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We study abstract equations of the form λu′′′(t)+u′′(t) = c2Au(t)+c2μAu′(t)+f(t), 0 < λ < μ which
is motivated by the study of vibrations of flexible structures possessing internal material damping.
We introduce the notion of (α; β; γ)-regularized families, which is a particular case of (a; k)-
regularized families, and characterize maximal regularity in Lp-spaces based on the technique
of Fourier multipliers. Finally, an application with the Dirichlet-Laplacian in a bounded smooth
domain is given.

1. Introduction

During the last few decades, the use of flexible structural systems had steadily increased
importance. The study of a flexible aerospace structure involves problems of dynamical
system theory governed by partial differential equations.

We consider here the problem of characterizing Lp-maximal regularity (or well-
posedness) for a mathematical model of a flexible space structure like a thin uniform
rectangular panel, for example, a solar cell array or a spacecraft with flexible attachments.
This problem is motivated by both engineering and mathematical considerations.

The study of vibrations of flexible structures possessing internal material damping
was first derived by Bose and Gorain [1]. The consideration of external forces leads to more
general equations of the form

αu′′′(t) + u′′(t) = βAu(t) + γAu′(t) + f(t), α, β, γ ∈ R, (1.1)
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where A is a closed linear operator acting in a Banach space X and f is an X-valued function.
We emphasize that the abstract Cauchy problem associated with (1.1) is in general ill posed;
see, for example, [2]. Also it is well known that in order to analyze well-posedness, a direct
approach leads to better results than those obtained by a reduction to a first-order equation.

Maximal regularity in Hölder spaces for (1.1) has been recently characterized in
[3]. In case α = 0, there are more literatures. For example, stability of the solution was
studied by Gorain in [4]. In [5], Gorain and Bose studied exact controllability and boundary
stabilization. More recently, Batkai and Piazzera [6, page 188] have obtained the exact decay
rate. We note that well-posedness in Lebesgue spaces in the case of a damped wave equation
has been only recently considered by Chill and Srivastava in [7], and in Hölder spaces by
Poblete [8]. We note that the class studied in [8] includes equations with delay. In particular,
well-posedness of the homogeneous abstract Cauchy problem has been observed in [9] for
α = 0 under certain assumptions on A.

This paper is organized as follows. Section 2, collects results essentially contained in
[10] and standard literature on R-boundedness and maximal regularity (see [11] and [12]).
In Section 3 we study, by an operator theoretical method, sufficient conditions for existence
of solutions for (1.1). We obtain two results: a description of the solution by means of certain
regularized families (Proposition 3.1) and the existence of such families in the particular case
of positive self-adjoint operators (Theorem 3.2). In Section 4, we succeed in characterizing
well-posedness of (1.1) in terms of R-boundedness of a resolvent set which involves A
(Theorem 4.2). This will be achieved in the Lebesgue spaces Lp(R, X), where X is a UMD
space (see below the definition). The methods to obtain this goal are those incorporated in
[13] where a similar problem in case of the first-order abstract Cauchy problem has been
studied. Our main result (Theorem 4.2) is a combination of the well-known (and deep) result
due to Weis [14] stated in Theorem 2.8 and a direct calculation involving the parameters α, β,
and γ .

2. Preliminaries

Let α, β, γ > 0 be given. In what follows we denote

k(t) =
1
α

∫ t

0
(t − s)e−s/αds = −α + t + αe−t/α, t ∈ R+,

a(t) = βk(t) +
γ

α

∫ t

0
e−s/αds = −

(
αβ − γ

)
+ βt +

(
αβ − γ

)
e−t/α, t ∈ R+.

(2.1)

In order to give an operator theoretical approach to (1.1) we introduce the following
definition.

Definition 2.1. Let A be a closed and linear operator with domain D(A) defined on a Banach
space X. One calls A the generator of an (α, β, γ)-regularized family {R(t)}t�0 ⊂ B(X) if the
following conditions are satisfied.

(R1) R(t) is strongly continuous on R+ and R(0) = 0.

(R2) R(t)D(A) ⊂ D(A) and AR(t)x = R(t)Ax for all x ∈ D(A), t � 0.
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(R3) The following equation holds:

R(t)x = k(t)x +
∫ t

0
a(t − s)R(s)Axds (2.2)

for all x ∈ D(A), t � 0. In this case, R(t) is called the (α, β, γ)-regularized family generated
by A.

Remark 2.2. It is proved in [10], in the more general context of (a, k)-regularized families,
that an operator A is the generator of an (α, β, γ)-regularized family if and only if there exists
ω � 0 and a strongly continuous function R : R+ → B(X) such that {(λ2 + αλ3)/(β + γλ) :
Reλ > ω} ⊂ ρ(A) and

H(λ)x :=
1

β + γλ

(
λ2 + αλ3

β + γλ
−A

)−1

x =
∫∞

0
e−λtR(t)x dt, Reλ > ω, x ∈ X. (2.3)

Because of the uniqueness of the Laplace transform, we note that an (α, β, γ)-
regularized family corresponds to an (a, k)-regularized family studied in [10]. In fact, we
have

â(λ) =
β + γλ
λ2 + αλ3

, k̂(λ) =
1

λ2 + αλ3
, ∀Reλ > ω. (2.4)

As in the situation of C0-semigroups, we have diverse relations of an (α, β, γ)-
regularized family and its generator. The following result is a direct consequence of [10,
Proposition 3.1 and Lemma 2.2].

Proposition 2.3. Let R(t) be an (α, β, γ)-regularized family on X with generator A. Then the
following hold.

(a) For all x ∈ D(A) one has R(·)x ∈ C3(R+;X).

(b) Let x ∈ X and t � 0. Then
∫ t

0a(t − s)R(s)x ds ∈ D(A) and

R(t)x = k(t)x +A
∫ t

0
a(t − s)R(s)x ds. (2.5)

Results on perturbation, approximation, asymptotic behavior, representation, as well
as ergodic-type theorems for (α, β, γ)-regularized families can be also deduced from the more
general context of (a, k)-regularized families (see [10, 15–18]).

We will need the following results on Laplace transform (see [19, Theorem 2.5.1 and
Corollary 2.5.2] for a detailed proof).

Lemma 2.4. Suppose that q : C+ → C is holomorphic and satisfies supReλ>0|λq(λ)| < ∞ and let
b > 0. Then there exists f ∈ C(R+) with supt>0|e−ωtt−bf(t)| < ∞ such that q(λ) = λb

∫∞
0 e

−λtf(t)dt
for all Reλ > 0.



4 Mathematical Problems in Engineering

Lemma 2.5. Suppose that q : C+ → C is holomorphic and satisfies |λq(λ)| + |λ2q′(λ)| � M for all
Reλ > 0. Then there exists a bounded function f ∈ C(R+) such that q(λ) =

∫∞
0 e

−λtf(t)dt for all
Reλ > 0.

We introduce the means

‖(x1, . . . , xn)‖R :=
1
2n

∑
εj∈{−1,1}n

∥∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥∥ (2.6)

for x1, . . . , xn ∈ X.

Definition 2.6. Let X, Y be Banach spaces. A subset T of B(X,Y ) is called R-bounded if there
exists a constant c � 0 such that

‖(T1x1, . . . , Tnxn)‖R � c‖(x1, . . . , xn)‖R (2.7)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X, n ∈ N. The least c such that (2.7) is satisfied is called the
R-bound of T and is denoted as R(T).

The notion of R-boundedness was implicitly introduced and used by Bourgain [20]
and later on also by Zimmermann [21]. Explicitly it is due to Berkson and Gillespie [22] and
to Clément et al. [23].

R-boundedness clearly implies boundedness. If X = Y , the notion of R-boundedness
is strictly stronger than boundedness unless the underlying space is isomorphic to a Hilbert
space [24, Proposition 1.17]. Some useful criteria for R-boundedness are provided in [11, 24].

Remark 2.7. (a) Let S,T ⊂ B(X,Y ) be R-bounded sets, then S +T := {S + T : S ∈ S, T ∈
T} is R-bounded.

(b) Let T ⊂ B(X,Y ) and S ⊂ B(Y,Z) be R-bounded sets, then S · T := {S · T : S ∈ S, T ∈
T} ⊂ B(X,Z) is R-bounded and

R(S · T) � R(S) · R(T). (2.8)

(c) Also, each subset M ⊂ B(X) of the form M = {λI : λ ∈ Ω} is R-bounded whenever
Ω ⊂ C is bounded.

We recall that those Banach spaces X for which the Hilbert transform is bounded on
Lp(R, X), for some p ∈ (1,∞), are called UMD spaces. For more information and details
on the Hilbert transform and the UMD Banach spaces we refer to [12]. Examples of UMD
spaces include Hilbert spaces, Sobolev spaces Ws

p(Ω), 1 < p < ∞ (see [25]), Lebesgue spaces
Lp(Ω, μ), 1 < p < ∞, Lp(Ω, μ;X), 1 < p < ∞, when X is a UMD space, and the Schatten-von
Neumann classes Cp(H), 1 < p <∞ of operators on Hilbert spaces.

After these preliminaries, we state the following operator-valued Fourier multiplier
theorem. It is fundamental in our treatment. A proof can be founded in [11].
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Theorem 2.8. Suppose that X is a UMD space and let 1 < p < ∞. Let M ∈ C1(R \ {0};B(X)) be
such that the following conditions are satisfied.

(i) The set {M(ρ)}ρ∈R\{0} is R-bounded.

(ii) The set {ρM′(ρ)}ρ∈R\{0} is R-bounded.

Then the operator T defined by

Tf =
(
M(·)

[
f̂(·)

])∨
where f ∈ S(X) (2.9)

extends to a bounded operator from Lp(R, X) to Lp(R, X).

3. Existence of Solutions

Let α, β, γ ∈ (0,∞). Consider the equation

u′′(t) + αu′′′(t) = βAu(t) + γAu′(t) + f(t), (3.1)

with initial conditions u(0) = u′(0) = u′′(0) = 0, where A is the generator of an (α, β, γ)-
regularized family R(t). By a solution of (3.1) we understand a function u ∈ C(R+;D(A)) ∩
C3(R+;X) such that u′ ∈ C(R+;D(A)) and verify (3.1).

Proposition 3.1. Let R(t) be an (α, β, γ)-regularized family on X with generator A. If f ∈
L1

loc(R+, D(A2)), then u(t) given by

u(t) =
∫ t

0
R(t − s)f(s)ds, t � 0 (3.2)

is a solution of (3.1).

Proof. Given that x ∈ D(A), we obtain from Proposition 2.3 that R(·)x, and hence u, is of
class C3(R+, X). For all x ∈ D(A), we have

R′(t)x =
(

1 − e−t/α
)
x +

∫ t

0

[
β +

(
γ/α − β

)
e−(t−s)/α

]
R(s)Axds. (3.3)

If x ∈ D(A2), then R′(t)x ∈ D(A). Moreover,

R′′(t)x =
1
α
e−t/αx +

γ

α
R(t)Ax +

∫ t

0

(
β

α
−
γ

α2

)
e−(t−s)/αAR(s)x ds,

R′′′(t)x = − 1
α2
e−t/α +

γ

α
R′(t)Ax +

β

α
R(t)Ax −

γ

α2
AR(t)x

+
∫ t

0

(
γ

α3
−
β

α2

)
e−(t−s)/αAR(s)x ds.

(3.4)
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Since f ∈ L1
loc(R+, D(A2)), from (3.2), we have that u(t), u′(t) ∈ D(A) and

u′(t) =
∫ t

0
R′(t − s)f(s)ds,

u′′(t) =
∫ t

0
R′′(t − s)f(s)ds,

u′′′(t) = R′′(0)f(t) +
∫ t

0
R′′′(t − s)f(s)ds.

(3.5)

Hence,

u′′(t) + αu′′′(t) − βAu(t) − γAu′(t)

=
∫ t

0
R′′(t − s)f(s)ds + f(t) + α

∫ t

0
R′′′(t − s)f(s)ds

− βA
∫ t

0
R(t − s)f(s)ds − γA

∫ t

0
R′(t − s)f(s)ds.

(3.6)

By the other side, for all x ∈ D(A2), we obtain

R′′(t)x + αR′′′(t)x − βAR(t)x − γAR′(t)x

=
1
α
e−t/αx +

γ

α
AR(t)x +

∫ t

0

(
β

α
−
γ

α2

)
e−(t−s)/αAR(s)x ds − 1

α
e−t/α + γAR′(t)x

+ βAR(t)x −
γ

α
AR(t)x +

∫ t

0

(
γ

α2
−
β

α

)
e−(t−s)/αAR(s)x ds − βAR(t)x − γAR′(t)x

= 0.

(3.7)

Since f(t) ∈ D(A2) and A is closed, from (3.6) we conclude that u(t) verify (3.1).

The following remarkable result provides a wide class of generators of (α, β, γ)-
regularized families. In what follows we denote

ϕ(λ) :=
1

â(λ)
=
λ2(1 + αλ)
β + γλ

. (3.8)

Theorem 3.2. Let −B be a positive self-adjoint operator on a Hilbert spaceH such that

αβ � γ. (3.9)

Then B is the generator of a bounded (α, β, γ)-regularized family onH.
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Proof. Since −B is a positive self-adjoint operator in H, the spectrum σ(B) is a subset of the
negative real axis and the resolvent operator (μ − B)−1 is defined at least for all negative non
real μ. Let λ ∈ C such that Reλ > 0. If Imϕ(λ)/= 0, then clearly ϕ(λ) ∈ ρ(B). If Imϕ(λ) = 0,
then we claim that Reϕ(λ) > 0. In fact, for λ = a + bi ∈ C, a > 0, with a direct computation
we obtain

Reϕ(λ) =

(
a2 − b2)(1 + αa)

(
β + γa

)
− 2ab2α

(
β + γa

)
+ αγb2(a2 − b2) + 2ab2(1 + αa)(

β + γa
)2 + γ2b2

,

Imϕ(λ) =
αb

(
a2 − b2)(β + γa) + 2ab(1 + αa)

(
β + γa

)
− γb

(
a2 − b2)(1 + αa) + 2ab3αγ(

β + γa
)2 + γ2b2

.

(3.10)

Note that Imϕ(λ) = 0 if and only if b = 0 or α(a2 − b2)(β + γa) + 2a(1 + αa)(β + γa) −
γ(a2 − b2)(1 + αa) + 2ab2αγ = 0.

Since αβ � γ , we have that

α
(
a2 − b2

)(
β + γa

)
+ 2a(1 + αa)

(
β + γa

)
− γ

(
a2 − b2

)
(1 + αa) + 2ab2αγ

= 2αγab2 + b2(γ − αβ) + γa2 + 3αβa2 + 2βa + 2αγa2

> 0.

(3.11)

Hence, Imϕ(λ) = 0 if and only if b = 0. Since a > 0, a direct calculation gives

Reϕ(λ) =
a2(1 + αa)
β + γa

> 0, (3.12)

proving the claim. We conclude that ϕ(λ) ∈ ρ(B) for all Reλ > 0. Hence (see Kato [26, Section
V.3.5]),

∥∥∥(ϕ(λ) − B)−1
∥∥∥ =

1
dist

(
ϕ(λ), σ(B)

) ∀Reλ > 0. (3.13)

Note that

sup
Reλ>0

(
|λ|2 + 1

dist
(
ϕ(λ), σ(B)

)
)
< M, (3.14)

since dist(ϕ(λ), σ(B)) has order |λ|2. Define Q(λ) = (1/(β + γλ)) (ϕ(λ) − B)−1. We have by
(3.14) and (3.13) that for all Reλ > 0

‖λQ(λ)‖ =

∥∥∥∥∥
λ(

β + γλ
)(ϕ(λ) − B)−1

∥∥∥∥∥ � |λ|∣∣β + γλ∣∣
1

dist
(
ϕ(λ), σ(B)

) < M. (3.15)
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On the other hand,

λ2Q′(λ) =
−γλ
β + γλ

[λQ(λ)] + [λQ(λ)]
[
λ2(ϕ(λ) − B)−1

][
λ
â(λ)′

â(λ)

]
1

λ2â(λ)
, (3.16)

where

1
λ2â(λ)

=
1 + αλ
β + γλ

, λ
â(λ)′

â(λ)
= −

2αγλ2 +
(
γ + 3αβ

)
λ + 2β

(1 + αλ)
(
β + γλ

) (3.17)

and, by (3.14),

∥∥∥λ2(ϕ(λ) − B)−1
∥∥∥ �

∣∣λ2
∣∣

dist
(
ϕ(λ), σ(B)

) < M (3.18)

for all Reλ > 0. We conclude that supReλ>0‖λ2Q′(λ)‖ <∞.
By Lemma 2.5 there exists a strongly continuous family R(t) such that ‖R(t)‖ � K

and Q(λ) = R̂(λ) for Reλ > 0. In consequence, for all Reλ > 0 we have

R̂(λ) =
ϕ(λ)

λ2(1 + αλ)
(
ϕ(λ) − B

)−1 =
1

β + γλ

(
λ2 + αλ3

β + γλ
− B

)−1

, (3.19)

and, by Remark 2.2, it shows that R(t) is a bounded (α, β, γ)-regularized family generated by
B.

Since it is a known fact that the Dirichlet-Laplacian operator is a self-adjoint operator
on L2(Ω) and σ(Δ) ⊂ (−∞, 0), we obtain the following corollary.

Corollary 3.3. LetΩ be a bounded domain in R
n with smooth boundary ∂Ω, and assume that αβ � γ.

Then the Dirichlet-Laplacian operatorΔ with domainH2(Ω)∩H1
0(Ω) is the generator of an (α, β, γ)-

regularized family on X = L2(Ω).

Remark 3.4. In Theorem 3.2 the condition αβ � γ is fundamental to have ϕ(λ) ∈ ρ(B) for all
λ ∈ C with Reλ > 0, which is the key in the proof. Figure 1 is the typical situation, where we
have mapped by ϕ the lines Re(λ) = 1, 2, and 3 with α = 3, β = 1, and γ = 4.
Note that in case αβ > γ it can happen that ϕ(λ) ∈ σ(B). For example, taking α = 1, β = 5,
and γ = 1, we obtain Figure 2 of ϕ(λ) for Im(λ) ∈ R and Re(λ) = 1

4. Lp-Well-Posedness

Having presented preliminary material on R-boundedness and Fourier multipliers, we will
now show how these tools can be used to handle (3.1). Our main result give concrete
conditions on the operator A under which (3.1) has Lp-maximal regularity.

The definition of Lp-maximal regularity which we investigate in this section is given
as follows.
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ϕ(λ)

Figure 1

ϕ(λ)

Figure 2

Definition 4.1. One says that (3.1) has Lp-maximal regularity (or is Lp-well posed) on R+ if
for each f ∈ Lp(R+, X) there is a unique function u ∈ W3,p(R+, X) ∩ W1,p(R+, [D(A)]) ∩
Wp(R+, [D(A)]) such that (3.1) holds a.e.

The following is the main abstract result of this section. It completely characterizes the
maximal regularity of solutions for (3.1) in Lebesgue spaces.

Theorem 4.2. Let X be a UMD space, 1 < p < ∞, and let A be the generator of a bounded (α, β, γ)-
regularized family R(t). The following statements are equivalent.

(i) Equation (3.1) has Lp-maximal regularity on R+.

(ii) b(ρ) := −ρ2((1 + iαρ)/(β + iγρ)) ∈ ρ(A) for all ρ ∈ R \ {0} and the set

{
ρ3

β + iγρ
R(b(ρ), A)

}
ρ∈R\{0}

is R-bounded. (4.1)

Proof. (i) ⇒ (ii). By (3.1) and Definition 4.1 together with Proposition 3.1, the convolution
operator with kernel

K4(t) := R′′′(t)χ(0,∞)(t), t ∈ R, (4.2)
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is a bounded operator from Lp(R, X) to Lp(R, X). Note that the Fourier transform R̃(ρ) exists
for ρ /= 0 because R(t) is bounded and R̂(λ)(Reλ > 0) can be analytically extended from Reλ >
0 to the imaginary axis. Then the symbol of this convolution operator is given by

M
(
ρ
)
=

ρ3

β + iγρ
R
(
b
(
ρ
)
, A

)
, ρ ∈ R \ {0}, (4.3)

and the conclusion follows from [11, Proposition 3.17].
(ii) ⇒ (i). Define N(ρ) := (1/(β + iγρ))R(b(ρ), A) and

N1
(
ρ
)

:= AN
(
ρ
)
. (4.4)

We check that the set {N1(ρ)}ρ∈R\{0} is R-bounded.
Since (b(ρ) −A)R(b(ρ), A) = I, we have that AR(b(ρ), A) = b(ρ)R(b(ρ), A) − I. Replacing in
(4.4)

N1
(
ρ
)
=

b
(
ρ
)

β + iγρ
R
(
b
(
ρ
)
, A

)
− 1
β + iγρ

I = −
1 + iαρ
β + iγρ

ρ2N
(
ρ
)
− 1
β + iγρ

I. (4.5)

Note that

∣∣∣∣1 + iαρ
β + iγρ

∣∣∣∣
2

=
1 + α2ρ2

β2 + γ2ρ2
<

1
β2

+
α2

γ2
,

∣∣∣∣ 1
β + iγρ

∣∣∣∣
2

=
1

β2 + γ2ρ2
<

1
β2
.

(4.6)

Since the sum of R-bounded sets is R-bounded, see [11], we obtain that {N1(ρ)} is
R-bounded.

We now check that the set {ρN ′
1(ρ)}ρ∈R\{0} is R-bounded. With a direct computation,

we obtain

N ′
1

(
ρ
)
= b′

(
ρ
)
N
(
ρ
)
+ b

(
ρ
)
N ′(ρ) + iγ(

β + iγρ
)2
I

=
2αγ(

β + iγρ
)2
ρ3N

(
ρ
)
−

γ + 3αβ(
β + iγρ

)2
iρ2N

(
ρ
)
−

2β(
β + iγρ

)2
ρN

(
ρ
)

−
iγ

β + iγρ
b
(
ρ
)
N
(
ρ
)
−

2αγρ2 −
(
γ + 3αβ

)
iρ − 2β

β + iγρ
ρb

(
ρ
)
N
(
ρ
)
N
(
ρ
)
+

iγ(
β + iγρ

)2
I.

(4.7)
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Hence

ρN ′
1

(
ρ
)
=

2αγρ(
β + iγρ

)2
ρ3N

(
ρ
)
−

γ + 3αβ(
β + iγρ

)2
iρ3N

(
ρ
)
−

2β(
β + iγρ

)2
ρ2N

(
ρ
)
+

iγ − αγρ(
β + iγρ

)2
ρ3N

(
ρ
)

+
(

2αγρ2 −
(
γ + 3αβ

)
iρ − 2β

) 1 + iαρ(
β + iγρ

)2
ρ4N

(
ρ
)
N
(
ρ
)
+

iγρ(
β + iγρ

)2
I

=
2αγρ(
β + iγρ

)2
ρ3N

(
ρ
)
−

γ + 3αβ(
β + iγρ

)2
iρ3N

(
ρ
)
−

2β(
β + iγρ

)2
ρ2N

(
ρ
)
+

iγ − αγρ(
β + iγρ

)2
ρ3N

(
ρ
)

+ 2αγ
1 + iαρ(
β + iγρ

)2
ρ3N

(
ρ
)
ρ3N

(
ρ
)
−
(
γ + 3αβ

) i − αρ(
β + iγρ

)2
ρ3N

(
ρ
)
ρ2N

(
ρ
)

− 2β
1 + iαρ
β + iγρ

ρ3N
(
ρ
)
ρN

(
ρ
)
+

iγρ(
β + iγρ

)2
I

=
αγρ − 3αβi(
β + iγρ

)2
ρ3N

(
ρ
)
−

2β(
β + iγρ

)2
ρ2N

(
ρ
)
+ 2αγ

1 + iαρ(
β + iγρ

)2
ρ3N

(
ρ
)
ρ3N

(
ρ
)

−
(
γ + 3αβ

) i − αρ(
β + iγρ

)2
ρ3N

(
ρ
)
ρ2N

(
ρ
)
− 2β

1 + iαρ
β + iγρ

ρ3N
(
ρ
)
ρN

(
ρ
)
+

iγρ(
β + iγρ

)2
I.

(4.8)

Since the set {ρ3N(ρ)} is R-bounded and the complex functions appearing in the above
equality are bounded, we obtain the claim from the fact that the sum of R-bounded sets is
again R-bounded. We employ now Theorem 2.8 to conclude that the operator T1 defined by

T1f =
(
N1(·)

[
f̂(·)

])∨
where f ∈ S(X) (4.9)

extends to a bounded operator from Lp(R, X) to Lp(R, X).
Define

N2
(
ρ
)

:=
ρ

β + iγρ
AR

(
b
(
ρ
)
, A

)
. (4.10)

We will prove that the sets {N2(ρ)}ρ∈R\{0} and {ρN ′
2(ρ)}ρ∈R\{0} are R-bounded.
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In fact, note that N2(ρ) = ρ N1(ρ) = −((1 + iαρ)/(β + iγρ))ρ3N(ρ) − (ρ/(β + iγρ))I. Hence the
set {N2(ρ)} is R-bounded. Moreover, we have

ρN ′
2
(
ρ
)
= ρ2N ′

1

(
ρ
)
+ ρN1

(
ρ
)

=
αγρ2 − 3αβρi(
β + iγρ

)2
ρ3N

(
ρ
)
−

2β(
β + iγρ

)2
ρ3N

(
ρ
)
+ 2αγ

ρ + iαρ2

(
β + iγρ

)2
ρ3N

(
ρ
)
ρ3N

(
ρ
)

−
(
γ + 3αβ

) i − αρ(
β + iγρ

)2
ρ3N

(
ρ
)
ρ3N

(
ρ
)
− 2β

1 + iαρ
β + iγρ

ρ3N
(
ρ
)
ρ2N

(
ρ
)

+
iγρ2

(
β + iγρ

)2
I +N2

(
ρ
)
,

(4.11)

obtaining that the set {ρN ′
2(ρ)}ρ∈R\{0} is R-bounded. By Theorem 2.8 we conclude that the

operator T2 defined by

T2f =
(
N2(·)

[
f̂(·)

])∨
where f ∈ S(X) (4.12)

extends to a bounded operator from Lp(R, X) to Lp(R, X).
Finally, define

N3
(
ρ
)

:=
ρ2

β + iγρ
R
(
b
(
ρ
)
, A

)
= ρ2N

(
ρ
)
. (4.13)

The set {N3(ρ)}ρ∈R\{0} is R-bounded from hypothesis and also note that the set
{ρN ′

3(ρ)}ρ∈R\{0} is R-bounded, since

ρN ′
3
(
ρ
)
= 2ρ2N

(
ρ
)
−

iγ

β + iγρ
ρ3N

(
ρ
)
−

2αγ
β + iγρ

ρ3N
(
ρ
)
ρ3N

(
ρ
)

+
γ + 3αβ
β + iγρ

iρ3N
(
ρ
)
ρ2N

(
ρ
)
+

2β
β + iγρ

ρN
(
ρ
)
ρ3N

(
ρ
)
.

(4.14)

Again by Theorem 2.8 we conclude that the operator T3 defined by

T3f =
(
N3(·)

[
f̂(·)

])∨
where f ∈ S(X) (4.15)
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extends to a bounded operator from Lp(R, X) to Lp(R, X). From (4.9), (4.12), and (4.15) and
since it is clear that (3.1) has Lp-maximal regularity if the convolution operator with each one
of the kernels

K1(t) := AR(t)χ(0,∞)(t), K2(t) := AR′(t)χ(0,∞)(t), K3(t) := R′′(t)χ(0,∞)(t), t ∈ R, (4.16)

is a bounded operator from Lp(R, X) to Lp(R, X) (see [11]), we conclude (i) and the proof is
complete.

Of course, R-boundedness in (4.1) can be replaced by boundedness in case X = H is a
Hilbert space.

Corollary 4.3. The solution u of (3.1), under the conditions given by Theorem 4.2, satisfies the
following maximal regularity property: u, u′ ∈ Lp(R+; [D(A)]) and Au,Au′, u′′, u′′′ ∈ Lp(R+;X).
Moreover, there exists a constant C > 0 independent of f ∈ Lp(R+;X) such that

‖u‖p +
∥∥u′∥∥p +

∥∥u′′∥∥p +
∥∥u′′′∥∥p + ‖Au‖p +

∥∥Au′∥∥p+ � C
∥∥f∥∥p. (4.17)

The proof follows by the closed-graph theorem.
As an example, we consider for A = Δ the vibration equation subject to the action of

an external force. Explicitly, we consider

vtt(t, x) + λvttt(t, x) = c2(Δv(t, x) + μΔvt(t, x)) + f(t, x) in ]0, T] ×Ω,

v(t, x) = 0 on ]0, T] ×Ω,

v(0, x) = 0 in Ω,

vt(0, x) = 0 in Ω,

vtt(0, x) = 0 in Ω

(4.18)

in a smooth bounded region Ω ⊂ R
n. Also, we assume that f ∈ L2(R;L2(Rn)). We have the

following application in the Hilbert space setting.

Theorem 4.4. LetΩ be a bounded domain with smooth boundary ∂Ω in R
n. Suppose that 0 < λ < μ.

Then the initial value problem (4.18) defined on L2(Ω) with Dirichlet boundary conditions has L2-
maximal regularity on R+.

Proof. Let α = λ, β = c2, and γ = c2μ and note that αβ < γ if and only if λ < μ. By Corollary 3.3
we conclude that Δ generates a bounded (α, β, γ)-regularized family on L2(Ω).
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b(ρ)

λ1(Ω)

Figure 3

Note that we have b(ρ) = −ρ2((1 + iαρ)/(β + iγρ)) ∈ ρ(Δ) and there exists a constant
C > 0 such that

∥∥∥∥∥
ρ3

β + iγρ
R
(
b
(
ρ
)
,Δ

)∥∥∥∥∥ =

∥∥∥∥∥ρ
b
(
ρ
)

1 + iαρ
(
b(ρ) −Δ

)−1

∥∥∥∥∥

=

∣∣ρ∣∣∣∣1 + iαρ
∣∣

∣∣b(ρ)∣∣
dist

(
b
(
ρ
)
, λ1(Ω)

) � C,

(4.19)

for all ρ ∈ R. Here λ1(Ω) is the first eigenvalue of the Dirichlet-Laplacian. Hence, by
Theorem 4.2 the assertion follows.

Remark 4.5. In Figure 3, we show b(ρ) in case λ = 3, μ = 4, and c2 = 1.
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