
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 290631, 10 pages
doi:10.1155/2010/290631

Research Article
An Approximation to Solution of Space and
Time Fractional Telegraph Equations by He’s
Variational Iteration Method

Ali Sevimlican

Department of Mathematics, Faculty of Arts and Sciences, Dokuz Eylül University, Tınaztepe,
Buca 35160, Izmir, Turkey

Correspondence should be addressed to Ali Sevimlican, ali.sevimlican@deu.edu.tr

Received 10 November 2009; Accepted 27 January 2010

Academic Editor: Massimo Scalia

Copyright q 2010 Ali Sevimlican. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

He’s variational iteration method (VIM) is used for solving space and time fractional telegraph
equations. Numerical examples are presented in this paper. The obtained results show that VIM is
effective and convenient.

1. Introduction

In recent years, there has been a great deal of interest in fractional differential equations
since there have been a wide variety of applications in physics and engineering. The
space and time fractional telegraph equations have been studied by Orsingher and Zhao
[1] and Orsingher and Beghin [2]. The telegraph equation is used in signal analysis for
transmission and propagation of electrical signals and also used modeling reaction diffusion
[3, 4]. In the papers by Momani [5] and Yildirim [6], Adomian decomposition method
(ADM) and homotopy perturbation method (HPM) were used for solving the space and
time fractional telegraph equations, respectively. Variational iteration method was used for
solving linear telegraph equation in [7]. In this paper we will use variational iteration
method (VIM) for solving the space and time fractional telegraph equations. The variational
iteration method (VIM) which was developed in 1999 by He [8] has been applied to a
wide variety of differential equations by many authors. He [9] used the variational iteration
method (VIM) for solving seepage flow with fractional derivatives in porous media. Momani
and Odibat [10] constructed numerical solutions of the space-time fractional advection
dispersion equation by decomposition method and variational iteration method. Momani
and Odibat [11] also compared homotopy perturbation method (HPM) and VIM for linear
fractional partial differential equations. Drăgănescu [12] used VIM for viscoelastic models
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with fractional derivatives. Yulita at al. [13] applied the variational iteration method for
fractional heat and wave-like equations. Dehghan at al. [14] studied telegraph and space
telegraph equations using variational iteration method. In [14], space fractional telegraph
equation was considered for α = 3/2. However, in this paper space fractional telegraph
equation has been considered for 1 < α ≤ 2 and also variational iteration method has been
applied for time fractional telegraph equation.

We note that the space and time fractional derivatives are considered in Caputo sense
in this paper. The main objective of the present paper is to extend the application of the
variational iteration method (VIM) to obtain approximate solution of the space and time
fractional telegraph equations.

2. He’s Variational Iteration Method

We will give a brief description of He’s variational iteration method. The basic concepts of the
variational iteration method can be expressed as follows. Consider the differential equation
of the form

Lu(x, t) +Nu(x, t) = f(x, t), (2.1)

where L is a linear operator, N is a nonlinear operator, and f(x, t) is the inhomogeneous
term. According to the variational iteration method, a correction functional for (2.1) can be
constructed as follows:

un+1(x, t) = un(x, t) +
∫ t

0
λ(s)

(
Lun(x, s) +Nũn(x, s) − f(x, s)

)
ds, n = 0, 1, 2, . . ., (2.2)

where λ is a general Lagrange multiplier, which can be identified optimally via the variational
theory [15, 16], the subscript n denotes the nth approximations, and ũn is considered as
restricted variation [17, 18], that is, δũn = 0. The successive approximations un+1(x, t),
n = 0, 1, 2 . . . , of the solution u(x, t) can be obtained after finding the Lagrange multiplier
and by using the selective function u0(x, t) which is usually selected from initial conditions.

3. Space and Time Fractional Derivatives in Caputo Sense

Form to be the smallest integer that exceeds α, the Caputo time-fractional derivative operator
of order α > 0 is defined as

∂αu

∂tα
(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Γ(m − α)

∫ t
0
(t − τ)m−α−1 ∂

mu

∂τm
(x, τ)dτ, m − 1 < α < m,

∂mu

∂tm
(x, t), α = m ∈ N,

(3.1)
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and for m to be the smallest integer that exceeds β, the Caputo space-fractional derivative
operator of order β > 0 is defined as

∂βu

∂xβ
(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Γ
(
m − β

)
∫x

0
(x − ξ)m−β−1 ∂

mu

∂τm
(ξ, t)dξ, m − 1 < β < m,

∂mu

∂xm
(x, t), β = m ∈ N,

(3.2)

where Γ is the Gamma function.
Further information about fractional derivatives and its properties can be found in

[19, 20].

4. Application to Space-Time Fractional Telegraph Equations

In this section we will obtain iteration formulas for space-time fractional telegraph equations.
We first consider the following space fractional telegraph equation for 1 < α ≤ 2:

∂αu

∂xα
(x, t) =

∂2u

∂t2
(x, t) + a

∂u

∂t
(x, t) + bu(x, t) + f(x, t), 0 < x < 1, t > 0, (4.1)

where a and b are given constants, f(x, t) given function. The correctional functional for (4.1)
can be approximately expressed as follows

un+1(x, t) = un(x, t) +
∫x

0
λ(s)

×
{
∂mun
∂sm

(s, t) − ∂
2ũn
∂t2

(s, t) − a∂ũn
∂t

(s, t) − bũn(s, t) − f(s, t)
}
ds, n = 0, 1, . . . .

(4.2)

Making the correctional functional in (4.2) stationary, and noticing that δũn = 0, we obtain
the following stationary conditions for m = 2:

λ′′(s) = 0,

1 − λ′(s)
∣∣
s=x = 0, λ(s)|s=x = 0.

(4.3)

Lagrange multiplier can be identified from (4.3) as

λ(s) = s − x. (4.4)
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Substituting the above obtained Lagrange multiplier into (4.2), we get the following iteration
formula:

un+1(x, t) = un(x, t) +
∫x

0
(s − x)

×
{
∂mun
∂sm

(s, t) − ∂
2un
∂t2

(s, t) − a∂un
∂t

(s, t) − bun(s, t) − f(s, t)
}
ds, n = 0, 1, . . . .

(4.5)

Now consider the following time fractional telegraph equation for 0 < α ≤ 1:

∂2αu

∂t2α
(x, t) + a

∂αu

∂tα
(x, t) = b

∂2u

∂x2
+ g(x, t), 0 < x < 1, t > 0, (4.6)

where a and b are given constants, and g(x, t) given function.. The correctional functional for
the equation (4.6) can be approximately expressed as follows:

un+1(x, t) = un(x, t) +
∫ t

0
λ(s)

×
{
∂2αu

∂t2α
(x, s) + a

∂αũ

∂tα
(x, s) − b∂

2ũ

∂x2
− g(x, s)

}
ds, n = 0, 1, . . . .

(4.7)

Making the correctional functional in (4.7) stationary, and noticing that δũn = 0, we obtain
the following stationary conditions for m = 1:

λ′′(s) = 0,

1 − λ′(s)
∣∣
s=t = 0, λ(s)|s=t = 0.

(4.8)

Lagrange multiplier can be identified from (4.8) as

λ(s) = s − t. (4.9)

Substituting the above obtained Lagrange multiplier into (4.7), we get the following iteration
formula:

un+1(x, t) = un(x, t) +
∫ t

0
(s − t)

×
{
∂2αu

∂t2α
(x, s) + a

∂αu

∂tα
(x, s) − b∂

2u

∂x2
− g(x, s)

}
ds, n = 0, 1, . . . .

(4.10)
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5. Numerical Examples

We will give the following three examples to illustrate variational iteration method for
solving the space and time fractional telegraph equations.

Example 5.1. We first consider the following one-dimensional initial and boundary value
problem of space-fractional homogeneous telegraph equation for 1 < α ≤ 2, (see [5, 21])

∂αu

∂xα
(x, t) =

∂2u

∂t2
(x, t) +

∂u

∂t
(x, t) + u(x, t), 0 < x < 1, t > 0, (5.1)

u(x, 0) = ex, 0 ≤ x ≤ 1, (5.2)

u(0, t) = e−t, ux(0, t) = e−t, t ≥ 0. (5.3)

It follows from (4.5) for a = b = 1 and f(x, t) = 0; the iteration formula for (5.1) can be written
in the following form:

un+1(x, t) = un(x, t) +
∫x

0
(s − x)

×
{
∂αun
∂sα

(s, t) − ∂
2un
∂t2

(s, t) − ∂un
∂t

(s, t) − un(s, t)
}
ds, n = 0, 1 . . . .

(5.4)

We start with initial approximation:

u0(x, t) = u(0, t) + xux(0, t) = (1 + x)e−t, (5.5)

and by the iteration formula (5.4) we obtain the first two approximations as

u1(x, t) =

(
1 + x +

x2

2!
+
x3

3!

)
e−t,

u2(x, t) =

(
1 + x + x2 +

x3

3
+
x4

4!
+
x5

5!
− x4−α

Γ(5 − α) −
x5−α

Γ(6 − α)

)
e−t,

(5.6)

and so on; in the same manner further approximations of the iteration formula (5.4) can be
obtained by Mapple. We observe that, setting α = 2 in the nth approximations yields the
exact solution u(x, t) = ex−t as n → ∞. In Figures 1(a), 1(b), and 1(c) exact and second-
order approximate solutions of (5.1)–(5.3) are given. Figures 2(a) and 2(b) show the evolution
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Figure 1: The surfaces related with the solution of (5.1)–(5.3) for α = 2.

results for the second-order approximate solutions of (5.1)–(5.3) obtained for different values
of α using the variational iteration method.

Example 5.2. We now consider the following one-dimensional initial and boundary value
problem of space-fractional inhomogeneous telegraph equation for 0 < α ≤ 1, (see, [5, 21]):

∂2αu

∂x2α (x, t) =
∂2u

∂t2
(x, t) +

∂u

∂t
(x, t) + u(x, t) − x2 − t + 1, (5.7)

u(x, 0) = x2, 0 ≤ x ≤ 1, (5.8)

u(0, t) = t, ux(0, t) = 0, t ≥ 0. (5.9)
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Figure 2: The surfaces show the second-order approximate solutions of (5.1)–(5.3).

The iteration formula for (5.7) can be written in the following form:

un+1(x, t) = un(x, t) +
∫x

0
(s − x)

×
{
∂2αun
∂s2α (s, t) − ∂

2un
∂t2

(s, t) − ∂un
∂t

(s, t) + un(s, t) + s2 + t − 1

}
ds, n = 0, 1 . . . .

(5.10)

We start with initial approximation:

u0(x, t) = u(0, t) + xux(0, t) = t, (5.11)

and by iteration formula (5.10) we obtain the first two approximations as

u1(x, t) =

(
t + x2 − x

4

12

)
,

u2(x, t) =

(
t + 2x2 − x

4

12
− x6

300
− 2x4−2α

Γ(5 − 2α)
+

2x6−2α

Γ(7 − 2α)

)
,

(5.12)

and so on; in the same manner further approximations of the iteration formula (5.10) can be
obtained by Mapple. We observe that, setting α = 1 in the nth approximations and canceling
noise terms yields the exact solution u(x, t) = x2 + t as n → ∞. In Figures 3(a), 3(b), and 3(c)
exact and second-order approximate solutions of (5.7)–(5.9) are given. Figures 4(a) and 4(b)
show the evolution results for the second-order approximate solutions of (5.7)–(5.9) obtained
for different values of α using the variational iteration method.
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Figure 3: The surfaces related with the solution of (5.7)–(5.9) for α = 1.

Example 5.3. We last consider the following initial and boundary value problem of time
fractional telegraph equation of order 0 < α ≤ 1, (see, [5, 21]):

∂2αu

∂t2α
(x, t) + λ

∂αu

∂tα
(x, t) = ν

∂2u

∂x2 (x, t), t > 0, (5.13)

u(x, 0) = h1(x), (5.14)

ut(x, 0) = h2(x), (5.15)

ux(0, t) = s(t). (5.16)
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Figure 4: The surfaces show the second-order approximate solutions of (5.7)–(5.9).

It follows from (4.10) for a = λ, b = ν, and g(x, t) = 0; the iteration formula for (5.13) can be
written in the following form:

un+1(x, t) = un(x, t) +
∫ t

0
(s − t)

×
{
∂2αun
∂s2α (x, s) + λ

∂αun
∂sα

(x, s) − ν∂
2un
∂x2 (x, s)

}
ds, n = 0, 1 . . . .

(5.17)

We start with the following initial approximation:

u0(x, t) = u(x, 0) + tut(x, 0) = h1(x) + th2(x), (5.18)

and by the iteration formula (5.17), we get

u1(x, t) = h1(x) + th2(x) + νh′′1(x)
t2

2!
+ νh′′2(x)

t3

3!
− λh2(x)

t3−α

Γ(4 − α)

− h2(x)
x3−2α

Γ(4 − 2α)
,

(5.19)

and so on; in the same manner further approximations of the iteration formula (5.17) can be
obtained by Mapple.

6. Conclusion

The variational iteration method has been successfully applied for finding the solution of
space and time fractional telegraph equations. The space and time fractional derivatives
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are considered in the Caputo sense. We have achieved a very good agreement between
the approximate solution obtained by He’s VIM and the exact solution. The results of the
examples show that He’s variational iteration method is reliable and efficient method for
solving space and time fractional telegraph equations and also other equations.
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