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Reverse logistics activities have received increasing attention within logistics and operations
management during the last years, both from a theoretical and a practical point of view. The field
of reverse logistics includes all logistics processes starting with the take-back of used products
from customers up to the stage of making them reusable products or disposing them. In this
paper, a single-product recovery system is studied. In such system, used products are collected
from customers and are kept at the recoverable inventory warehouse in view to be recovered.
The constant demand rate can be satisfied either by newly produced products or by recovered
ones (serviceable inventory), which are regarded as perfectly as the new ones. Excess demand is
completely backlogged. Following an exact analytical approach, the optimal set-up numbers and
the optimal lot sizes for the production of new products and for the recovery of returned products
are obtained. A numerical cost comparison of this model with the corresponding one without
backordering is also performed.

1. Introduction

In the classical logistics systems, the main concern is the management flow of raw materials,
final products, and related information until the products are delivered to the final customer.
The field of reverse logistics contains all logistics processes beginning with the take-back
of used products from customers up to the stage of making them reusable products or
disposing them. Reverse logistics activities have received increasing attention within logistics
and operations management during the last years, both from a theoretical and a practical
point of view. One reason for this is the more rigid environmental legislations and the
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growing environmental concerns. Yet one more reason is the awakening to the economical
attractiveness of reusing products rather than disposing them.

There are four main steps in the reverse logistic process; see the work by de Brito in
[1]. The first step is the collection of used products. The next step is the combined inspection
and sorting processes. These are followed by the reprocessing or direct recovery step of used
products, and the cycle closes with the redistribution step. Collection deals with bringing the
used products from customers to a collection recovery point. This point may be the company
itself or other companies in the business chain or companies outside the business chain;
see the work by Thierry et al. in [2]. At the collection point, used products are inspected,
their quality status is assessed, and a decision is made on the type of recovery process they
will undergo. There are different types of recovery: repair, refurbishing, remanufacturing,
cannibalization, and recycling; see the work by Thierry et al. in [2]. Repair brings used
products to working status. Refurbishing brings used products up to a specified quality level
and extends their service life. Remanufacturing brings used products up to quality standards
that are as rigorous as those for new products. The cannibalization is to recover a limited set
of reusable parts, and recycling is to extract materials from used products and components in
view to reuse them. Redistribution is the process of bringing the recovered products to new
end-user customers.

In a system with repair, remanufacturing, or refurbishing, recovery is an alternative to
manufacturing. The supplier meets the demand for a product and receives used products
returned from customers. Returned products are stocked at the recoverable inventory
warehouse and create the stock of recoverable products. The supplier has two alternatives to
fulfill the demand: either he orders externally/produces new items or recovers used products
and brings them back to “as new” condition. Note that since recovered (remanufactured)
items have the same quality as manufactured items and are sold for the same price in the
same market, there is no need to distinguish between the two. Both types are serviceable
and are used to satisfy the same customer demands. Clearly, in order to control such a
system efficiently, manufacturing and remanufacturing decisions have to be coordinated.
There has been a considerable number of contributions dealing with inventory control for
joint manufacturing and remanufacturing. Two very good reviews on quantitative models for
recovery production planning and inventory control are given in the work by Fleischmann et
al. in [3] and that by Guide Jr. and Srivastava in [4].

Several authors have studied recovery systems using the Economic Ordering Quantity
(EOQ) technique. The main advantage of EOQ models is that, due to their simplicity, they
lead to closed-form expressions for the optimal lot sizes. Schrady [5] was the first who
analyzed an EOQmodel with recovery. He analyzed the problem assuming constant demand
and return rates and infinite production and recovery rates. He considered policies that
alternate one production lot with a variable number of recovery lots. The model’s objective
was to minimize the total cost per unit of time for placing orders and holding inventory. In
this class of policies, the optimal lot sizes for production and recovery were given and their
expressions are similar to the EOQ formula. Nahmias and Rivera [6] studied a deterministic
model, similar to that of Schrady, but with a finite recovery rate greater than demand rate. An
extension of Schrady’s model has been proposed by Mabini et al. [7]. They consider a single-
item model, allowing stockouts up to a certain level and a multi-item one, without stockouts,
where all items share the same repair facility. A generalization to Nahmias and Rivera’s [6]
model was proposed by Koh et al. [8]. These authors assumed a limited repair capacity and
examined the cases where the recovery rate is smaller or larger than the demand rate. Richter
[9–11] and Richter and Dobos [12, 13] proposed an EOQ model that differs from Schrady’s
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model, where it has awaste disposal optionwith the return rate of used items being a decision
variable. In these works, the optimal numbers of remanufacturing and production batches in
an interval of time were dependent on the return rate. Dobos and Richter [14] investigated
the characteristics of the cost function developed in a previous work [12], where they showed
that the cost is partly piecewise convex and partly piecewise concave function of the waste
disposal rate. In a follow-up paper, Dobos and Richter [15] presented a generalization of
their earlier work [14] by assuming a time interval to contain multiple repair and multiple
production cycles. Dobos and Richter [16] investigated the production-recycling model in
Dobos and Richter [15] by considering that the quality of collected used items (returns) is
not always suitable for recycling.

Along the same line of research, Teunter [17] generalized Schrady’s results by con-
sidering M manufacturing (production) lots of equal size and R recovery (remanufacturing)
lots of equal size (in short (M, R) policy) and assuming the holding cost for recoverable items
to be different from that of recovered and manufactured items. In another work, Teunter
[18] relaxed the assumption of an instantaneousmanufacturing and remanufacturing process
in order to derive more general expressions for the manufacturing and remanufacturing lot
sizes. Choi et al. [19] generalized the (M, R) policy proposed by Teunter [17] by relaxing the
assumption on the disposal of used items and treating the sequence of manufacturing and
remanufacturing setups in a cycle as a decision variable. Their sensitivity analysis showed
that using the (M, R) policy, only 0.2% out of 8,100,000 tested problems have an optimal
solution in which both M and R are greater than one. This indicates that with a maximum
deviation of 0.2% from the optimal solution, one may as well use (1, R) or (M, 1) policy
rather than the (M, R) policy. Other researchers have also developed models along the same
lines as Schrady, Richter, and Teunter, but with different assumptions [20–24].

All above articles are EOQ models with deterministic constant demand and returns.
The determination of an optimal continuous control policy in a situation with deterministic
but dynamic demands and returns is the subject of the paper by Minner and Kleber [25].
An extension to the previous paper is the paper by Kiesmüller et al. [26]. They considered
that backlogging is possible and showed that in recovery systems, backlogging is not only
something which has to be avoided, but is also a mean for improving the performance of the
system.

In this paper, we extend the models proposed by Koh et al. [8] and Nahmias and
Rivera [6], by allowing backlogging and finite production and recovery rates. The so-created
three new models are studied in the case where production and recovery rates are greater
than the demand rate, which in turn is greater than the return rate. Demand at the beginning
of the horizon and up to the moment at which the first remanufacturing cycle starts is
satisfied by newly produced items, and during this period we allow complete backlogging
of the excess demand. For each of the three models, we determine the optimal policy, which
specifies the number of manufacturing and remanufacturing setup and the corresponding lot
sizes. Further, computational results referring to the cost efficiency of the three models are
reported.

The paper is organized as follows. The assumptions, notation, and the description of
the models are given in Section 2. Section 3 is devoted to searching for optimality within the
set of policies with exactly one recovery setup and at least one production setup. The reverse
situation under Koh’s approach is investigated in Section 4. The fifth section is devoted to
searching for optimality within the set of policies with exactly one production setup and at
least one recovery setup under Nahmias’s approach. The Koh’s and Nahmias’ approaches
differ only in relation to the time at which the recovery process starts. In Nahmias’ approach,
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recovery is postponed until the stock of serviceable items drops to zero, while in Koh’s
approach, the recovery starts as soon as the stock of recoverable items reaches a certain
level which has to be determined (decision variable). The sixth section contains a numerical
example, which illustrates the application of all results presented in the article. The article
closes with Section 7, wherewe summarize the obtained results and propose topics for further
research.

2. Model Description and Notation

The model, which is studied in this paper, is a combination of single-product recovery
system and of a production/manufacturing system and is developed under the following
assumptions.

(i) The planning horizon of the system is infinite.

(ii) The system stocks a single product, facing a fixed demand rate of d units, which
may be satisfied either by newly produced products or by used ones which have
been remanufactured.

(iii) Used products are returned at a fixed rate r and are stored in the used products
warehouse (recoverable inventory).

(iv) At some time t, the recovery process starts, with a fixed rate of p units and continues
until the recoverable inventory goes down to zero. All returned products are
remanufactured.

(v) The recovered (remanufactured) products are transferred into the warehouse,
where the stock of new produced items is also kept. New and recovered products
constitute the so-called stock of serviceable, and demand is satisfied by them.

(vi) Shortages are allowed at the production stage and are fully backlogged.

(vii) Production, recovery, demand, and return rates are such that s, p > d > r.

The complete list of the notation, which is used in this paper, is

Qp: production lot size

Qr : recovery lot size

V : maximum inventory level of serviceable products

U: inventory level (maximum) of used products, at the time that the recovery process
starts

n1: number of setups at the recovery shop

n2: number of orders for new products

T : cycle time of model

t: idle time interval of the recovery process

d: constant demand rate for the product

r: constant return rate

p: recovery rate

s: production rate
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R: fixed set-up cost for the recovery process

S: fixed ordering (set-up) cost per production lot

h: inventory holding cost for the used (recoverable) items

H: inventory holding cost for serviceable items

B: shortages cost for serviceable items

x: duration of serviceable inventory cycle when stock-out condition exists and
manufacturing switches on

y: duration of serviceable inventory cycle when there is positive inventory and
manufacturing switches on

P(n1, n2): the set of policies with n1 setup in the recovery shop and n2 orders for new products.

The number of setup taken in the recovery and the production/manufacturing shop
during the cycle characterizes the policies used to control such systems. In this paper, we do
not consider all possible policies, but restrict attention to two classes: (i) the set of P(1, n2)
policies where one setup in the recovery shop alternates with a variable number n2 of
production/manufacturing lots for new products (in a cycle), (ii) the set of P(n1, 1) policies
where one production lot for new products alternates with a variable number n1 of recovery
lots.

3. Modeling in the Set of Policies P(1, n2)
(One Recovery, Variable Number of Production Setup)

In this section, we model the case which alternates one setup in the recovery shop with a
variable number n2 of production setup for new items. For this case, we find the optimal
lot sizes for the production of new and for the recovery of returned products and also the
optimal number of production setup.

The evolution of inventory stock levels under such a policy is depicted in Figure 1.The
upper part of this figure shows the evolution of the recoverable stock while the lower part
gives the evolution of the serviceable inventory. Let tp be the length of time over which the
replenishment takes place at the rate s. By the end of this period, the lot size Qp will have
been added to the serviceable stock. Hence,

tp =
Qp

s
. (3.1)

Since the serviceable inventory rises along the line AD at a rate of s − d, we have

ED = (s − d)tp =
(s − d)Qp

s
. (3.2)

From Figure 2, we see that

EF = AB − V = Qp − V, (3.3)
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Figure 1: One or more production setup for one recovery setup.

and from (3.2) and (3.3), we take

FD = ED − EF = V − dQp

s
. (3.4)

From the upper graph of Figure 2, we can easily see that t = U/r, T − t = U/(p − r) and so

T =
U

p − r
+
U

r
=

p

p − r
t. (3.5)

From the lower graph of Figure 2, we can find that

t = n2
(
x + y

)
+

(
p − d

)
(T − t)
d

= n2
(
x + y

)
+
r
(
p − d

)
t

d
(
p − r

) =⇒ t =
d
(
p − r

)
n2
(
x + y

)

p(d − r)
. (3.6)

Substituting t from (3.6) into (3.5) yields

T =
dn2
(
x + y

)

d − r
. (3.7)
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The per-cycle cost related to recoverable inventory consists of the recovery set-up cost and
the holding cost of used items. One can easily show that this cost is

R +
hUt

2
+
hU(T − t)

2
= R +

hUT

2
. (3.8)

The per-cycle cost for serviceable products consists of the following four components:

(i) ordering cost for n2 production lots, n2S,

(ii) inventory holding cost for n2 triangles of type (a) in Figure 2,

n2HyFD

2
=

n2Hd(s − d)y2

2s
, (3.9)

(iii) backordering cost for n2 triangles of type (b) in Figure 2,

n2B
(
Qp − V

)
x

2
=

n2Bd(s − d)x2

2s
, (3.10)

(iv) inventory holding cost for triangle of type (c) in Figure 2,

H
(
p − d

)
(T − t)

(
T − t +

(
p − d

)
(T − t)/d

)

2
=

Hd
(
p − d

)
r2n2

2

(
x + y

)2

2p(d − r)2
. (3.11)

The total cost per cycle is

TC
(
x, y, n2

)
= R +

hUT

2
+ n2S +

n2Hd(s − d)y2

2s
+
Hd
(
p − d

)
r2n2

2

(
x + y

)2

2p(d − r)2
+
n2Bd(s − d)x2

2s
,

(3.12)

and dividing by the cycle length T = dn2(x + y)/(d − r), we obtain the total cost per unit of
time

UTC
(
x, y, n2

)
=

R(d − r)
dn2
(
x + y

) +
S(d − r)
d
(
x + y

) +
hrd
(
p − r

)
n2
(
x + y

)

2p(d − r)

+
H(s − d)(d − r)y2

2s
(
x + y

) +
Hr2

(
p − d

)
n2
(
x + y

)

2p(d − r)
+
B(s − d)(d − r)x2

2s
(
x + y

) .

(3.13)

In the above expression, we replace y through the transformation x/(x + y) = k, and (3.13)
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becomes

UTC(x, k, n2) = c1
k

x
+ c2

x

k
+ c3xk − c4x, x ∈ (0,∞), k ∈ (0, 1], n2 = 1, 2, 3, . . . , (3.14)

where

c1 =
R(d − r)

dn2
+
S(d − r)

d
> 0,

c2 =
n2d
(
p − r

)
rh

2p(d − r)
+
n2r

2(p − d
)
H

2p(d − r)
+
(s − d)(d − r)H

2s
> 0,

c3 =
(s − d)(d − r)(H + B)

2s
> 0,

c4 =
(s − d)(d − r)H

s
> 0.

(3.15)

The problem now is

min
x,k,n2

UTC(x, k, n2). (3.16)

To solve this, we proceed as follows. First, we find the minimum of UTC(x, k, n2)with respect
to x, k. The minimizing point is a function of n2, say {x(n2), k(n2)}. Next, we substitute it into
the objective function which now becomes a function only of n2 and minimize with respect
to n2. Setting the partial derivates of UTC(x, k, n2), with respect to k and x, equal to zero, we
have

∂UTC(x, k, n2)
∂k

=
c1
x

− c2x

k2
+ c3x = 0,

∂UTC(x, k, n2)
∂x

= −c1k
x2

+
c2
k

+ c3k − c4 = 0.

(3.17)

The unique solution of this system is

k∗ =
c4
2c3

=
H

H + B
,

x∗ = c4

√
c1

c3(4c2c3 − c42)
.

(3.18)

It is easy to prove (see the appendix) that the point (k∗, x∗) satisfies the second-order
conditions for the minimum of UTC(x, k, n2). Substituting k∗ and x∗ into (3.14), we obtain

UTC(x∗, k∗, n2) = f(n2) =

√
c1
(
4c2c3 − c4

2)

c3
=

√

b1a1 + b2a2 + a1b2n2 +
b1a2

n2
, (3.19)
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where

a1 =
(s − d)r

[
d
(
p − r

)
h + r

(
p − d

)
H
]
(H + B)

ps
> 0,

a2 =
(s − d)2(d − r)2HB

s2
> 0,

b1 =
2sR

d(s − d)(B +H)
> 0,

b2 =
2sS

d(d − s)(B +H)
> 0,

L = 4c2c3 − c24 = a1n2 + a2 > 0.

(3.20)

Since n2 is integer, to locate the optimal n2, we use the difference function

Δf(n2) = f(n2) − f(n2 − 1), n2 ≥ 2 (3.21)

which in our case is

Δf(n2) = f(n2) − f(n2 − 1)

=
b2a1 − (b1a2)/n2(n2 − 1)

√
b1a1 + b2a2 + a1b2n2 + b1a2/n2 +

√
b1a1 + b2a2 + a1b2(n2 − 1) + b1a2/(n2 − 1)

.

(3.22)

From (3.22), we see that if b1a2/b2a1 ≤ 2, then Δf(n2) ≥ 0 for all n2 ≥ 2 and the optimum is
n∗
2 = 1.

If this is not the case, then there always exists a n∗
2 ≥ 2 such that Δf(n2) < 0 for all

n2 ≤ n∗
2 and Δf(n2) ≥ 0 for all n2 > n∗

2. Simple algebra on these inequalities gives that this n2

satisfies the double inequality

n∗
2
(
n∗
2 − 1

)
<

a2b1
a1b2

≤ n∗
2
(
n∗
2 + 1

)
, n∗

2 ≥ 2. (3.23)

In the case that n∗
2(n

∗
2 + 1) = a2b1/a1b2, we have two equivalent solutions (same cost). The

integer value of n∗
2 obtained from (3.23) is used in (3.15), (3.18), and (3.19) to calculate c1,

c2, c3, c4, x∗, k∗, UTC(x∗, k∗, n2) and the resulting policy can be implemented to give the
minimum cost. The optimal lot sizes for this class of policies are

Qp = d
(
x∗ + y∗),

Qr =
drn∗

2

(
x∗ + y∗)

d − r
,

(3.24)

where y∗ = (1 − k∗)x∗/k∗.
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Figure 2: One or more recovery setup for a production setup under Koh’s approach.

4. Modeling in the Set P(n1, 1) (Variable Recovery Opportunities,
One Production Lot) under Koh’s Approach

In this section, we model the case which alternates one production setup for new products
with a variable number n1 of recovery lots under Koh’s et al. [8] approach. Koh’s approach
calls for recovery as soon as the stock of recoverable items reaches a certain level which
has to be determined (decision variable). For this case, we find the optimal lot sizes for the
production of new and for the recovery of returned products and also the optimal number of
remanufacturing setup.

The upper part of Figure 2 shows the evolution of the recoverable stock while the
lower part of this figure gives the evolution of the serviceable inventory. The per-cycle cost
related to recoverable inventory consists of the recovery setup cost and the holding cost. One
can easily show that this is

n1R + n1
hUT

2n1
= n1R +

hUT

2
. (4.1)

The per-cycle cost for serviceable products consists of the production set-up cost, the
inventory holding cost, and the backordering cost. The per-cycle production set-up cost is
S. The inventory holding cost consists of the following four terms:

(i) inventory holding cost for triangle of type (f) in Figure 3,

H
(
p − d

)
(T/n1 − t)

(
T/n1 − t +

((
p − d

)
/d
)
(T/n1 − t)

)

2
, (4.2)
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(ii) inventory holding cost for trapezoid (a) in Figure 3,

H

(

2FD − d

(

t − FD

(s − d)
− x −

(
p − d

)

d

(
T

n1
− t

)))(

t − FD

(s − d)
− x − p − d

d

(
T

n1
− t

))

2

,

(4.3)

(iii) inventory holding cost for n1 − 1 pentagons of type (b) in Figure 3,

n1−1∑

i=1

H

2

[

(2i − 1)dt2 +
[
2di − 2(i − 1)

(
p − d

)]
(

T

n1
− t

)
t − (2i − 1)

(
p − d

)
(

T

n1
− t

)2
]

=
Hrd2(p − r

)
(n1 − 1)

(
x + y

)2

2p(n1d − r)2
+
Hd2(d − r)(n1 − 1)2

(
x + y

)2

2(n1d − r)2
,

(4.4)

(iv) inventory holding cost for triangle of type (c) in Figure 3,

1
2
HFD

FD

s − d
=

HFD
2

s − d
, (4.5)

(v) backordering cost for triangle of type (e) in Figure 3,

B
(
Qp − V

)
x

2
=

d(s − d)Bx2

2s
. (4.6)

From the upper graph of Figure 3, we can easily see that

T

n1
= t +

(
T

n1
− t

)
=

U

r
+

U

p − r
=

p

p − r
t. (4.7)

Similarly, from the lower graph, we can find that

T = x + y +

(
p − d

)
(T/n1 − t)
d

+

(
p − d

)
(T/n1 − t)

p − d
=⇒ t =

d
(
p − r

)(
x + y

)

p(n1d − r)
, (4.8)

FD =
s − d

d

(

d

(

t − x −
(
p − d

)
(T/n1 − t)
d

)

+ (n1 − 1)dt − (n1 − 1)
(
p − d

)
(

T

n1
− t

))

.

(4.9)
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Substituting t from (4.8) into (4.7) and (4.9) yields

T =
dn1
(
x + y

)

n1d − r
,

FD =
(s − d)

s

(
n1d(d − r)

(
x + y

)

n1d − r
− dx

)

.

(4.10)

The total cost per unit of time for this case is

UTC
(
x, y, n1

)
=
R(n1d − r)
d
(
x + y

) +
S(n1d − r)
dn1
(
x + y

) − H(s − d)(d − r)
s

x

+
[
B(s − d)(n1d − r)

2n1s
+
H(n1d − r)

2n1
− Hd(n1d − r)

2n1s

](
x2

x + y

)

+

[
hrd
(
p − r

)

2p(n1d − r)
+
Hr2

(
p − d

)

2p(n1d − r)
+
H(d − r)

2
− n1dH(d − r)2

2s(n1d − r)

]
(
x + y

)
.

(4.11)

In this function, we again make the transformation x/(x + y) = k and we get the result of

UTC(x, k, n1) = c1
k

x
+ c2

x

k
+ c3xk − c4x, x ∈ (0,∞), k ∈ (0, 1], n1 = 1, 2, 3, . . . , (4.12)

where

c1 =
R(n1d − r)

d
+
S(n1d − r)

n1d
> 0,

c2 =
hrd
(
p − r

)

2p(n1d − r)
+
Hr2

(
p − d

)

2p(n1d − r)
+
(d − r)H

2
− n1dH(d − r)2

2s(n1d − r)
,

c3 =
(s − d)(n1d − r)(H + B)

2n1s
> 0,

c4 =
(s − d)(d − r)H

s
> 0.

(4.13)

The problem now is

min
x,k,n1

UTC(x, k, n1). (4.14)
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Following the procedure used in Section 3, we find the optimal values of k and x. These
values are

k∗ =
c4
2c3

=
n1(d − r)H

(n1d − r)(H + B)
, (4.15)

x∗ = c4

√
c1

c3
(
4c2c3 − c24

) . (4.16)

TheHessianmatrix of UTC(x, k, n1) at the point (k∗, x∗) is positive definite (see the appendix)
and so this point gives the minimum. Substituting (4.15) and (4.16) into (4.12) yields

UTC(x∗, k∗, n1) = f(n1) =

√
c1
(
4c2c3 − c24

)

c3
=

√

a1b1 + a2b2 + a2b1n1 +
a1b2
n1

, (4.17)

where now

a1 =
(s − d)r

[
d
(
p − r

)
h + r

(
p − d

)
H −Hp(d − r)

]
(H + B)

sp
∈ R,

a2 =
(s − d)(d − r)H

s

[
rH +

dB(s − d + r)
s

]
> 0,

b1 =
2sR

d(s − d)(B +H)
> 0,

b2 =
2sS

d(s − d)(B +H)
> 0.

(4.18)

For (4.16) and (4.17) to be meaningful, we assume that L = 4c2c3 − c24 = a1/n1 + a2 > 0, which
seems to be the case in real problems. The difference function is

Δf(n1) = f(n1) − f(n1 − 1)

=
a2b1 − a1b2/n1(n1 − 1)

√
a1b1 + a2b2 + a2b1n1 + a1b2/n1 +

√
a1b1 + a2b2 + a2b1(n1 − 1) + a1b2/(n1 − 1)

.

(4.19)

From (4.19), we see that if a1 ≤ 0 or a1b2/a2b1 ≤ 2, then Δf(n1) ≥ 0 for any n1 ≥ 2 and the
optimum is n∗

1 = 1. If this is not the case, then the optimal n∗
1 satisfies the double inequality

n∗
1

(
n∗
1 − 1

)
<

a1b2
a2b1

≤ n∗
1

(
n∗
1 + 1

)
, n∗

1 ≥ 2. (4.20)
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Figure 3: One or more recovery setup for a production setup under Nahmias’ approach.

In the case that n∗
1(n

∗
1 + 1) = a1b2/a2b1, we have two equivalent solutions (same cost). The

optimal lot sizes for this class of policies are

Qp =
n∗
1d(d − r)

(
x∗ + y∗)

n∗
1d − r

,

Qr =
dr
(
x∗ + y∗)

n∗
1d − r

.

(4.21)

5. Modeling in the Set P(n1, 1) (Variable Recovery Opportunities,
One Production Lot) under Nahmias’ Approach

In this section, we model the same case as in Section 4 under now Nahmias’ [6] approach.
Nahmias’ approach calls for recovery as soon as the stock of serviceable items drops to zero.
For this case, we find the optimal lot sizes for the production of new and for the recovery of
returned products and also the optimal number of remanufacturing setup.

The upper part of Figure 3 shows the evolution of the recoverable stock while the
lower part of this figure gives the evolution of the serviceable inventory. The per-cycle cost
for recoverable items consists of the following four terms:

(i) set-up cost for recovery process per cycle, n1R,

(ii) inventory holding cost for triangle of type (a) in Figure 3, htU/2 = hrt2/2,

(iii) inventory holding cost for trapezoid (b) in Figure 4 , h[2U − (p − r)t1]t1/2,
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(iv) inventory holding cost for n1 − 1 pentagons of type (c) in Figure 4

n1−1∑

i=1

h

2

[
(2i − 1)

(
p − r

)
t21 +
[
2i
(
p − r

) − 2(i − 1) r
]
t1t2 − (2i − 1)rt22

]

=
h
(
p − r

)
t21(n1 − 1)2

2
+
h
(
p − r

)
t1t2n1(n1 − 1)
2

− hrt1t2(n1 − 1)(n1 − 2)
2

− hrt22(n1 − 1)2

2
.

(5.1)

The per-cycle cost for serviceable products consists of the set-up cost per production lot, the
inventory holding cost, and the backordering cost. The per-cycle set-up production cost is
S. The inventory holding cost and the backordering cost can be calculated by the following
three terms:

(i) inventory holding cost for triangle of type (e) in Figure 4 , (HFDy)/2 = Hd(s −
d)y2/2s,

(ii) inventory holding cost for n1 triangles of type (g) in Figure 4 , n1Hd(p −
d)(t1 + t2)

2/2p,

(iii) backordering cost for triangle of type (f) in Figure 4 , B(Qp − V )x/2 = Bd(s −
d)x2/2s.

The total cost per cycle for this case is given as

TC
(
x, y, n1

)
= n1R + S +

hrt2

2
+
Hd(s − d)y2

2s
+
Bd(s − d)x2

2s
+
h
[
2U − (p − r

)
t1
]
t1

2

+
n1−1∑

i=1

h

2

[
(2i − 1)

(
p − r

)
t21 +
[
2i
(
p − r

) − 2(i − 1)r
]
t1t2 − (2i − 1)rt22

]

+
n1H(t1 + t2)

(
p − d

)
t1

2
,

(5.2)

and dividing by the cycle length T = d(x+y)/(d−r), we obtain the total cost per unit of time:

UTC
(
x, y, n1

)
=

n1R(d − r)
d
(
x + y

) +
S(d − r)
d
(
x + y

) +
B(s − d)(d − r)x2

2s
(
x + y

) +
H(s − d)(d − r)y2

2s
(
x + y

)

+
hr2
(
p − d

)(
x + y

)

2n1p(d − r)
+
Hr2

(
p − d

)(
x + y

)

2n1p(d − r)
+
hr
(
x + y

)

2
.

(5.3)

In this function, we again make the transformation x/(x + y) = k and we get the result of

UTC(x, k, n1) = c1
k

x
+ c2

x

k
+ c3xk − c4x, x ∈ (0,∞), k ∈ (0, 1], n1 = 1, 2, 3, . . . , (5.4)
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where for this case

c1 =
n1R(d − r)

d
+
S(d − r)

d
> 0,

c2 =
r2
(
p − d

)
(H + h)

2n1p(d − r)
+
rh

2
+
(s − d)(d − r)H

2s
> 0,

c3 =
(s − d)(d − r)(H + B)

2s
> 0,

c4 =
(s − d)(d − r)H

s
> 0.

(5.5)

The problem now is

min
x,k,n1

UTC(x, k, n1). (5.6)

Following the procedure used in Sections 3 and 4, the optimal values of k and x are

k∗ =
c4
2c3

=
H

H + B
,

x∗ = c4

√
c1

c3
(
4c2c3 − c24

) .

(5.7)

The Hessian matrix of UTC(x, k, n1) at the point (k∗, x∗) is positive definite and so this point
gives the minimum. Substituting (5.7) into (5.4) yields

UTC(x∗, k∗, n1) = f(n1) =

√
c1
(
4c2c3 − c24

)

c3
=

√

a1b1 + a2b2 + a2b1n1 +
a1b2
n1

, (5.8)

where

a1 =
r2
(
p − d

)
(s − d)(H + B)(H + h)

ps
> 0,

a2 =
(s − d)(d − r)

s

[
(s − d)HB(d − r)

s
+ rh(H + B)

]
> 0,

b1 =
2sR

d(s − d)(B +H)
> 0,

b2 =
2sS

d(s − d)(B +H)
> 0,

L = 4c2c3 − c24 =
a1

n1
+ a2 > 0.

(5.9)
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Table 1: A total cost comparison of the policies with and without backlogging.

Approach Optimal policy Total cost without backlogging Total cost with backlogging
General P(1, n∗

2 = 1) 536,656 530,659
Koh P(n∗

1 = 3, 1) 473,286 463,724
Nahmias P(n∗

1 = 6, 1) 386,437 369,504

Using the difference function as in Section 3, the optimal n∗
1 satisfies the double inequality

n∗
1

(
n∗
1 − 1

)
<

a1b2
a2b1

≤ n∗
1

(
n∗
1 + 1

)
, n∗

1 ≥ 2. (5.10)

In the case that n∗
1(n

∗
1 + 1) = a1b2/a2b1, we have two equivalent solutions (same cost). The

optimal lot sizes for this class of policies are

Qp = d
(
x∗ + y∗),

Qr =
d r
(
x∗ + y∗)

n∗
1(d − r)

.
(5.11)

6. Numerical Example

The numerical example is used to highlight the application of the results obtained in previous
sections and to contact a comparison between the three models. The data are as follows:
d = 1000, r = 800, s = 5000, p = 3000, S = 20, R = 5, h = 2, H = 10, B = 15.

First, we consider policies of type P(1, n2). From (3.23), we get that n∗
2 = 1. Using

(3.18), we take that k∗ = 0.4 and x∗ = 0.0075, and since x/(x + y) = k, we have that y∗ =
x∗(1 − k∗)/k∗ = 0.0188. Using (3.24), we get Qp = 26.3 and Qr = 105.2. The corresponding
total cost is UTC(x∗, k∗, n2 = 1) = 530.66. Next, we consider P(n1, 1) under Koh’s approach.
From (4.20), we get that n∗

1 = 3. Using (4.15) and (4.16), we take that k∗ = 0.109, x∗ = 0.0121,
and since x/(x + y) = k, we have that y∗ = x∗(1 − k∗)/k∗ = 0.0989. Using (4.21), we get
Qp = 30.28 and Qr = 40.36. The corresponding total cost is UTC(x∗, k∗, n1 = 3) = 463.724.
Now, we consider P(n1, 1) under Nahmias’ approach. From (5.10), we get that n∗

1 = 6. Using
(5.7), we take that k∗ = 0.4, x∗ = 0.0217, and since x/(x + y) = k, we have that y∗ = x∗(1 −
k∗)/k∗ = 0.0326. Using (5.11), we get Qp = 54.3 and Qr = 36.2. The corresponding total cost
is UTC(x∗, k∗, n1 = 6) = 369.504. From the above three policies, we see that the P(n1 = 6, 1)
under Nahmias’ approach has lower cost and so it is preferable.

The numerical results given in Table 1 reveal that the models of this paper are cost
efficient, compared to corresponding ones without backlogging. This evidence is prevailing
to all numerical tests done. So, allowing backlogging can lead to improvement and reduce
the cost of recovery systems.

7. Conclusion and Proposals for Further Research

In this paper, we analyzed an inventory systemwith product returns, where remanufacturing
is an alternative to manufacturing. Used products returned from customers are kept in the
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recoverable inventory, until the time at which recovery process starts. It is assumed that
the constant demand rate can be satisfied by newly produced items and by recovered ones
and excess demand is backlogged. The so-arising models were studied within two classes
of policies, namely, policies of type P(n1, 1), with one production lot for new products and
at least one recovery setup, and policies of type P(1, n2), with one recovery set up and at
least one production lot. The approaches by Nahmias and Rivera [6] and Koh et al. [8]
were adopted in the class of policy P(n1, 1). These approaches differ only in the time at
which recovery process starts. For the above P(1, n2) and P(n1, 1) types of policies, a simple
procedure that leads to the optimal n∗

1, n
∗
2 values and to the optimal lot sizes was developed.

The results of this paper may be extended to the following cases: allow a variable
number of set up on both processes, that is, recovery and production. The solution of such
a model will give the global optimal policy for this type of problem. Introducing variable
demand and return rates, possible random ones or deterministic but dynamic, makes the
model more sensible, although this extremely complicates its analysis. Another way to
generalize this model is to ask for quality of the products bought back and to decide the
type of the recovery, according to the quality.

Appendix

Checking the Conditions for the Minimum of UTC(x, k, ni), i = 1, 2

For convenience, let us set UTC(x, k, ni) = UTC, i = 1, 2. The Hessian matrix of UTC is

H(x, k, ni) =

⎡

⎢⎢
⎣

2c1k
x3

− c1
x2

− c2
k2

+ c3

− c1
x2

− c2
k2

+ c3
2c2x
k3

⎤

⎥⎥
⎦. (A.1)

If we set d1(x, k, ni) and d2(x, k, ni), i = 1, 2, the principal minor determinants of H(x, k, ni),
to ensure that the unique solution given by (3.18) or (4.15), (4.16) or, (5.7) gives the minimum
of the function UTC, when ni, i = 1, 2 is fixed, it is sufficient to prove that d1(x∗, k∗, ni) and
d2(x∗, k∗, ni) are positive. Substituting x∗ and k∗ into di(t1∗, t3∗, k∗, n1), i = 1, 2, and after some
calculations we obtain

d1(x∗, k∗, ni) =
2c1k
x3

=

(
4c2c3 − c24

)

c42

√
c3
(
4c2c3 − c24

)

c1
> 0,

d2(x∗, k∗, ni) =
4c1c2
x2k2

−
(
− c1
x2

− c2
k2

+ c3

)2

=
4c32
(
4c2c3 − c4

2)

c42
> 0,

(A.2)

since c1, c3, c4 > 0 and L = 4c2c3 − c4
2 > 0.
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