimum variance state estimator to calculate
the gain matrix Kx

k
which will minimize the trace of covariance matrix Px

k
under the

unbiasedness constraint (3.7).

Theorem 3.3. Let GT
kC
−1
k Gk be nonsingular; then the state gain matrix Kx

k is given by

Kx∗
k = P

x

k/k−1H
T
k C
−1
k

(

I −GkG
∗
k

)

+ ΓkG∗k. (3.19)

Proof. Considering (3.7) and (3.5), we determine Pxk as follows:

Pxk =
(

I −Kx
kHk

)

P
x

k/k−1(I −Kx
kHk)

T +Kx
kRkK

xT
k

= Kx
kCkK

xT
k − 2P

x

k/k−1H
T
kK

xT
k + P

x

k/k−1.
(3.20)
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So, the optimization problem can be solved using Lagrange multipliers:

trace
{

Kx
kCkK

xT
k − 2P

x

k/k−1H
T
kK

xT
k + P

x

k/k−1

}

− 2 trace
{

(

Kx
kGk − Γk

)

ΛT
k

}

, (3.21)

where Λk is the matrix of Lagrange multipliers.
To derive (3.21) with respect to Kx

k
, we obtain

CkK
x∗T
k −HkP

x

k/k−1 −GkΛT
k = 0. (3.22)

Equations (3.7) and (3.22) form the linear system of equations:

[

Ck −Gk

GT
k

0

][

Kx∗T
k

ΛT
k

]

=

[

HkP
x

k/k−1

ΓT
k

]

. (3.23)

If GT
k
C−1
k
Gk is nonsingular, (3.23) will have a unique solution.

3.1.3. The Filter Time Update

From (3.3), the prior covariance matrix P
x

k/k−1 = E[˜xk/k−1
˜x
T

k/k−1] has the following form:

P
x

k/k−1 =
[

Ak−1 Fxk−1

]

⎡

⎣

Px∗
k−1 P

xf∗
k−1

P
fx∗
k−1 P

f∗
k−1

⎤

⎦

[

AT
k−1

FxT
k−1

]

+Qk−1, (3.24)

where Pxf∗
k

:= E[x̃∗
k
˜f∗T
k
] is calculated by using (2.3) and (2.4):

P
xf∗
k

= −
(

I −Kx∗
k Hk

)

P
x

k/k−1H
T
kK

f∗T
k

+Kx∗
k RkK

f∗T
k

. (3.25)

3.2. Extended UMV Fault and State Estimation

In this section, we consider that 0 < rank(Fyk ) ≤ p. To solve this interesting problem we will
use the proposed approach by Hsieh in (2009) [15]. If we introduce (3.2) and (3.3) into (3.4),
then we will be able to write the fault error estimation as follows:

˜fk : =
(

I −Kf

kF
y

k

)

fk −K
f

kHkE
x
k−1dk−1 −K

f

k

(

Hk
˜xk/k−1 + vk

)

= −Kf

kHkF
x
k−1

˜fk−1 −K
f

kHkAk−1x̃k−1 +
(

I −Kf

kF
y

k

)

fk −K
f

kHkE
x
k−1dk−1

−Kf

k
Hkwk−1 −K

f

k
vk.

(3.26)
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Assuming that E[x̃k−1] = 0 we define the following notations:

Φk = Kf

kF
y

k = Ip − Σk,

G
f

k = Kf

kHkF
x
k−1,

Gd
k = Kf

kHkE
x
k−1,

(3.27)

where Σk = I − (Fy
k
)+Fy

k
.

Using the same technique presented in [15], the expectation value of the ˜fk is given by

E
[

˜fk
]

= Σkfk −G
f

kΣk−1fk−1 +G
f

k

(

G
f

k−1Σk − 2
)

fk−2 + · · · + (−1)kGf

k × · · · ×G
f

2

(

G
f

1Σ0

)

f0

−Gd
kdk−1 +G

f

k
Gd
k−1dk−2 + · · · + (−1)kGf

k
× · · · ×Gf

1G
d
1d0.

(3.28)

When we assume that Gf

i Σi−1 = 0 and Gd
i = 0 for i = 1, . . . , k, then we obtain

E
[

˜fk
]

= Σkfk. (3.29)

To obtain an unbiased estimation of the fault, the gain matrixKf

k
should respect the following

constraints:

K
f

kF
y

k = Φk,

K
f

kHkF
x
k−1Σk−1 = 0,

K
f

k
HkE

x
k−1 = 0.

(3.30)

Equation (3.30) can be written as

K
f

k
Gk = Fk, (3.31)

where

Gk =
[

F
y

k
HkF

x
k−1Σk−1 HkE

x
k−1

]

,

Fk =
[

Φk 0 0
]

.

(3.32)
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Using (3.31), we can determine the gain matrix Kf

k
as follows:

K
f∗
k

= FkG
∗
k, (3.33)

where G
∗
k = (G

T

kC
−1
k Gk)

+ G
T

kC
−1
k and X+ denotes the Moore-Penrose pseudoinverse of X.

The state estimation error is given by

x̃k : =
(

I −Kx
kHk

)

˜xk/k−1 −Kx
kF

y

k
fk −

(

Kx
kHkE

x
k−1 − E

x
k−1

)

dk−1 −Kx
kvk

=
(

I −Kx
kHk

)

Ak−1x̃k−1 +
(

I −Kx
kHk

)

Fxk−1
˜fk −

(

Kx
kHkE

x
k−1 − E

x
k−1

)

dk−1

−Kx
kF

y

k fk +
(

I −Kx
kHk

)

wk−1 −Kx
kvk.

(3.34)

To have an unbiased estimation of the state, the gain matrix Kx
k should satisfy the following

constraints:

Kx
kF

y

k
= 0,

Kx
kHkF

x
k−1Σk−1 = Fxk−1Σk−1,

Kx
kHkE

x
k−1 = Exk−1.

(3.35)

From (3.35), we obtain

Kx
kGk = Γk, (3.36)

where

Γk =
[

0 Fx
k−1Σk−1 Ex

k−1

]

. (3.37)

Refering to (3.34), we calculate the error state covariance matrix:

Pxk =
(

I −Kx
kHk

)

P
x

k/k−1(I −Kx
kHk)

T +Kx
kRkK

xT
k

= Kx
kCkK

xT
k − 2P

x

k/k−1H
T
kK

xT
k + P

x

k/k−1.
(3.38)

The gain matrix Kx
k

is determin by minimizing the trace of the covariance matrix Px
k

such as
(3.36). Using the Kitanidis method [8], we obtain

⎡

⎣

Ck −Gk

G
T

k 0

⎤

⎦

[

Kx∗T
k

ΛT
k

]

=

⎡

⎣

HkP
x

k/k−1

Γ
T

k

⎤

⎦, (3.39)

where Λk is the matrix of Lagrange multipliers.
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Figure 1: Known input uk .

If G
T

kC
−1
k Gk is nonsingular, (3.39) will have a unique solution. So, the gain matrix Kx

k

is given by

Kx∗
k = P

x

k/k−1H
T
k C
−1
k

(

I −GkG
∗
k

)

+ ΓkG
∗
k. (3.40)

The filter time update is the same as that given by (3.24) and (3.25). The obtained filters will
be tested by an illustrative example in Section 5.

4. Summary of Filter Equations

We suppose to know the following:

(i) the known input uk,

(ii) matrices Ak, Bk, Hk, Fxk , Fyk and Exk ,

(iii) covariance matrices Qx
k and Rk,

(iv) initial values x̂0 and Px0 .

We assume that the estimate of the initial state is unbiased and we take the initial
covariance matrix P

x

0/−1 = Px0 .
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Figure 2: Actual state x1
k

and estimated state x̂1
k
.

Step 1. Estimation of fault is

Ck = HkP
x

k/k−1H
T
k + Rk,

Gk =
[

F
y

k
HkF

x
k−1Σk−1 HkE

x
k−1

]

,

Fk =
[

Φk 0 0
]

,

G
∗
k =

(

G
T

kC
−1
k Gk

)+
G
T

kC
−1
k ,

K
f

k = FkG
∗
k,

̂fk = Kf

k

(

yk −Hkx̂k/k−1
)

,

P
f

k
= Kf

k
CkK

fT

k
.

(4.1)
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Step 2. Measurement update is

Γk =
[

0 Fxk−1Σk−1 Exk−1

]

,

Kx
k = P

x

k/k−1H
T
k C
−1
k

(

I −GkG
∗
k

)

+ ΓkG
∗
k,

x̂k = x̂k/k−1 +Kx
k

(

yk −Hkx̂k/k−1
)

,

Pxk =
(

I −Kx
kHk

)

P
x

k/k−1(I −Kx
kHk)

T +Kx
kRkK

xT
k ,

P
xf

k
= −

(

I −Kx
kHk

)

P
x

k/k−1H
T
kK

fT

k
+Kx

kRkK
fT

k
.

(4.2)

Step 3. Time update is

x̂k+1/k = Akx̂k + Bkuk + Fxk ̂fk,

P
x

k+1/k =
[

Ak Fx
k

]

⎡

⎣

Pxk P
xf

k

P
fx

k P
f

k

⎤

⎦

[

AT
k

FxTk

]

+Qk.

(4.3)

Remark 4.1. If rank(Fy
k
) = p, then we have Σk = 0 for all k ≥ 0 and it is easier to use the

filter obtained in Section 3.1. In this case, the gain matrices Kf

k and Kx
k are given by (3.14) and

(3.19), respectively.

Remark 4.2. These remarks give the relationships with the existing literature results.

(i) If Ex
k
= 0 and 0 < rank(Fy

k
) ≤ p, the obtained filter is equivalent to ERTSF developed

by [15].

(ii) If Exk = 0 and rank(Fyk ) = p, then we have Σk = 0 for all k ≥ 0 and the obtained filter
is equivalent to RTSF proposed by [13].

(iii) In the case where Fx
k
= 0 and F

y

k
= 0, the filter of [8] is obtained.

(iv) In the case where Fx
k
= 0, Fy

k
= 0 and Ex

k
= 0, we obtain the standard Kalman filter.
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Figure 3: Actual fault f1
k

and estimated fault ̂f1
k

.

5. An Illustrative Example

To apply our proposed filters we will treat different cases to respect assumption A3. The
parameters of the system (2.1) are given by

xk =

⎡

⎢

⎢

⎣

x1,k

x2,k

x3,k

⎤

⎥

⎥

⎦

, Ak =

⎡

⎢

⎢

⎣

ak 0.1 0.2

0.1 0.6 0.3

0.5 0.1 0.25

⎤

⎥

⎥

⎦

, ak = 0.4 + 0.3 sin(0.2k), Bk =

⎡

⎢

⎢

⎣

2

−1.5

0.5

⎤

⎥

⎥

⎦

,

Fxk =

⎡

⎢

⎢

⎣

0.5 0.7

1.5 1.1

0.8 0.9

⎤

⎥

⎥

⎦

, Exk =

⎡

⎢

⎢

⎣

0

2

1

⎤

⎥

⎥

⎦

, Hk =

⎡

⎢

⎢

⎣

1 −1 0

0 1 0

0 −1 −1

⎤

⎥

⎥

⎦

, Qk = 0.1I3×3, Rk = 0.01I3×3,
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Figure 4: Actual fault f2
k

and estimated fault ̂f2
k

.

x0 =

⎡

⎢

⎢

⎣

1

−2

1

⎤

⎥

⎥

⎦

, x̂0 =

⎡

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎦

, Px0 = I3×3.

(5.1)

In this simulation, four cases of Fyk will be considered as follows:

(Fy
k
)

1
=

⎡

⎢

⎢

⎣

2 1.4

0.6 0.3

0.2 1.6

⎤

⎥

⎥

⎦

, (Fy
k
)

2
=

⎡

⎢

⎢

⎣

2 1

0.6 0.3

0.2 0.1

⎤

⎥

⎥

⎦

,

(Fyk )
3
=

⎡

⎢

⎢

⎣

2 0

0.6 0

0.2 0

⎤

⎥

⎥

⎦

, (Fyk )
4
=

⎡

⎢

⎢

⎣

0 1.4

0 0.3

0 1.6

⎤

⎥

⎥

⎦

.

(5.2)
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Figure 5: Trace of the covariance matrix Px
k

.

We assume that the fault and the disturbance are given by

[

f1,k

f2,k

]

=

[

5us(k − 10) − 5us(k − 70)

4us(k − 30) − 4us(k − 65)

]

,

dk = 4us(k − 15) − 4us(k − 55),

(5.3)

where us(k) is the unit-step function.
Figure 1 presents the input sequence of the system (2.1). The simulation time is 100

time steps.
In Figure 2, we have plotted the actual and the estimated value of the first element of

the state vector xk = [x1
k
x2
k
x3
k
]T . Figures 3 and 4 present the actual and the estimated value

of the first element and the second element of the fault vector fk = [f1
k
f2
k
]T , respectively. The

convergence of the trace of covariance matrices Pxk and P
f

k is shown, respectively, in Figures
5 and 6.
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Figure 6: Trace of the covariance matrix Pf

k
.

Table 1: RMSE values.

RMSE x1,k x2,k x3,k f1,k f2,k

(Fy
k
)1 0.4496 0.1531 0.5114 0.3875 0.4139

(Fy
k
)2 0.5248 0.1346 0.1863 0.4941 0.9612

(Fy
k
)3 0.6301 0.1542 0.2129 0.2565 2.3664

(Fy
k
)4 0.3378 0.0938 0.3647 3.3541 0.4139

The simulation results in Table 1 show the average root mean square errors (RMSEs)
in the estimated states and faults.

According to Figures 2–6 and Table 1, we can conclude that if the matrix Fyk has full
rank, then we obtain a best estimate of the state and the fault (Figures 2(a), 3(a) and 4(a)).
On the other hand, when the matrix F

y

k has not full rank, it is not possible to obtain a best
estimate of the various components of the fault (Figures 3(b), 3(c), 3(d), 4(b), 4(c) and 4(d)),
but the state estimation remains acceptable (Figures 2(b), 2(c), and 2(d)).
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6. Conclusion

In this paper, the problem of the state and the fault estimation are solved in the case of
stochastic linear discrete-time and varying-time systems. A recursive unbiased minimum-
variance (UMV) filter is proposed when the direct feedthrough matrix of the fault has an
arbitrary rank. The advantages of this filter are especially important in the case when we
do not have any priory information about the unknown disturbances and the fault. An
application of the proposed filter has been shown by an illustrative example. This recursive
filter is able to obtain a robust and unbiased minimum-variance of the state and the fault
estimation in spite of the presence of the unknown disturbances.
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