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For a rapidly spatially oscillating nonlinearity g we compare solutions uε of non-Newtonian
filtration equation ∂tβ(uε) −D(|Duε|p−2Duε + ϕ(uε)Duε) + g(x, x/ε, uε) = f(x, x/ε)with solutions
u0 of the homogenized, spatially averaged equation ∂tβ(u0) − D(|Du0|p−2Du0 + ϕ(u0)Du0) +
g0(x, u0) = f0(x). Based on an ε-independent a priori estimate, we prove that ||β(uε)−β(u0)||L1(Ω) ≤
Cεeρt uniformly for all t ≥ 0. Besides, we give explicit estimate for the distance between the
nonhomogenizedAε and the homogenizedA0 attractors in terms of the parameter ε; precisely, we
show fractional-order semicontinuity of the global attractors for ε ↘ 0 : distL1(Ω)(Aε,A0) ≤ Cεγ .

1. Introduction

This paper is devoted to the study of nonlinear parabolic equations related to the p-Laplacian
operator. The problems related to such type of equation arise in many applications in the
fields of mechanics, physics, and biology (non-Newtonian fluids, gas flow in porous media,
spread of biological populations, etc.).

For example, in the study of the water in filtration through porous media, Darcy’s
linear relation

V = −K(τ)ωx (∗)

satisfactorily describes flow conditions provided that the velocities are small. Here V
represents the velocity of the water, τ is the volumetric water (moisture) content, K(τ) is
the hydraulic conductivity, and ω is the total potential, which can be expressed as the sum
of a hydrostatic potential ψ(τ) and a gravitational potential z: ω(τ) = ψ(τ) + z. However,
from the physical point of view, (∗) fails to describe the flow for large velocities. To get a
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more accurate description of the flow in this case, several nonlinear versions of (∗) have been
proposed. One of these versions is

V α = −K(τ)ωx (1.1)

which leads us to the equation

ut − div
{
|u|m|∇u|p−2∇u

}
= f(x, t, u). (∗∗)

For the first time, nonlinear relationship instead of Darcy‘s relation are suggested by Dupuit
and Forchheimer. This modification, known as Darcy-Forchheimer’s relation, has led to
much research from experimental, theoretical, and numerical points of view. For example,
Darcy-Forchheimer equations are widely used in reservoir engineering and other subsurface
applications.

One-dimensional (by spatial variable) variant of (∗∗) with p ∈ [3/2, 2) and m > p − 1
arises in the study of a turbulent flow of a gas in a one-dimensional porous medium. This
phenomenon was first described by Leibenson in [1]. One of the first papers devoted to the
existence problem for such type of equation was an initiating paper by Raviart [2]. In [3], the
author investigated the regularity problem formore general case (which includes Leibenson’s
equation after changing |u|σu = v) of non-Newtonian equation as

∂tβ(v) + div
−→
B(x, t, v,∇v) + B0(x, t, v,∇v) = 0 (1.2)

with some restriction on the functions
−→
B and B0. Earlier, in [4] authors have investigated

existence and the stabilization of solutions (as t ↗ ∞) of nonlinear parabolic equation of
mentioned type describing certain models related to turbulent flows. Also note that there
is an extensive literature devoted to the existence, regularity, and the large-time behavior
of solutions of (1.2) under various conditions on functions β,

−→
B, and B0 (see [2–10] and

references therein).
In this paper we show that, under natural assumptions on the terms f and g, the

longtime behavior of solutions of the equation

∂tβ
(
u0
)
−D

(∣∣∣Du0
∣∣∣
p−2
Du0 + ϕ

(
u0
)
Du0

)
+ g0

(
x, u0

)
= f0(x) (1.3)

can be described in terms of the global attractorAε of the associated dynamical system related
to the equation

∂tβ(uε) −D
(
|Duε|p−2Duε + ϕ(uε)Duε

)
+ g

(
x,
x

ε
, uε

)
= f

(
x,
x

ε

)
, (1.4)

where functions g(x, x/ε, uε) and f(x, x/ε) are constructed according to some ideas
previously presented in [11], where authors carry out a quantitative comparison with the
averaged or homogenized equations, in particular for quasiperiodic inhomogeneities with
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Diophantine frequencies (see [11, pages 176–180]). Note that a quantitative homogenization
aims at determining a specific rate of convergence. Method of the construction of the
homogenized equation allows us to assert that ||β(uε) − β(u0)||L1(Ω) ≤ Cεeρt (Theorem 3.1
below) uniformly for all t ≥ 0. As we mentioned above, this result requires g and f to
depend quasiperiodically on the rapid space variable z = x/ε. At the same time, being
interested in quantitative strong convergence not only of individual trajectories but also of
global attractors, we also show that global attractors Aε tend to attractor A0 in a suitable
sense providing fractional-order semicontinuity of the global attractors for ε ↘ 0. On a related
note, the author would like to mention several results on homogenization of the attractor for
nonlinear parabolic equations.

In [12] the Cauchy problem for parabolic equations on Riemannian manifolds with
complicated microstructure has been considered and a connection between global attractors
of the initial problem of the homogenized one has been established. The asymptotical
behavior of the global attractor of the boundary value problem for semilinear equation

uεt −Δuε + f(uε) = hε(x) (1.5)

was investigated in [13] and it was shown that this tended in a suitable sense to the finite-
dimensional weak global attractor of some system of a parabolic p.d.e. coupled with an o.d.e.

Also it is necessary to note the papers in [14–16], where the media properties are
assumed to be oscillatory, focusing on the homogenization of the attractor for semilinear
parabolic equations (see [14]) and systems (see [15]), and of the quasilinear parabolic
equations (see [16]).

Note that previous approaches on homogenization of attractors are limited to certain
types of nonlinear equations. In particular, they assume the main part of the equation to be
linear or monotone. The consideration of equation (1.4) is a first step in the investigation of
the more general equation

∂tβ(uε) −D
(
a

(
x

ε

)(
|Duε|p−2 + ϕ(uε)

)
Duε

)
+ g

(
x,
x

ε
, uε

)
= f

(
x,
x

ε

)
, (1.6)

where the media properties are assumed to be oscillatory. This often arises in porous media
flows [17]. We also note the paper in [18] where authors deal with the homogenization
problem for a one-dimensional parabolic PDE with random stationary mixing coefficients
in the presence of a large zero-order term and show that the family of solutions of the studied
problem converges in law.

Our work is inspired, on one hand, by results of the studies in [7, 8]which are devoted
to the existence and regularity of the attractor and, on the other hand, by the paper in [11]
that is related to quantitative homogenization of the global attractor for reaction-diffusion
systems. For proof of the existence we use sketch of the proof of corresponding result;
however, compared to the studies in [7, 8] we consider the equation with an additional
nonlinear term ϕ(s). Note that this term prevents us from applying the result from the paper
in [4] which is often used to prove the uniqueness of the solution. Here we use a technique
(see [19]) which is based on the fact that the interval [a, b] may be divided into subintervals
where the sign of the “difference” u(x, t) − v(x, t) (u(x, t) and v(x, t) are solutions with the
same initial condition) does not change for fixed t. Also note that the results of the paper in
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[11] cannot be directly applied to prove homogenization of the attractor for (1.4) because of
nonlinear terms β and ϕ.

Our paper is organized as follows. In Section 2 we consider the Dirichlet problem

∂tβ(u) −D
(
|Du|p−2Du + ϕ(u)Du

)
+ g(x, u) = f(x), (1.7)

u|Γ = 0, Γ = ∂Ω × (0, T), (1.8)

u(x, 0) = u0(x), (1.9)

where D = ∂x,Ω = (a, b) under the following hypotheses

(H1) u0(x) and β(u0) are in L2(Ω),

(H2) β(ζ) is an increasing locally Lipschitzian function from R to R, with β(0) = 0.

(H3) g(·, ζ)ζ � c1|ζ|k + c2, ∂ζg(·, ζ) > −λ, (without loss of generality we suppose that
g(·, 0) = 0) and there exist positive constants c3 and c4 such that sign(ζ)g(x, ζ) ≥
c3|β(ζ)|q−1 − c4 for a. e. (x, t) ∈ Ω × R and q > 2.

(H4) ϕ(ζ) is a function from the space C1 such that ϕ(ζ) ≥ 0, ϕ(0) = 0, and, for each M
and |ζ| ≤ M, |ϕ′(ζ)| ≤ (|ζ|l + c)(√β′(ζ))

α
almost everywhere, for some l, c ≥ 0 and

α ≥ 1.

(H5) f(x) ∈ L∞(Ω), p ≥ 4.

Under the mentioned condition we show the existence and uniqueness of the solution and
the existence of the L2-global attractor.
Further, in order to showmore regularity of the solution we suppose the following condition.

(H6) For eachM and |ζ| ≤M, |g(x, ζ) − f(x)| ≤ (|ζ|l1 + c)(√β′(ζ))
α1 almost everywhere,

for some l1, c ≥ 0 and α1 ≥ 1.

Finally in Section 3, we derive, under conditions (H1)–(H5), the following estimate:

∥∥∥β(uε) − β
(
u0
)∥∥∥

L1(Ω)
≤ Cεeρt. (1.10)

Also, under additional condition on g we prove fractional-order semicontinuity of the
global attractors for ε ↘ 0, namely, the validity of the estimation distL1(Ω)(Aε,A0) ≤ Cεγ ,
where Aε and A0 are global attractors of the semigroups generated by the problems (1.4),
(1.8), (1.9) and (1.3), (1.8), (1.9), respectively.

2. Existence and Uniqueness

First, we suppose that ε in equation (1.4) is a constant. This leads us to the problem (1.7), (1.8),
(1.9) where g(x, u) and f(x) are denoted as g(x, x/ε, uε) and f(x, x/ε) correspondingly.
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We use the standard regularization of the problem (1.7), (1.8), (1.9):

∂tβη(u) −D
((

|Du|p−2 + ϕ(u) + η
)
Du

)
+ g(x, u) = f(x), (2.1)

u|Γ = 0, Γ = ∂Ω × (0, T), (1.8)

u(x, 0) = u0(x), (1.9)

where the sequence βη ∈ C1(R) is such that βη(0) = 0, βη → β in Cloc(R), Mη > β′η > η, and
|βη| ≤ |β|.

Let (u0η)η>0 be a sequence in C∞
0 (Ω) such that u0η → u0 almost everywhere in Ω and

||u0η||L2(Ω), ||βη(u0η)||L2(Ω) ≤ c, with constant c > 0. To show the solvability of the problem (1.8),
(1.9), (2.1) we use the result for the classical solvability in the large given by Ladyžhenskaya
et al. (see [20, Theorem 4.1(5.2), ch. VI]).

Our proof is based on a priori estimates and is similar to that in [7]. First, using the
properties of ϕ and βη, and then multiplying the equation by |βη(uη)|kβη(uη), we deduce,
analogously to [7, 8], the following lemma.

Lemma 2.1. Under the hypotheses (H1)–(H5) for any η ∈ (0, 1) the following estimates hold:
||uη||L∞(τ,T ;L∞(Ω)) � c(τ, T),

∣∣∣∣βη
(
uη

)∣∣∣∣
L∞(0,T ;L2(Ω))∩Lq(QT )

� c(T),
∣∣∣∣uη

∣∣∣∣
Lp(0,T ;W1,p

0 (Ω)) � c(T). (2.2)

Proof. Multiplying equation (2.1) by |βη(uη)|kβη(uη) and integrating by parts, we get

1
k + 2

d

dt

∫

Ω

∣∣βη
(
uη

)∣∣k+2dx + (k + 1)
∫

Ω

(∣∣Duη
∣∣p−2 + ϕ(uη

)
+ η

) ∣∣βη
(
uη

)∣∣kβ′η
(
uη

)

× ∣∣Duη
∣∣2dx +

∫

Ω
g
(
x, uη

)∣∣βη
(
uη

)∣∣kβη
(
uη

)
dx =

∫

Ω
f(x)

∣∣βη
(
uη

)∣∣kβη
(
uη

)
dx.

(2.3)

By virtue of the positivity of the β′η(uη) and ϕ(uη) we have

1
k + 2

d

dt

∫

Ω

∣∣βη
(
uη

)∣∣k+2dx +
∫

Ω
g
(
x, uη

)∣∣βη
(
uη

)∣∣kβη
(
uη

)
dx ≤

∫

Ω
f(x)

∣∣βη
(
uη

)∣∣kβη
(
uη

)
dx.

(2.4)

By conditions (H2) and (H3) we derive

1
k + 2

d

dt

∫

Ω

∣∣βη
(
uη

)∣∣k+2dx + c3

∫

Ω

∣∣βη
(
uη

)∣∣k+qdx

≤
∫

Ω
f(x)

∣∣βη
(
uη

)∣∣kβη
(
uη

)
dx + c4

∫

Ω

∣∣βη
(
uη

)∣∣kβη
(
uη

)
dx.

(2.5)
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Consequently, from (H5) we obtain

1
k + 2

d

dt

∫

Ω

∣∣βη
(
uη

)∣∣k+2dx + c3

∫

Ω

∣∣βη
(
uη

)∣∣k+qdx ≤ (
c
(
f
)
+ c4

) ∫

Ω

∣∣βη
(
uη

)∣∣k+1dx. (2.6)

Further, using Holder’s inequality on both sides of the latter inequality, we deduce
that there exist two constants α0 > 0 and λ0 > 0 such that

d

dt

∣∣∣∣βη
(
uη

)∣∣∣∣
Lk+2(Ω) + λ0

∣∣∣∣βη
(
uη

)∣∣∣∣q−1
Lk+2(Ω) ≤ α0, (2.7)

which implies from Ghidaglia’s lemma [9] that

∥∥βn
(
uη

)∥∥
Lk+2(Ω) ≤

(
α0
λ0

)1/(q−1)
+

1
(
λ0
(
q − 2

)
t
)1/(q−2) = c(t). (2.8)

As k → ∞ in (2.8), and for t ≥ τ > 0, we have

∣∣∣∣βη
(
uη

)
(t)

∣∣∣∣
L∞(Ω) ≤ c(τ), (2.9)

which implies that

∣∣∣∣uη(t)
∣∣∣∣
L∞(Ω) ≤ max

(
β−1η (c(τ)),

∣∣∣β−1η (−c(τ))
∣∣∣
)
= δη. (2.10)

Since βη converges to β in Cloc(R), then the sequence δη is bounded in R as
η → +∞. Thus δη is bounded by max(β−1η (c(τ)), |β−1η (−c(τ))|), which is finite. Whence
||uη||L∞(τ,T ;L∞(Ω)) � c(τ).

On the other hand, taking k = 0 in (2.3), using Holder’s inequality, and integrating
over [0, T],we obtain the second estimate of the statement of Lemma 2.1 as

∣∣∣∣βη
(
uη

)∣∣∣∣
L∞(0,T ;L2(Ω))∩Lq(QT )

� c(T). (2.11)

Further, in order to prove the latter estimate of Lemma 2.1, we multiply (2.1) by uη
and integrate over Qt:

1
k + 2

∫ t

0

∫

Ω
∂tβη

(
uη

)
uηdxdθ + (k + 1)

∫ t

0

∫

Ω

(∣∣Duη
∣∣p−2 + ϕ(uη

)
+ η

)∣∣Duη
∣∣2dxdθ

+
∫ t

0

∫

Ω
g
(
x, uη

)
uηdxdθ =

∫ t

0

∫

Ω
f(x)uηdxdθ.

(2.12)
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Therefore,

1
k + 2

∫ t

0

∫

Ω
∂t
(
βη
(
uη

)
uη

)
dxdθ + (k + 1)

∫ t

0

∫

Ω

(∣∣Duη
∣∣p−2 + ϕ(uη

)
+ η

)∣∣Duη
∣∣2dxdθ

+
∫ t

0

∫

Ω
g
(
x, uη

)
uηdxdθ =

∫ t

0

∫

Ω
f(x)uηdxdθ +

1
k + 2

∫ t

0

∫

Ω
βη
(
uη

)
∂tuηdxdθ.

(2.13)

Hence,

1
k + 2

∫

Ω
βη
(
uη(t)

)
uη(t)dx − 1

k + 2

∫

Ω
βη
(
u0η

)
u0ηdx

+ (k + 1)
∫ t

0

∫

Ω

(∣∣Duη
∣∣p−2 + ϕ(uη

)
+ η

)∣∣Duη
∣∣2dxdθ +

∫ t

0

∫

Ω
g
(
x, uη

)
uηdxdθ

=
∫ t

0

∫

Ω
f(x)uηdxdθ +

1
k + 2

∫ t

0

∫

Ω

dBη
(
uη

)

dτ
dxdθ,

(2.14)

where Bη(s) =
∫s
0 βη(θ)dθ.

Now, taking into account that βη(0) = 0 and β′η > η > 0, we conclude that Bη(s) ≤
βη(s)s. Thus,

1
k + 2

∫

Ω
βη
(
uη

)
(t)uη(t)dx − 1

k + 2

∫

Ω
βη
(
u0η

)
u0ηdx

+ (k + 1)
∫ t

0

∫

Ω

(∣∣Duη
∣∣p−2 + ϕ(uη

)
+ η

)∣∣Duη
∣∣2dxdθ +

∫ t

0

∫

Ω
g
(
x, uη

)
uηdxdθ

≤
∫ t

0

∫

Ω
f(x)uηdxdθ +

1
k + 2

∫

Ω
Bη

(
uη(t)

)
dx − 1

k + 2

∫

Ω
Bη

(
u0η

)
dx ≤

∫ t

0

∫

Ω
f(x)uηdxdθ

+
1

k + 2

∫

Ω
βη
(
uη

)
(t)uη(t)dx,

(2.15)

or

(k + 1)
∫ t

0

∫

Ω

(∣∣Duη
∣∣p−2 + ϕ(uη

)
+ η

)∣∣Duη
∣∣2dxdθ +

∫ t

0

∫

Ω
g
(
x, uη

)
uηdxdθ

≤
∫ t

0

∫

Ω
f(x)uηdxdθ +

1
k + 2

∫

Ω

βη
(
u0η

)
u0ηdx.

(2.16)



8 Mathematical Problems in Engineering

From condition ∂ζg > −λwe obtain that g(·, ζ) > −λζ and, consequently,

(k + 1)
∫ t

0

∫

Ω

(∣∣Duη
∣∣p−2 + ϕ(uη

)
+ η

)∣∣Duη
∣∣2dxdθ

≤
∫ t

0

∫

Ω

∣∣uη
∣∣2(λ + 1)dxdθ+

∫ t

0

∫

Ω

∣∣f∣∣2 dxdθ+ 1
k+2

∫

Ω

∣∣βη
(
u0η

)∣∣2 dx+ 1
k+2

∫

Ω

∣∣u0η
∣∣2 dx.

(2.17)

Therefore,
∫T

0

∫

Ω

∣∣Duη
∣∣p dxdθ ≤ c(T). (2.18)

Thereby assertion follows.

Corollary 2.2. Under condition of Lemma 2.1 there exists c such that

1
τ

∫ t+τ

t

∫

Ω

∣∣Duη
∣∣pdxdτ ≤ c for arbitrary τ. (2.19)

(It is sufficient to carry out the proof of Lemma 2.1 using integration on the interval
(t, t + τ) instead of (0, t) and taking into account (2.8).)

Lemma 2.3. Under the hypotheses (H1)–(H5) there exist constants ci such that for any η ∈ (0, 1)
the following estimates hold: ||uη||L∞(τ,T ;W1,p

0 (Ω)) � c(τ, T),

∫T

τ

∫

Ω

(
β′η
(
uη

))2∣∣∂tuη
∣∣2dxdθ ≤ c(τ, T),

∫ t+τ

t

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2dxdθ ≤ c(τ) (t � τ).

(2.20)

Proof. Multiplying (2.1) by ∂tuη and integrating over [s, τ + t],where τ ≤ t ≤ s,we get

∫ t+τ

s

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2dxdθ −

∫ t+τ

s

∫

Ω
D
((∣∣Duη

∣∣p−2 + ϕ(uη
)
+ η

)
Duη

)
∂tuηdxdθ

+
∫ t+τ

s

∫

Ω
g
(
x, uη

)
∂tuηdxdθ =

∫ t+τ

s

∫

Ω
f(x)∂tuηdxdθ.

(2.21)

Then, using integration by parts, we derive

∫ t+τ

s

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2dxdθ +

∫ t+τ

s

∫

Ω

((∣∣Duη
∣∣p−2 + ϕ(uη

)
+ η

)
Duη

)
D∂tuηdxdθ

+
∫ t+τ

s

∫

Ω
∂tG(x, u)dxdθ =

∫ t+τ

s

∫

Ω
∂t
(
f(x)uη

)
dxdθ,

(2.22)

where G(·, s) = ∫s
0 g(·, ζ)dζ.
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Hence, using condition (H4), we get

∫ t+τ

s

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2dxdθ

+
∫ t+τ

s

d

dθ

(
1

p + 2

∫

Ω

∣∣Duη(θ)
∣∣pdx +

1
2

∫

Ω
ϕ
(
uη(θ)

)∣∣Duη(θ)
∣∣2dx +

1
2

∫

Ω
η
∣∣Duη(θ)

∣∣2dx

+
∫

Ω
G
(
x, uη(θ)

)
dx −

∫

Ω
f(x)uη(θ)

)
dθ

=
1
2

∫ t+r

s

∫

Ω
ϕ′(uη(θ)

) × ∣∣Duη(θ)
∣∣2∂tuηdxdθ

≤ 1
2

∫ t+r

s

∫

Ω

(∣∣uη
∣∣l + c

)(√
β′(s)

)α∣∣Duη
∣∣2∣∣∂tuη

∣∣dxdθ.
(2.23)

Further, taking into account that βη(uη) is uniformly bounded by η (uη ∈ [−δ, δ], where
δ is the bound in the proof of Lemma 2.1), it is possible to choose βη so that β′η ≤ L, where L
is the Lipschitz constant of β(ζ) on [−δ, δ]. Therefore,

1
2

t+τ∫

s

∫

Ω

(∣∣uη
∣∣l + c

)(√
β′(s)

)α∣∣Duη
∣∣2∣∣∂tuη

∣∣dxdθ

≤ ε

2

∫ t+τ

s

∫

Ω

(
β′η
(
uη

))α∣∣∂tuη
∣∣2dxdθ +

1
2ε

∫ t+τ

s

∫

Ω

(∣∣uη
∣∣l + c

)2∣∣Duη
∣∣4dxdθ

≤ ε

2
Lα−1

∫ t+τ

s

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2dxdθ +

1
2ε

∫ t+τ

s

∫

Ω

(∣∣uη
∣∣l + c

)2∣∣Duη
∣∣4dxdθ.

(2.24)

Consequently,

∫ t+τ

s

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2dxdθ

+
∫ t+τ

s

d

dθ

(
1

p + 2

∫

Ω

∣∣Duη(θ)
∣∣pdx +

1
2

∫

Ω
ϕ
(
uη(θ)

)∣∣Duη(θ)
∣∣2dx +

1
2

∫

Ω
η
∣∣Duη(θ)

∣∣2dx

+
∫

Ω
G
(
x, uη(θ)

)
dx −

∫

Ω
f(x)uη(θ)dx

)
dθ

≤ ε

2
Lα−1

∫ t+τ

s

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2dxdθ +

1
2ε

∫ t+τ

s

∫

Ω

(∣∣uη
∣∣l + c

)2(∣∣Duη
∣∣p + 1

)
dxdθ.

(2.25)
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Now, using Lemma 2.1 and Corollary 2.2, we easily deduce

1
2

∫ t+τ

s

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2 dxdθ +

1
p + 2

∫

Ω

∣∣Duη
∣∣p(t + τ)dx +

∫

Ω
ϕ
(
uη

)∣∣Duη
∣∣2(t + τ)dx

+
1
2

∫

Ω
η
∣∣Duη

∣∣2(t + τ)dx +
∫

Ω
G
(
x, uη(t + τ)

)
dx −

∫

Ω
f(x)uη(t + τ)dx

≤ 1
p + 2

∫

Ω

∣∣Duη
∣∣p(s)dx +

∫

Ω
ϕ
(
uη

)∣∣Duη
∣∣2(s)dx +

1
2

∫

Ω
η
∣∣Duη

∣∣2(s)dx

+
∫

Ω
G
(
x, uη(s)

)
dx −

∫

Ω
f(x)uη(s)dx +

1
2ε
cτ.

(2.26)

After integrating over [t, t + τ], we derive

τ
1

p + 2

∫

Ω

∣∣Duη
∣∣p(t + τ)dx + τ

∫

Ω
ϕ
(
uη

)∣∣Duη
∣∣2(t + τ)dx +

1
2
τ

∫

Ω
η
∣∣Duη

∣∣2(t + τ)dx

≤ 1
p + 2

∫ t+τ

t

∫

Ω

∣∣Duη
∣∣p(s)dxds +

∫ t+τ

t

∫

Ω
ϕ
(
uη

)∣∣Duη
∣∣2(s)dxds

+
1
2

∫ t+τ

t

∫

Ω
η
∣∣Duη

∣∣2(s)dxds +
∫ t+τ

t

∫

Ω
G
(
x, uη(s)

)
dxds +

∫ t+τ

t

∫

Ω
f(x)uη(s)dxds

− τ
∫

Ω
f(x)uη(t + τ)dx − τ

∫

Ω
G
(
x, uη(t + τ)

)
dx + c(τ)τ.

(2.27)

Since, by virtue of conditions imposed on the function g,−(λ/2)|ζ|2 < G(·, ζ) ≤ c|ζ|k +
(λ/2)|ζ|2 + c, then

1
p + 2

∫

Ω

∣∣Duη
∣∣p(t + τ)dx +

∫

Ω
ϕ
(
uη

)∣∣Duη
∣∣2(t + τ)dx

≤ 1
τ

(
1

p + 2

∫ t+τ

t

∫

Ω

∣∣Duη
∣∣p(s)dxds +

∫ t+τ

t

∫

Ω
ϕ
(
uη

)∣∣Duη
∣∣2(s)dxds

+
1
2

∫ t+τ

t

∫

Ω
η
∣∣Duη

∣∣2(s)dxds +
∫ t+τ

t

∫

Ω

(
c
∣∣uη

∣∣k +
(
λ

2

)∣∣uη
∣∣2 + c

)
dxds

+
∫ t+τ

t

∫

Ω
f(x)uη(s)dxds

)
+
∫

Ω

(
c
∣∣uη

∣∣k +
(
λ

2

)∣∣uη
∣∣2 + c

)
(t)dx

+
∫

Ω
f(x)uη(t)dx + c(τ)
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≤ 1
τ

(
1

p + 2

∫ t+τ

t

∫

Ω

∣∣Duη
∣∣p(s)dxds + 1

2
ε

∫ t+τ

t

∫

Ω

∣∣Duη
∣∣4(s)dxds

+
1
2
ε−1

∫ t+τ

t

∫

Ω
ϕ2(uη(s)

)
dxds +

1
2

∫ t+τ

t

∫

Ω
η
∣∣Duη

∣∣2(s)dxds

+
∫ t+τ

t

∫

Ω

(
c
∣∣uη(s)

∣∣k +
(
λ

2

)∣∣uη(s)
∣∣2 + c

)
dxds +

∫ t+τ

t

∫

Ω

∣∣f(x)uη(s)
∣∣dxds

)
+ c(τ).

(2.28)

As we noted above, β′η ≤ L on [−δ, δ]. Hence,

∫ t+τ

t

∫

Ω
ϕ2(uη

)
dxds ≤

∫ t+τ

t

∫

Ω

(∫uη

0
ϕ′(s)ds

)2

dxds

≤
∫ t+τ

t

∫

Ω

∣∣∣∣uη
∣∣∣∣
L∞(τ,T ;L∞(Ω))

(∣∣∣∣uη
∣∣∣∣l
L∞(τ,T ;L∞(Ω)) + c

)
Lαdxds.

(2.29)

Thus, we obtain that

1
p

∫

Ω

∣∣Duη
∣∣p(t + τ)dx +

∫

Ω
ϕ
(
uη

)∣∣Duη
∣∣2(t + τ)dx ≤ c(τ) (2.30)

for t ≥ τ.
Now returning to (2.23), we have

∫ t+τ

t

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2dxdθ ≤ c(τ). (2.31)

Also, choosing βη so that β′η ≤ L, we derive

∫T

τ

∫

Ω

(
β′η
(
uη

))2∣∣∂tuη
∣∣2dxdθ ≤ c(τ, T). (2.32)

Thus, the lemma is proved.

Passage to the Limit in (2.1).

Analogously to [7, 8], by estimates from Lemmas 2.1 and 2.3, we deduce that there exist that
a subsequence uη such that

uη → uweakly in Lp(0, T ;W1,p
0 (Ω)) and a.e.,

βη(uη) → β(u) strongly in C([0, T];L2(Ω)),

∂tβη(uη) → ∂tβ(u)weakly in L2(Q),

D((|Duη|p−2Duη) → χweakly in Lp
′
(0, T ;W−1,p′(Ω)).
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Further, it is easy to see that

g
(
x, uη

) −→ g(x, u) weakly in L2(Q). (2.33)

Indeed, we know that uη → u a.e. Besides, by virtue of the embedding R(Q) ⊂ C(Q),
where R(Q) is a domain of the solvability, the operator g : R(Q) → L2(Q) generated by
the expression g(x, u) is bounded. Hence, by the continuity of g we obtain that g(x, uη) →
g(x, u) a.e. By applying a known lemma from [10, (1.1, Lemma 1.3)] we can conclude that

g
(
x, uη

) −→ g(x, u) weakly in L2(Q). (2.34)

Arguing similarly, by help of the lemma from [10, (1.1, Lemma 1.3)] and conditions
imposed on ϕ(ζ), we obtain

√
ϕ
(
uη

)
Duη −→

√
ϕ(u)Du weakly in L2(Q), (2.35)

ϕ
(
uη

)
Duη −→ ϕ(u)Du weakly in L2(Q),

D
(
ϕ
(
uη

)
Duη

) −→ D
(
ϕ(u)Du

)
weakly in L2

(
0, T ;W−1,2(Ω)

)
.

(2.36)

Observe now that from (2.35), in view of the known theorem,

∫

Q

ϕ
(
uη

)∣∣Duη
∣∣2dxdt =

∣∣∣∣
∣∣∣∣
√
ϕ(u)Du

∣∣∣∣
∣∣∣∣
L2(Q)

≤ lim
n↗∞

inf
∣∣∣∣
∣∣∣∣
√
ϕ
(
uη

)
Duη

∣∣∣∣
∣∣∣∣
L2(Q)

=
∫

Q

ϕ
(
uη

)∣∣Duη
∣∣2dxdt.

(2.37)

Consequently, using standard monotonicity argument [10], we derive that χ =
D(|Du|p−2Du).

Therefore, the following theorems hold.

Theorem 2.4. Under hypotheses (H1)–(H5) the problem (1.7), (1.8), (1.9) has a weak solution
u(x, t) such that u ∈ Lp(0, T ;W1,p

0 (Ω)) ∩ L∞(0, T ;L2(Ω)) ∩ L∞(τ, T ;W1,p
0 (Ω)), for all τ > 0 and

β(u) ∈ C([0, T];L2(Ω)) ∩ Lq(Q).

Now, we prove that the solution of the problem is unique.

Lemma 2.5. Suppose that the assumptions of Theorem 2.4 are fulfilled and there exists a constant c
such that the function ζ → g(x, ζ) + cβ(ζ) is increasing for a. e. x ∈ Ω. Then the solution of the
problem (1.7), (1.8), (1.9) is unique.

Proof. Let u(x, t) and v(x, t) be two solutions of the problem (1.7), (1.8), (1.9) with the same
initial condition: u(x, 0) = v(x, 0) = u0(x). Consider the “difference” u(x, t0) − v(x, t0), where
t0 is an arbitrary point from (0, T). The above “difference” is a continuously differentiable
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function for almost all t > 0, because by virtue of estimation
∫T
τ

∫
Ω (β′η(uη))

2|∂tuη|2dxdt ≤
c2(τ, T), using the equation, we can conclude that |Du|p−2Du ∈ L2(τ, T ;W1,2

0 (Ω)) and
consequently Du(x, t) ∈ C(Ω) for almost all t. We choose t0 such that u(x, t0) ∈ C1(Ω).
Hence, the interval [a, b] may be divided into the subintervals where sign of “difference”
u(x, t0) − v(x, t0) does not change. Let (x1, x2) be an interval such that u(x, t0) − v(x, t0) > 0
and u(xi, t) = v(xi, t)(i = 1, 2). Then from (1.7) we obtain that

∫x2

x1

∂t
(
β(u) − β(v))dx −

∫x2

x1

D
(
|Du|p−2Du − |Dv|p−2Dv

)
dx −

∫x2

x1

D
(
ϕ(u)Du − ϕ(v)Dv)dx

+
∫x2

x1

(
g(x, u) − g(x, v))dx = 0.

(2.38)

By applying Newton-Leibniz formula we have

[
d

dt

∫x2

x1

(
β(u) − β(v))dx − |Du|p−2Du(x2, t) + |Dv|p−2Dv(x2, t) + |Du|p−2Du(x1, t)

− |Dv|p−2Dv(x1, t) − ϕ(u)Du(x2, t) + ϕ(v)Dv(x2, t) + ϕ(u)Du(x1, t) − ϕ(v)Dv(x1, t)

+
∫x2

x1

g(x, u) + cβ(u) − g(x, v) − cβ(v)dx −
∫x2

x1

cβ(u) − cβ(v)dx
]

t=t0

= 0.

(2.39)

Since Du(x1, t0) ≥ Dv(x1, t0), Du(x2, t0) ≤ Dv(x2, t0), u(xi, t) = v(xi, t)(i = 1, 2), it
follows that

d

dt

∫x2

x1

(
β(u) − β(v))dx

∣∣∣∣∣
t=t0

< c

∫x2

x1

(
β(u) − β(v))dx

∣∣∣∣∣
t=t0

. (2.40)

Note that the functions ψ(t) =
∫x2
x1
((β(u)−β(v))dx and ψ̃(t) =

∫x2
x1

|β(u)−β(v)|dx are absolutely
continuous by virtue of the inclusion ∂tβ(u) ∈ L2(τ, T, L2(Ω)). Hence, these functions possess
a derivate for almost all t. Besides, it is obvious that ψ̃(t) ≥ ψ(t), and if β(u(x, t′))−β(v(x, t′)) �
0 for x ∈ (x1, x2), then, ψ̃(t′) = ψ(t′). Consequently,

d

dt

∫x2

x1

|β(u) − β(v)|dx
∣∣∣∣∣
t=t′

≤ d

dt

∫x2

x1

(β(u) − β(v))dx
∣∣∣∣∣
t=t′

(2.41)

for almost all t′. From here, without loss of generality, we can assume that

d

dt

∫x2

x1

|β(u) − β(v)|dx
∣∣∣∣∣
t=t0

≤ d

dt

∫x2

x1

(β(u) − β(v))dx
∣∣∣∣∣
t=t0

. (2.42)
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It follows that

d

dt

∫x2

x1

∣∣β(u) − β(v)∣∣dx
∣∣∣∣∣
t=t0

< c

∫x2

x1

∣∣β(u) − β(v)∣∣dx
∣∣∣∣∣
t=t0

. (2.43)

The same estimation holds for an arbitrary interval onwhich u(x, t0)−v(x, t0) does not change
its sign. Summing up similar inequalities over subintervals, we get

d

dt

∫b

a

|β(u) − β(v)|dx
∣∣∣∣∣
t=t0

< c

∫b

a

∣∣β(u) − β(v)∣∣dx
∣∣∣∣∣
t=t0

(2.44)

almost everywhere. In view of integrability of both sides of the latter inequality (β(u) ∈
W1,2(τ, T ;L2(Ω)))we have

∫ t′′

t′

d

dt

∫b

a

∣∣β(u) − β(v)∣∣dxdt < c
∫ t′′

t′

∫b

a

∣∣β(u) − β(v)∣∣dxdt, (2.45)

where t′′ > t′ > τ, or

∫b

a

|β(u) − β(v)|dx
∣∣∣∣∣
t=t′′

<

∫b

a

|β(u) − β(v)|dx
∣∣∣∣∣
t=t′

+ c
∫ t′′

t′

∫b

a

∣∣β(u) − β(v)∣∣dxdt. (2.46)

Thus, by Gronwall’s lemma,

∫b

a

∣∣β(u) − β(v)∣∣dx
∣∣∣∣∣
t=t′′

≤ ec(t′′−t′)
∫b

a

∣∣β(u) − β(v)∣∣dx
∣∣∣∣∣
t=t′
. (2.47)

Now, taking into account that β(u) ∈ C(0, T ;L2(Ω)) and u(x, 0) = v(x, 0) = u0(x), we
obtain u(x, t) = v(x, t), which finishes the proof of uniqueness.

Remark 2.6. Note that the condition on the function ζ → g(x, ζ) + cβ(ζ) from the lemma can
be changed to the following.

(H2)′ The function β−1(s) is a locally Lipschitzian function from R to R (it follows
directly from the proof).

In this case, we can exclude the condition (H4) of Theorem 2.4 and conditions (H4)
and (H6) of Theorem 2.8 below.

So, analogously to the corresponding result from [8], we obtain that problem (1.7),
(1.8), (1.9) generates a continuous semigroup St : L2(Ω) → L2(Ω)Stu0 = u(t, ·) and the
following theorem holds.

Theorem 2.7. Assume that assumptions of Lemma 2.5 are satisfied. Then the semigroup St associated
with the boundary value problem (1.7), (1.8), (1.9) possesses a maximal attractorA which is bounded
inW1,p

0 (Ω) ∩ L∞(Ω), compact, and connected in L2(Ω).
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(For the concepts of absorbing sets and global attractors used here, we refer the reader
to [9]).

Under an additional condition we can obtain more regularity for u(x, t).

Theorem 2.8. Assume that u0(x) ∈ W1,∞(Ω), β(u0) ∈ L∞(Ω), and the conditions (H2)–(H6) are
fulfilled. Then Du ∈ L∞(Q).

Proof. We prove this fact by multiplying (2.1) on expression |Duη|σ∂tuη, taking into account
of the arbitrarity of σ

∫T

0

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2∣∣Duη

∣∣σdxdt −
∫T

0

∫

Ω
D
(∣∣Duη

∣∣p−2Duη
)
∂tuη

∣∣Duη
∣∣σdxdt

− η
∫T

0

∫

Ω
D2uη∂tuη

∣∣Duη
∣∣σdxdt −

∫T

0

∫

Ω
D
(
ϕ
(
uη

)
Duη

)
∂tuη

∣∣Duη
∣∣σdxdt

+
∫T

0

∫

Ω

(
g
(
x, uη

) − f(x))∂tuη
∣∣Duη

∣∣σdxdt = 0.

(2.48)

Let us estimate the terms of (2.48) separately.
Integrating by parts the second integral of (2.48), we get

−
∫T

0

∫

Ω
D
(∣∣Duη

∣∣p−2Duη
)
∂tuη

∣∣Duη
∣∣σdxdt

= −(p − 1
) ∫T

0

∫

Ω

∣∣Duη
∣∣p−2D2uη∂tuη

∣∣Duη
∣∣σdxdt

= −(p − 1
) ∫T

0

∫

Ω

∣∣Duη
∣∣p+σ−2D2uη∂tuηdxdt

= − p − 1
p + σ − 1

∫T

0

∫

Ω
D
(∣∣Duη

∣∣p+σ−2Duη
)
∂tuηdxdt

=
p − 1

p + σ − 1

∫T

0

∫

Ω

∣∣Duη
∣∣p+σ−2DuηD∂tuηdxdt

=
p − 1(

p + σ − 1
)(
p + σ

)
∫T

0

d

dt

∫

Ω

∣∣Duη
∣∣p+σdxdt.

(2.49)

Arguing similarly, we obtain

−η
∫T

0

∫

Ω
D2uη∂tuη

∣∣Duη
∣∣σdxdt = − η

σ + 1

∫T

0

∫

Ω
D
(∣∣Duη

∣∣σDuη
)
∂tuηdxdt

=
η

σ + 1

∫T

0

∫

Ω

∣∣Duη
∣∣σDuηD∂tuηdxdt

=
η

(σ + 1)(σ + 2)

∫T

0

d

dt

∫

Ω

∣∣Duη
∣∣σ+2dxdt.

(2.50)
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A series simple calculations give us the estimate of the third term of (2.48):

−
∫T

0

∫

Ω
D
(
ϕ
(
uη

)
Duη

)
∂tuη

∣∣Duη
∣∣σdxdt

=
1

σ + 2

∫T

0

∫

Ω
ϕ
(
uη

)
∂t
∣∣Duη

∣∣σ+2dxdt + σ

σ + 1

∫T

0

∫

Ω
ϕ
(
uη

)
∂tuηD

(∣∣Duη
∣∣σDuη

)
dxdt

=
1

σ + 2

∫T

0

∫

Ω
ϕ
(
uη

)
∂t
∣∣Duη

∣∣σ+2dxdt − σ

σ + 1

∫T

0

∫

Ω
ϕ
(
uη

)
D∂tuη

∣∣Duη
∣∣σDuηdxdt

− σ

σ + 1

∫T

0

∫

Ω
ϕ′(uη

)
∂tuη

∣∣Duη
∣∣σ+2dxdt = − 1

(σ + 1)(σ + 2)

∫T

0

∫

Ω
ϕ′(uη

)
∂tuη

∣∣Duη
∣∣σ+2dxdt

+
1

(σ + 1)(σ + 2)

∫T

0

∫

Ω
∂t
(
ϕ
(
uη

)∣∣Duη
∣∣σ+2)dxdt − σ

σ + 1

∫T

0

∫

Ω
ϕ′(uη

)
∂tuη

∣∣Duη
∣∣σ+2dxdt

= −σ + 1
σ + 2

∫T

0

∫

Ω
ϕ′(uη

)
∂tuη

∣∣Duη
∣∣σ+2dxdt + 1

(σ + 1)(σ + 2)

∫T

0

∫

Ω
∂t
(
ϕ
(
uη

)∣∣Duη
∣∣σ+2)dxdt

≥ −σ + 1
σ + 2

∫T

0

∫

Ω

(∣∣uη
∣∣l1 + c

)(√
β′η
(
uη

))α1∣∣∂tuη
∣∣∣∣Duη

∣∣σ+2dxdt + 1
(σ + 1)(σ + 2)

×
∫T

0

∫

Ω
∂t
(
ϕ
(
uη

)∣∣Duη
∣∣σ+2)dxdt ≥ − (σ + 1)ε

(σ + 2)2

∫T

0

∫

Ω

(
β′η
(
uη

))α1∣∣∂tuη
∣∣2∣∣Duη

∣∣σdxdt

− (σ + 1)
2ε(σ + 2)

∫T

0

∫

Ω

(∣∣uη
∣∣l1 + c

)2∣∣Duη
∣∣σ+4dxdt + 1

(σ + 1)(σ + 2)

×
∫T

0

∫

Ω
∂t
(
ϕ
(
uη

)∣∣Duη
∣∣σ+2)dxdt ≥ − (σ + 1)ε

(σ + 2)2
Lα1−1

∫T

0

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2∣∣Duη

∣∣σdxdt

− (σ + 1)
2ε(σ + 2)

∫T

0

∫

Ω

(∣∣uη
∣∣l1 + c

)2∣∣Duη
∣∣σ+p+2dxdt − (σ + 1)

2ε(σ + 2)

∫T

0

∫

Ω

(∣∣uη
∣∣l1 + c

)2
dxdt

∫

Ω
ϕ
(
uη

)∣∣Duη
∣∣σ+2dx −

∫

Ω
ϕ(u0)|Du0|σ+2dx.

(2.51)

Further, taking into account that βη(uη) is uniformly bounded by η (uη ∈ [−δ, δ], where
δ is the bound in the proof of Lemma 2.1), it is possible to choose βη so that β′η ≤ L, where L
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is the Lipschitz constant of β(ζ) on [−δ, δ]. Therefore,
∣∣∣∣∣
∫T

0

∫

Ω

(
g
(
x, uη

) − f(x))∂tuη
∣∣Duη

∣∣σdxdt
∣∣∣∣∣

≤
∣∣∣∣∣
∫T

0

∫

Ω

(∣∣uη
∣∣l1 + c

)(√
β′η
(
uη

))α1∣∣∂tuη
∣∣∣∣Duη

∣∣σdxdt
∣∣∣∣∣

≤ ε

2

∫T

0

∫

Ω

(
β′η
(
uη

))α1∣∣∂tuη
∣∣2∣∣Duη

∣∣σdxdt + 1
2ε

∫T

0

∫

Ω

(∣∣uη
∣∣l1 + c

)2∣∣Duη
∣∣σdxdt

≤ ε

2
Lα1−1

∫T

0

∫

Ω
β′η
(
uη

)∣∣∂tuη
∣∣2∣∣Duη

∣∣σdxdt + 1
2ε

∫T

0

∫

Ω

(∣∣uη
∣∣l1 + c

)2∣∣Duη
∣∣σdxdt.

(2.52)

Also note that if β(u0) ∈ L∞(Ω) then using the same arguments as in proof of (2.8)
we conclude that ||uη||L∞(QT )

� c. Thus, combining (2.49)–(2.52) and choosing ε sufficiently
small, we rewrite (2.48) in the form

∫

Ω

∣∣Duη
∣∣p+σdx ≤ c1

∫T

0

∫

Ω

∣∣Duη
∣∣p+σdxdt + c2T + c3

∫

Ω
|Du0|p+σdx. (2.53)

Applying Gronwall ’s lemma, we get

∫

Ω

∣∣Duη
∣∣p+σdx �

(
c2T + c3

∫

Ω
|Du0|p+σdx

)
ec1T , (2.54)

where the constant ci does not depend on σ. Consequently,

(
1
|Ω|

∫

Ω

∣∣Duη
∣∣p+σdx

)1/(p+σ)

�
(
c3
|Ω|

∫

Ω
|Du0|p+σdx +

c2
|Ω|T

)1/(p+σ)

ec1T/(p+σ)

� ec1T/(p+σ)
(
c3
|Ω|

∫

Ω
|Du0|p+σdx

)1/(p+σ)

+ ec1T/(p+σ)
(
c2
|Ω|T

)1/(p+σ)

.

(2.55)

By letting σ tend to +∞,we get necessary estimation. Theorem is proved.

3. Quantitative Homogenization

As we mentioned earlier, our goal is to compare the global behavior of solutions uε(x, t) of
(1.4) for ε → 0 with solutions u = u0(x, t) of the homogenized equation

∂tβ(u) −D
(
|Du|p−2Du + ϕ(u)Du

)
+ g0(x, u) = f0(x), (3.1)

where (3.1) and (1.4) are supplied with the same initial data uε(x, 0) = u0(x, 0) = u0(x), and
homogenized nonlinearity g0 and inhomogeneity f0 are defined according to assumption
from [11, pages 172-174].
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We suppose that the function g(x, z, ζ) has the following structure:

g(x, z, ζ) =
M∑
j=1

bj(x, z)gj(ζ), (3.2)

where gj ∈ C1 is supposed to satisfy a condition (H3).
For all j = 1, we suppose that bj(x, z) are bounded:

∣∣∣bj(x, z)
∣∣∣ ≤ C, (3.3)

and the average b0j(x) of bj(x, x/ε) exist in L∞
w∗(Ω), for ε → 0 :

〈
bj
(
x,
x

ε

)
, v(x)

〉
−→
ε−→0

〈
b0j(x), v(x)

〉
, (3.4)

for v(x) ∈ L1(Ω),where 〈·, ·〉 indicates duality.
We also suppose that

〈
f

(
x,
x

ε

)
, v(x)

〉
−→
ε−→0

〈
f0(x), v(x)

〉
, (3.5)

for any v(x) ∈ L2(Ω).
The equation ∂tβ(u0) − D((|Du0|p−2Du0 + ϕ(u0)Du0) + g0(x, u0) = f0(x) is called the

homogenization of equation if

g0
(
x, u0

)
=

M∑
j=1

b0j(x)gj
(
u0
)
. (3.6)

Denoting b̃j(x, z) = bj(x, z) − b0j(x), for x ∈ Ω, z ∈ R, we assume that there exist
functions Bj(x, z)which are uniformly bounded for all x ∈ Ω, z ∈ R given as

∣∣∣Bj(x, z)
∣∣∣ ≤ C (3.7)

and which represent b̃j such that b̃j(x, z) = ∂zB
j(x, z). With respect to the x-derivatives we

assume ε-independent L1-bound

∣∣∣∣
∣∣∣∣∂xBj

(
·, ·
ε

)∣∣∣∣
∣∣∣∣
L1(Ω)

≤ C, (3.8)

uniformly for all j = 1, . . . ,M. Here ∂x is a partial’s derivatives with respect to the first
argument x of the function Bj(x, z).
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Analogously, we denote f̃(x, z) = f(x, z)−f0(x) and require the existence of a function
J(x, z) such that f̃(x, z) admits a divergence representation f̃(x, z) = ∂zJ(x, z).

Besides, we assume bounds

|J(x, z)| ≤ C,
∣∣∣∣
∣∣∣∣∂xJ

(
·, ·
ε

)∣∣∣∣
∣∣∣∣
L1(Ω)

≤ C. (3.9)

Note that sufficient conditions which guarantee the existence of divergence represen-
tations for b̃j(x, z) and f̃(x, z) by help of Bj(x, z) and J(x, z), respectively, are established in
[11, Theorem 3.2, pages 176-180].

The following theorem holds.

Theorem 3.1. Let g(x, z,w) and f(x, z) satisfy conditions (3.2)–(3.9) and let assumptions of
Lemma 2.5 be fulfilled. Then there exists a positive constant ρ such that the solutions uε(x, t) and
u0(u, x) of the respective problems (1.4), (1.8), (1.9) and (1.3), (1.8), (1.9) with equal initial data
u0(x) ∈ L2(Ω) satisfy the quantitative homogenization estimation

∣∣∣|β(uε) − β(u0)|
∣∣∣
L1(Ω)

≤ Cεeρt uniformly for 0 ≤ t <∞. (3.10)

Proof. Consider the “difference” uε(x, t0)−u0(x, t0),where t0 is an arbitrary point from (0, T).
The above “difference” is a continuously differentiable function, in virtue of Lemma 2.3.
Hence, the interval [a, b]may be divided into the subintervals where sign of the “difference”
uε(x, t0)−u0(x, t0) does not change. Let (x1, x2) be an interval such that uε(x, t0)−u0(x, t0) > 0
and uε(xi, t0) = u0(xi, t0)(i = 1, 2). Then from equations (1.3) and (1.4) we obtain that

d

dt

∫x2

x1

β(uε) − β
(
u0
)
dx −

∫x2

x1

D

(
|Duε|p−2Duε −

∣∣∣Du0
∣∣∣
p−2
Du0

)
dx

−
∫x2

x1

D
(
ϕ(uε)Duε − ϕ

(
u0
)
Du0

)
dx +

∫x2

x1

(
g0(x, uε) − g0

(
x, u0

))
dx

= −
∫x2

x1

(
g

(
x,
x

ε
, uε

)
− g0(x, uε)

)
dx +

∫x2

x1

(
f

(
x,
x

ε

)
− f0(x)

)
dx.

(3.11)

By applying Newton-Leibniz formula we have

[
d

dt

∫x2

x1

(
β(uε) − β

(
u0
))
dx − |Duε|p−2Duε(x2, t) +

∣∣∣Du0
∣∣∣
p−2
Du0(x2, t)

+ |Duε|p−2Duε(x1, t) −
∣∣∣Du0

∣∣∣
p−2
Du0(x1, t) + ϕ(uε)Duε(x2, t) − ϕ

(
u0
)
Du0(x2, t)

− ϕ(uε)Duε(x1, t) + ϕ
(
u0
)
Du0(x1, t) +

∫x2

x1

(
g0(x, uε) − g0

(
x, u0

))
dx

+
∫x2

x1

(
g

(
x,
x

ε
, uε

)
− g0(x, uε)

)
dx −

∫x2

x1

(
f

(
x,
x

ε

)
− f0(x)

)
dx

]

t=t0

= 0.

(3.12)



20 Mathematical Problems in Engineering

Since Duε(x1, t0) ≥ Du0(x1, t0), Duε(x2, t0) ≤ Du0(x2, t0), and uε(xi, t) = u0(xi, t) (i =
1, 2), it follows that

d

dt

∫x2

x1

(
β(uε) − β

(
u0
))
dx

∣∣∣∣∣
t=t0

< −
∫x2

x1

(
g0(x, uε) − g0

(
x, u0

))
dx

−
∫x2

x1

(
g

(
x,
x

ε
, uε

)
− g0(x, uε)

)
dx +

∫x2

x1

(
f

(
x,
x

ε

)
− f0(x)

)
dx

∣∣∣∣∣
t=t0

.

(3.13)

Note that

−
∫x2

x1

(
g

(
x,
x

ε
, uε

)
− g0(x, uε)

)
dx

∣∣∣∣∣
t=t0

= −
M∑
j=1

∫x2

x1

(
bj
(
x,
x

ε

)
gj(uε) − b0j(x)gj(uε)

)
dx

∣∣∣∣∣∣
t=t0

= −
M∑
j=1

∫x2

x1

b̃j
(
x,
x

ε

)
gj(uε)dx

∣∣∣∣∣∣
t=t0

.

(3.14)

Obviously,

∂zB
j

(
x,
x

ε

)
= ε

d

dx
Bj

(
x,
x

ε

)
− ε∂xBj

(
x,
x

ε

)
, (3.15)

where, as we mentioned above, ∂x indicate partial derivatives with respect to the first
argument x of the function Bj(x, z).

Consequently,

−
∫x2

x1

(
g

(
x,
x

ε
, uε

)
− g0(x, uε)

)
dx

∣∣∣∣∣
t=t0

= −
M∑
j=1

∫x2

x1

(
∂zB

j

(
x,
x

ε

)
gj(uε)

)
dx

∣∣∣∣∣∣
t=t0

= −ε
M∑
j=1

∫x2

x1

d

dx
Bj

(
x,
x

ε

)
gj(uε)dx + ε

M∑
j=1

∫x2

x1

∂xB
j

(
x,
x

ε

)
gj(uε)dx

∣∣∣∣∣∣
t=t0

.

(3.16)
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Therefore, in view of condition (H3) and (3.7)

−
∫x2

x1

(
g

(
x,
x

ε
, uε

)
− g0(x, uε)

)
dx

∣∣∣∣∣
t=t0

≤ ε
M∑
j=1

∫x2

x1

∣∣∣∣Bj
(
x,
x

ε

)∣∣∣∣
∣∣∂xgj(uε)

∣∣dx + ε
M∑
j=1

∣∣∣∣
∣∣∣∣∂xBj

(
.,
.

ε

)∣∣∣∣
∣∣∣∣
L1(x1,x2)

∣∣∣∣gj(uε)
∣∣∣∣
L∞(x1,x2)

∣∣∣∣∣∣
t=t0

≤ Cε
M∑
j=1

∫x2

x1

∣∣∂xgj(uε)
∣∣dx + ε

M∑
j=1

∥∥∥∥∂xBj
(
·, ·
ε

)∥∥∥∥
L1(x1,x2)

∥∥gj(uε)
∥∥
L∞(x1,x2)

∣∣∣
t=t0

.

(3.17)

Observe now that the approximate solution uεη is bounded in the space

L∞(τ, T ;W1,p
0 (Ω)) uniformly with respect to ε, because in the proof of this Lemma 2.3 we

use the same constant ci and λ (condition (H3)) to estimate every gj(ω) from (3.2), and from
condition (3.5) and (H5) (using known theorem on boundedness of the weakly convergence
sequence in normed space)we can conclude that |f(x, x/ε)| ≤ C. Thus, ||uε||

L∞(τ,T ;W1,p
0 (Ω)) ≤ C.

Consequently,
∑M

j=1

∫x2
x1

|∂xgj(uε)|dx ≤ C and (3.17) becomes

−
∫x2

x1

(
g

(
x,
x

ε
, uε

)
− g0(x, uε)

)
dx

∣∣∣∣∣
t=t0

≤ Cε + Cε
M∑
j=1

∥∥∥∥∂xBj
(
·, ·
ε

)∥∥∥∥
L1(x1,x2)

∣∣∣∣∣∣
t=t0

. (3.18)

Analogously, by (3.9), using the same arguments as in proof of (3.18), we deduce that

∫x2

x1

(
f

(
x,
x

ε

)
− f0(x)

)
dx ≤ Cε. (3.19)

Now, bearing in mind that the function ζ → g0(x, ζ) + cβ(ζ) is increasing and
combining (3.18) and (3.19), we rewrite (3.13) in the form

d

dt

∫x2

x1

(
β(uε) − β

(
u0
))
dx

∣∣∣∣∣
t=t0

< C

∫x2

x1

∣∣∣β(uε) − β
(
u0
)∣∣∣dx

∣∣∣∣∣
t=t0

+ Cε + Cε
M∑
j=1

∣∣∣∣
∣∣∣∣∂xBj

(
·, ·
ε

)∣∣∣∣
∣∣∣∣
L1(x1,x2)

∣∣∣∣∣∣
t=t0

.

(3.20)
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Further, note that the functions ψ(t) =
∫x2
x1
((β(uε) − β(u0))dx and ψ̃(t) =

∫x2
x1

|β(uε) −
β(u0)|dx are absolutely continuous (β(uε)t ∈ L2(τ, T, L2(Ω)). Besides, it is obvious that ψ̃(t) ≥
ψ(t) and ψ̃(t0) = ψ(t0). Consequently,

d

dt

∫x2

x1

∣∣∣β(uε) − β
(
u0
)∣∣∣dx

∣∣∣∣∣
t=t0

≤ d

dt

∫x2

x1

(
β(uε) − β

(
u0
))
dx

∣∣∣∣∣
t=t0

≤ C

∫x2

x1

∣∣∣β(uε) − β
(
u0
)∣∣∣dx

∣∣∣∣∣
t=t0

+ Cε +Cε
M∑
j=1

∥∥∥∥∂xBj
(
·, ·
ε

)∥∥∥∥
L1(x1,x2)

∣∣∣∣∣∣
t=t0

.

(3.21)

Hence, by condition (3.8)

d

dt

∫x2

x1

∣∣∣β(uε) − β
(
u0
)∣∣∣dx

∣∣∣∣∣
t=t0

≤ C

∫x2

x1

∣∣∣β(uε) − β
(
u0
)∣∣∣dx

∣∣∣∣∣
t=t0

+ Cε. (3.22)

The same estimation holds for an arbitrary interval on which uε(x, t) − u0(u, x) does
not change its sign. Summing up similar inequalities over subintervals, we get

d

dt

∫b

a

∣∣∣β(uε) − β
(
u0
)∣∣∣dx

∣∣∣∣∣
t=t0

< C

∫b

a

∣∣∣β(uε) − β
(
u0
)∣∣∣dx

∣∣∣∣∣
t=t0

+ Cε. (3.23)

Consequently,

∫b

a

∣∣∣β(uε) − β
(
u0
)∣∣∣dx

∣∣∣∣∣
t=t′′

≤ Cεeρ(t′′−t′)(t′′ > t′ > τ). (3.24)

Thus, taking into account that β(uε) ∈ C(0, T ;L2(Ω)),

∫b

a

|β(uε) − β(u0)|dx
∣∣∣∣∣
t

≤ Cεeρt. (3.25)

Thereby, assertion follows.

Remark 3.2. It is easy to see that the condition on the function ζ → g(x, ζ) + cβ(ζ) in
Lemma 2.5, which we use in Theorem 3.1, can be changed to the (H2)′. In this case we can
exclude condition (H4).

Now, note that if
∑M

j=1 b
0j(x) < c̃ < 0 and condition (H2)′ is fulfilled then we derive,

using simple reasoning, the following exponential attraction with exponential rate ν > 0:
distL1(Ω)(S0

t u0;A0) � ce−νt.
Indeed, we know that solution of the corresponding stationary problem belongs to the

attractor, that is, it belongs toA0. Denoting this solution by v, we will use the same arguments
as in proof of Lemma 2.5.
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Defining u = S0
t u0, we have

d

dt

∫x2

x1

β(u) − β(v)dx −
∫x2

x1

D
(
|Du|p−2Du − |Dv|p−2Dv

)
dx −

∫x2

x1

D
(
ϕ(u)Du − ϕ(v)Dv)dx

+
∫x2

x1

(
g0(x, u) − g0(x, v)

)
dx = 0,

(3.26)

where x1 and x2 are such that β(u) − β(v) ≥ 0 on the interval (x1, x2).Hence,

d

dt

∫x2

x1

β(u) − β(v)dx −
∫x2

x1

D
(
|Du|p−2Du − |Dv|p−2Dv

)
dx

−
∫x2

x1

D
(
ϕ(u)Du − ϕ(v)Dv)dx +

M∑
j=1

b0j(x)
∫x2

x1

(
gj(u) − gj(v)

)
dx = 0.

(3.27)

Bearing into mind that gj(w) is supposed to satisfy condition (H3) (∂ζgj > −λ), we have

d

dt

∫x2

x1

β(u) − β(v)dx ≤ −λc̃
∫x2

x1

(u − v)dx. (3.28)

Using (H2)′, we derive

d

dt

∫x2

x1

β(u) − β(v)dx ≤ −λc̃
∫x2

x1

(
β(u) − β(v))dx. (3.29)

Hence, from(2.42)

d

dt

∫x2

x1

∣∣β(u) − β(v)∣∣dx ≤ −λc̃
∫x2

x1

∣∣β(u) − β(v)∣∣dx. (3.30)

Further, arguing similarly to the proof of Lemma 2.5, we arrive to

d

dt

∫b

a

∣∣β(u) − β(v)∣∣dx < −λc̃
∫b

a

∣∣β(u) − β(v)∣∣dx, (3.31)

or

∫b

a

∣∣β(u) − β(v)∣∣dx < c(u0, v)e−λc̃t. (3.32)

Consequently, by condition (H2)′

∫x2

x1

|u − v|dx ≤ L1

∫x2

x1

∣∣β(u) − β(v)∣∣dx ≤ L1c(u0, v)e−λc̃t = ce−νt. (3.33)
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Thus, we obtain that distL1(Ω)(S0
t u0;A0) � ce−νt, where ν = λc̃, L1 is the Lipschitz

constant.
Hence, using Remarks 2.6 and 3.2, with the help of Lemma 4.1 of the study in [11], we

obtain the estimate for the distance between the nonhomogenized Aε and the homogenized
A0 attractors in terms of the parameter εdistL1(Ω)(Aε,A0) ≤ Cεγ . So, the following theorem
holds.

Theorem 3.3. Let g(x, z,w) and f(x, z) satisfy conditions (3.2)–(3.9), and assumptions
(H1)–(H3), (H2)′, and (H5) are fulfilled. Also suppose that

∑M
j=1 b

0j(x) < c̃ < 0. Then the global
attractors Aε of the problem (1.4), (1.8), (1.9) satisfy an upper semicontinuity distance estimate of
the form distL1(Ω)(Aε,A0) ≤ Cεγ .
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