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We study all generalized low-pass filters and tight frame wavelets with special dilation matrixM
(M-TFW), where M satisfies Md = 2Id and generates the checkerboard lattice. Firstly, we study
the pseudoscaling function, generalized low-pass filters and multiresolution analysis tight frame
wavelets with dilation matrixM (MRA M-TFW), and also give some important characterizations
about them. Then, we characterize all M-TFWby showing precisely their corresponding dimension
functions which are nonnegative integer valued. Finally, we also show that an M-TFW arises from
our MRA construction if and only if the dimension of a particular linear space is either zero or one.

1. Introduction

Wavelet analysis with its fast algorithms is used in many fields of applied mathematics,
such as image or signal analysis and numerical treatment of operator equations (see [1–4]).
Moreover, wavelet bases, recently also wavelet frames, are applied to the characterization of
the function space [5]. The classical MRA wavelets are probably the most important class of
orthonormal wavelets. Many of the better known examples as well as those often used in
applications belong to this class. However, Journe’s wavelet is not an MRA wavelet. Thus, it
was a natural question to find necessary and sufficient conditions for an orthonormal wavelet
to be an MRA wavelet. An interesting approach to this involves the dimension function. On
the other hand, there are useful filters, such as m(ξ) = (1/2)(1 + e3iξ), that do not produce
orthonormal basis; nevertheless, they produce systems that have the reconstruction property,
as well as many other useful features.

It is natural, therefore, to develop a theory involving more general filters that do,
indeed, produce systems having these properties. A natural setting for such a theory is
provided by frames [1]. Several authors have considered this problem and have shown
how more general filters produce such frames. A successful development of these ideas is
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provided by the papers [6, 7]. These results, however, do involve certain restrictions and
technical assumptions such as semiorthogonality. In particular, they exclude the use of the
filter we described above. A related approach can be found in [8]. Note that the design of
tight wavelet frames is still a challenging problem and a number of references have dealt
with this subject (see [3–25]).

In [20, 21], authors successfully developed a theory of univariate tight frame wavelets
and MRA tight frame wavelets. In [24], authors revealed the deep and rich structure of the
set of dyadic tight frame wavelets. In [9, 10, 25], authors extended the one-dimensional
case to the multidimensional case with the expending dilation matrix of determinant 2,
but it is a pity that authors only studied the pseudoscaling function, generalized low-
pass filters, and the multiplier classes associated with M-TFWs, but they did neither study
the relationship between MRA M-TFW and M-TFW, nor study the relationship between
MRA M-TFW and dimension function. In [18], authors constructed multivariate compactly
supported tight wavelet frames with dilation matrix 2I, unfortunately, they obtained that at
least 2d − 1 tight frame generators can generate a tight wavelet frame. Therefore, with the
dimension of space increasing, the computational complexity increases. In [8], the author
gave the characterizations of the abstract tight frames with arbitrary dilation matrix for
L2(Rd); due to arbitrariness of dilation matrix, the author did not give the expression of
tight frame generators (in the time domain or the frequency domain). In fact, even in one-
dimensional case, it is very difficult to give the explicit expression of tight frame generators
with dilation factor a (a > 2) by means of scaling function (see [16]). With the dimension d
increasing, the computational complexity increases, with the absolute value of determinant
of the dilation matrix M increasing, the computational complexity increases, that is, at least
|detM| − 1 generators can generate tight wavelet frames for L2(Rd). Therefore, we have to
recur some special dilation matrices to solve the problem in L2(Rd). In the paper, we study
all the generalized low-pass filters and tight frame wavelets with special dilation matrix M
(M-TFW), where M satisfies Md = 2Id and generates the checkerboard lattice [14], that
is,

MZ
d =

{
k ∈ Z

d :
d∑
i=1

ki ∈ 2Z

}
. (1.1)

In this case, we only need one function ψ such that the system {ψj,k, j ∈ Z, k ∈ Z
d} is

a tight frame (with A = B = 1) for L2(Rd) (in other word, ψ is a M-TFW), then we
can give an explicit expression of ψ by means of pseudoscaling function in the frequency
domain; this is due to |detM| = 2. Firstly, we study the pseudoscaling function, generalized
low-pass filters, MRA M-TFW, and also give some important characterizations about them.
Secondly, we characterize all M-TFW by showing precisely their corresponding dimension
functions which are nonnegative integer valued. Finally, we also show that a M-TFW
arises from our MRA construction if and only if the dimension of a particular linear
space is either zero or one. Our result is a generalization of the construction of TFW
from generalized low-pass filters that is introduced in [20, 21]. But, it is well known
that the situation in higher dimension is more complicated than the situation in one
dimension.

Let us now describe the organization of the material as follows. Section 2 presents
preliminaries and basic definitions. In Section 3, we study the pseudoscaling function,
generalized low-pass filters, and MRA M-TFW, and give some important characterizations
about them. In Section 4, we characterize all M-TFW in L2(Rd) by dimension function.
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2. Preliminaries and Basic Definitions

In this paper, we denote byD the transpose ofM : D =MT , and S = Z
d \DZ

d, ε0 is a constant
vector and ε0 ∈ S. For ψ ∈ L2(Rd), and k ∈ Z

d, we denote

ψj,k := 2j/2ψ
(
Mjx − k

)
. (2.1)

Let us recall the concept of frame.
Given a countable index set I, a collection {fi : i ∈ I} in a Hilbert space H is called a

frame in H if there exist two constants A,B > 0 such that

A
∥∥f∥∥2

H
≤
∑
i∈I

∣∣〈f, fi〉∣∣2 ≤ B∥∥f∥∥2H, ∀f ∈ H. (2.2)

If we can choose A = B in (2.2), then {fi : i ∈ I} is called a tight frame.
Now, we give some basic definitions which will be used in this paper. In fact, they are

some generalizations of the notations in [20, 21].

Definition 2.1. A function ψ ∈ L2(Rd) is a tight frame wavelet with dilation matrix M(briefly:
M-TFW) if and only if the system {ψj,k, j ∈ Z, k ∈ Z

d} is a tight frame (with A = B = 1) for
L2(Rd).

Definition 2.1 implies that

∥∥f∥∥22 =∑
j∈Z

∑
k∈Zd

∣∣〈f, ψj,k〉∣∣2, ∀f ∈ L2
(
R
d
)
. (2.3)

It is clearly that (2.3) is equivalent to

f =
∑
j∈Z

∑
k∈Zd

〈
f, ψj,k

〉
ψj,k (2.4)

for all f ∈ L2(Rd), where the sum converges unconditionally in L2(Rd).
Bownik gave a deeper result as follows.

Proposition 2.2 (see [8, Theorem 4.2]). ψ ∈ L2(Rd) is a M-TFW if and only if

∑
j∈Z

∣∣∣ψ̂(Djξ
)∣∣∣2 = 1, a.e. ξ ∈ R

d, (2.5)

�k(ξ) =
+∞∑
j=0

ψ̂
(
Djξ
)
ψ̂
(
Dj(ξ + 2πk)

)
= 0, a.e. ξ ∈ R

d, k ∈ S. (2.6)
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AM-TFW is said to be semi-orthogonal if and only if ψj,k is orthogonal to ψ�,m whenever
j /= � (for all k,m ∈ Z

d). This is equivalent to the orthogonality of the subspacesWj andW� if
j /= �, where

Wj = span
{
ψj,k : k ∈ Zd

}
, (2.7)

as j ranges throughout Z.

Proposition 2.3 (see [3, Chapter 7]). Suppose ψ ∈ L2(Rd) is a semi-orthogonal M-TFW, then, for
each j � 1,

∑
k∈Zd

ψ̂
(
Dj(ξ + 2πk)

)
ψ̂(ξ + 2πk) = 0, a.e. ξ ∈ R

d. (2.8)

Definition 2.4. Ameasurable 2π-Zd periodic functionH on R
d is a generalized filter with dilation

matrixM (briefly: M-GF) if it satisfies

|H(ξ)|2 +
∣∣∣H(ξ + 2πD−1ε0

)∣∣∣2 = 1, a.e. ξ ∈ R
d. (2.9)

As what was done in [20, 21], we will denote by F̃ the set of generalized filters with
dilation matrixM and let F̃+ = {H ∈ F̃ : H � 0}. Observe thatH ∈ F̃ ⇒ |H| ∈ F̃+.

Definition 2.5. A function ϕ ∈ L2(Rd) is called a pseudoscaling function with dilation matrix M
(briefly: M-PSF) if there exists a generalized filterH ∈ F̃ such that

ϕ̂(Dξ) = H(ξ)ϕ̂(ξ), a.e. ξ ∈ R
d. (2.10)

Remark 2.6. Notice that H is not uniquely determined by the M-PSF ϕ. Therefore, we will
denote by F̃ϕ the set of allH ∈ F̃ such thatH satisfies (2.10) for ϕ. For example, if ϕ = 0, then
F̃ϕ = F̃. If ϕ is a scaling function of MRA wavelet, then F̃ϕ is a singleton. On the other hand, if
ϕ is an M-PSF, then |ϕ̂|∨ is also an M-PSF, and ifH ∈ F̃, then |H| ∈ F̃|ϕ̂|∨ .

Definition 2.7. ForH ∈ F̃, let

N0(|H|) =
{
ξ ∈ R

d : lim
j→+∞

ϕ̂|H|
(
D−j ξ
)
= 0
}
,

ϕ̂|H|(ξ) =
∞∏
j=1

∣∣∣H(D−j ξ
)∣∣∣.

(2.11)

We say that H ∈ F̃ is a generalized low-pass filter with dilation matrix M(briefly: M-GLPF) if
|N0(|H|)| = 0.

Now, we give the definition of MRAM-TFW.
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Definition 2.8. AM-TFW ψ is an MRAM-TFW if there exists a M-PSF ϕ andH ∈ F̃ϕ such that

ψ̂(Dξ) = eiε0·ξρ(Dξ)H
(
ξ + 2πD−1ε0

)
ϕ̂(ξ), a.e. ξ ∈ R

d, (2.12)

where ρ(ξ) is a measurable 2π-Zd periodic function and |ρ(ξ)| = 1.

In Section 3, we will prove that if ψ is an MRA M-TFW, then H has to be more than
just a generalized filter;H has to be a M-GLPF.

3. The Characterizations of M-PSF, M-GF, and MRA M-TFW

The main purpose of this section is to study the M-PSF, the M-GF, and the MRA M-TFW in
L2(Rd). We will give some important characterizations about them.

Lemma 3.1. Suppose ϕ is a M-PSF andH ∈ F̃ϕ. If

lim
j→+∞

∣∣∣ϕ̂(D−j ξ
)∣∣∣ = 1, a.e. ξ, (3.1)

then,

∣∣ϕ̂(ξ)∣∣ =
∣∣∣∣∣∣

∞∏
j=1

H
(
D−j ξ
)∣∣∣∣∣∣, a.e. ξ, (3.2)

and |N0(|H|)| = 0.

Proof. By (2.10), we have

∣∣ϕ̂(ξ)∣∣ =
∣∣∣∣∣∣

n∏
j=1

H
(
D−j ξ
)∣∣∣∣∣∣
∣∣ϕ̂(D−nξ

)∣∣, a.e. ξ ∈ R
d. (3.3)

Using (3.1), we obtain that |ϕ̂(ξ)| = ϕ̂|H| and, therefore (3.2) and |N0(|H|)| = 0 are clearly
satisfied.

Lemma 3.2 (see [25, Lemma 3.2]). If f ∈ L1(Rd), then, for a.e. ω ∈ R
d, limj→+∞|f(Djω)| = 0.

Proof. As the proof is simple, we omit it.

Theorem 3.3. Suppose that ψ is an MRA M-TFW and ϕ is a M-PSF satisfying (2.12). Then H
defined by (2.12) is a generalized low-pass filter.
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Proof. Suppose that ψ is an MRA M-TFW, by (2.5), (2.9) and (2.12), we can obtain

1 =
∑
j∈Z

∣∣∣ψ̂(Djξ
)∣∣∣2 =∑

j∈Z

∣∣∣H(Dj−1ξ + 2πD−1ε0
)∣∣∣2∣∣∣ϕ̂(Dj−1ξ

)∣∣∣2

= lim
n→+∞

n∑
j=−n

∣∣∣H(Dj−1ξ + 2πD−1ε0
)∣∣∣2∣∣∣ϕ̂(Dj−1ξ

)∣∣∣2

= lim
n→+∞

n∑
j=−n

{
1 −
∣∣∣H(Dj−1ξ

)∣∣∣2}∣∣∣ϕ̂(Dj−1ξ
)∣∣∣2

= lim
n→+∞

{∣∣∣ϕ̂(D−n−1ξ
)∣∣∣2 − ∣∣∣ϕ̂(Dn−1ξ

)∣∣∣2}.

(3.4)

Since ϕ ∈ L2(Rd), Lemma 3.2 implies limn→+∞|ϕ̂(Dnξ)|2 = 0 for a.e. ξ ∈ L2(Rd). This
shows that for a.e. ξ ∈ L2(Rd), limn→+∞|ϕ̂(D−nξ)|2 = 1, thus, by Lemma 3.1,H is a generalized
low-pass filter.

Suppose that ψ is a M-TFW, let

σψ(ξ) =
∑
k∈Zd

∣∣ψ̂(ξ + 2πk)
∣∣2,

Dimψ(ξ) =
∞∑
j=1

∑
k∈Zd

∣∣∣ψ̂(Dj(ξ + 2πk)
)∣∣∣2.

(3.5)

We say that Dimψ(ξ) is the dimension function of M-TFW.

Lemma 3.4. Suppose that ψ is an MRA M-TFW, the corresponding M-PSF of the ψ is ϕ, then

∣∣ϕ̂(ξ)∣∣2 = ∞∑
j=1

∣∣∣ψ̂(Djξ
)∣∣∣2, a.e. ξ ∈ R

d. (3.6)

Proof. By Definition 2.8, there exists a M-GFH ∈ F̃ such that

ϕ̂(Dξ) = H(ξ)ϕ̂(ξ), ψ̂(Dξ) = eiε0·ξρ(Dξ)H
(
ξ + 2πD−1ε0

)
ϕ̂(ξ) = H1(ξ)ϕ̂(ξ) (3.7)

we obtain that

∣∣ϕ̂(ξ)∣∣2 = |H(ξ)|2∣∣ϕ̂(ξ)∣∣2 + |H1(ξ)|2
∣∣ϕ̂(ξ)∣∣2 = ∣∣ϕ̂(Dξ)∣∣2 + ∣∣ψ̂(Dξ)∣∣2. (3.8)
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Thus

∣∣ϕ̂(ξ)∣∣2 = ∣∣ϕ̂(Dξ)∣∣2 + ∣∣ψ̂(Dξ)∣∣2
=
∣∣∣ϕ̂(D2ξ

)∣∣∣2 + ∣∣∣ψ̂(D2ξ
)∣∣∣2 + ∣∣ψ̂(Dξ)∣∣2

= · · · =
∣∣∣ϕ̂(DNξ

)∣∣∣2 + ∣∣∣ψ̂(DNξ
)∣∣∣2 + · · · + ∣∣ψ̂(Dξ)∣∣2

=
∣∣∣ϕ̂(DNξ

)∣∣∣2 + N∑
j=1

∣∣∣ψ̂(Djξ
)∣∣∣2.

(3.9)

Notice that |ϕ̂(ξ)| � 1, hence {∑N
j=1 |ψ̂(Djξ)|2}

N
is an increased sequence and bounded with

1. Moreover,

∫
Rd

∣∣∣ϕ̂(DNξ
)∣∣∣2dξ = 1

2N

∫
Rd

∣∣ϕ̂(ξ)∣∣2dξ. (3.10)

Therefore, by Fatou lemma,

∫
Rd

lim
N→∞

∣∣∣ϕ̂(DNξ
)∣∣∣2dξ � lim

N→∞

∫
Rd

∣∣∣ϕ̂(DNξ
)∣∣∣2dξ

= lim
N→∞

1
2N

∫
Rd

∣∣ϕ̂(ξ)∣∣2dξ
= 0.

(3.11)

So limN→∞|ϕ̂(DNξ)|2 = 0, consequently, |ϕ̂(ξ)|2 =∑∞
j=1 |ψ̂(Djξ)|2, a.e. ξ ∈ R

d.

Lemma 3.5. Suppose that ψ is an MRA M-TFW, then

Dimψ(Dξ) + σψ(Dξ) = Dimψ(ξ) +Dimψ

(
ξ + 2πD−1ε0

)
. (3.12)

Furthermore, if ψ is a M-TFW, then (3.12) is also valid.

Proof. We only prove the case of ψ is an MRAM-TFW. By Definition 2.8, there exists an M-GF
H ∈ F̃ such that

ϕ̂(Dξ) = H(ξ)ϕ̂(ξ), ψ̂(Dξ) = eiε0·ξρ(Dξ)H
(
ξ + 2πD−1ε0

)
ϕ̂(ξ) = H1(ξ)ϕ̂(ξ). (3.13)
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By Lemma 3.4, we can obtain

Dimψ(ξ) =
∞∑
j=1

∑
k∈Zd

∣∣∣ψ̂(Dj(ξ + 2πk)
)∣∣∣2 = ∑

k∈Zd

∞∑
j=1

∣∣∣ψ̂(Dj(ξ + 2πk)
)∣∣∣2 = ∑

k∈Zd

∣∣ϕ̂(ξ + 2πk)
∣∣2.
(3.14)

Thus,

Dimψ(Dξ) =
∑
k∈Zd

∣∣ϕ̂(Dξ + 2πk)
∣∣2

=
∑

k∈DZd

∣∣ϕ̂(Dξ + 2πk)
∣∣2 +∑

k∈S

∣∣ϕ̂(Dξ + 2πk)
∣∣2

=
∑
k∈Zd

∣∣ϕ̂(D(ξ + 2πk))
∣∣2 + ∑

k∈Zd

∣∣∣ϕ̂(D(ξ + 2πk + 2πD−1ε0
))∣∣∣2

=
∑
k∈Zd

|H(ξ + 2πk)|2∣∣ϕ̂(ξ + 2πk)
∣∣2

+
∑
k∈Zd

∣∣∣H(ξ + 2πk + 2πD−1ε0
)∣∣∣2∣∣∣ϕ̂(ξ + 2πk + 2πD−1ε0

)∣∣∣2

= |H(ξ)|2
∑
k∈Zd

∣∣ϕ̂(ξ + 2πk)
∣∣2 + ∣∣∣H(ξ + 2πD−1ε0

)∣∣∣2
∣∣∣∣∣
∑
k∈Zd

ϕ̂
(
ξ + 2πk + 2πD−1ε0

)∣∣∣∣∣
2

= |H(ξ)|2Dimψ(ξ) +
∣∣∣H(ξ + 2πD−1ε0

)∣∣∣2Dimψ

(
ξ + 2πD−1ε0

)
.

(3.15)

Analogously, we have

σψ(Dξ) = |H1(ξ)|2Dimψ(ξ) +
∣∣∣H1

(
ξ + 2πD−1ε0

)∣∣∣2Dimψ

(
ξ + 2πD−1ε0

)
. (3.16)

Thus,

Dimψ(Dξ) + σψ(Dξ) = Dimψ(ξ) +Dimψ

(
ξ + 2πD−1ε0

)
. (3.17)

Theorem 3.6. Suppose that ψ is an MRA M-TFW, the corresponding M-PSF of the ψ is ϕ, then

0 � Dimψ(ξ) � 1, a.e. ξ ∈ R
d. (3.18)



Mathematical Problems in Engineering 9

Proof. LetH ∈ F̃ϕ, and it is the corresponding M-GLPF of the ψ. Let

ϕ̂n(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∏
j=1

H
(
D−j ξ
)
χ2n/dTd(ξ), n = qd, q ∈ Z,

n+1∏
j=1

H
(
D−j ξ
)
χ2(n+1)/dTd(ξ), n = qd − 1, q ∈ Z,

...

n+(d−1)∏
j=1

H
(
D−j ξ
)
χ2(n+d−1)/dTd(ξ), n = qd − (d − 1), q ∈ Z,

(3.19)

where Γ denotes all the vertices of cube [0, 1]d, T = [0, 2π]. It is clearly that limn→∞|ϕ̂n(ξ)| =
|ϕ̂(ξ)|. Now, we need to prove that {ϕn(· − k)}k∈Zd is an orthonormal system for L2(Rd).
Denote

In =
∫

Rd

ϕn(x)ϕn(x − k)dx. (3.20)

So, if n = qd, q ∈ Z, then

In =
∫

Rd

ϕn(x)ϕn(x − k)dx =
1

(2π)d

∫
[0,2q2π]d

n∏
j=1

∣∣∣H(D−j ξ
)∣∣∣2eikξdξ

=
1

(2π)d

∫
[0,2q2π]d

(q−1)d∏
j=1

∣∣∣H(D−j ξ
)∣∣∣2eikξ

{
d−1∏
�=0

∣∣∣H(D−qd+�ξ
)∣∣∣2
}
dξ

=
1

(2π)d

∫
[0,2q−12π]d

(q−1)d∏
j=1

∣∣∣H(D−j ξ
)∣∣∣2eikξ ×

{∑
ω∈Γ

d−1∏
�=0

∣∣∣H(D−qd+�(ξ + 2qπω)
)∣∣∣2
}
dξ

=
1

(2π)d

∫
[0,2q−12π]d

(q−1)d∏
j=1

∣∣∣H(D−j ξ
)∣∣∣eikξ

= I(q−1)d = · · · = Id.

(3.21)

However,

Id =
1

(2π)d

∫
[0,4π]d

d∏
j=1

∣∣∣H(D−j ξ
)∣∣∣2eikξdξ

=
1

(2π)d

∫
[0,2π]d

eikξ ×
{∑
ω∈Γ

d∏
�=1

∣∣∣H(D−�(ξ + 2πω)
)∣∣∣2
}
dξ

=
1

(2π)d

∫
[0,2π]d

eikξ = δk,0.

(3.22)
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Thus we deduce from (3.19) and the above equation that if n = qd, q ∈ Z, then

〈
ϕn(·), ϕn(· − k)

〉
= δk,0. (3.23)

Similarly, by (3.19), (3.23) also holds if n = qd − 1, or n = qd − 2, . . ., or n = qd − (d − 1).
Therefore, for a.e. ξ ∈ R

d

∑
k∈Zd

∣∣ϕ̂n(ξ + 2πk)
∣∣2 = 1, ∀n ∈ N. (3.24)

By Fatou lemma,

Dimψ(ξ) =
∑
k∈Zd

∣∣ϕ̂(ξ + 2πk)
∣∣2 = ∑

k∈Zd

lim
n→∞
∣∣ϕ̂n(ξ + 2πk)

∣∣2 � lim
n→∞

∑
k∈Zd

∣∣ϕ̂n(ξ + 2πk)
∣∣2 = 1. (3.25)

Recall that the MRA TFW are precisely those ψ ∈ L2(R) that can be constructed from
a generalized low-pass filter as described in [20, 21]. What are the properties of σψ when
ψ ∈ L2(Rd) is a M-TFW? We will see that the answers to this question are important for
determining the properties of Dimψ .

For ψ ∈ L2(Rd) (not necessarily a M-TFW), let us consider the principal shift-invariant
spaceW(ψ) ≡ span{ψ(· − k) : k ∈ Zd}. When ψ is an M-TFW, then the spaceW0 we defined in
(2.7) is the spaceW(ψ). We will be interested in examining what type of spanning set forW0

is {ψ(· −k)} = {ψ0k}, k ∈ Z
d. If ψ is an orthonormal wavelet, then {ψ(· −k)} is an orthonormal

basis forW0. What will happen if ψ ∈ L2(Rd) is a M-TFW?
It is not hard to see that we can find ϕ ∈ W(ψ) such that {ϕ(· − k), k ∈ Z

d} is a tight

frame (with constant 1) for W(ψ). Indeed, let s(ξ) = 1/
√
σψ(ξ) if ξ ∈ Uψ and s(ξ) = 0 if

ξ /∈ Uψ , where Uψ = U = {ξ ∈ T, σψ > 0}. Straight forward calculations show that ϕ defined
by ϕ̂(ξ) = s(ξ)ψ̂(ξ) provides us with the desired function. Moreover,

σϕ = χUψ (ξ) (3.26)

andUϕ = Uψ . This result can be extended to the following known result.

Lemma 3.7 (see [5, Theorem 7.2.3]). {ψ(· − k)}, k ∈ Z
d, is a tight frame with constant A,B for

W(ψ) if and only if

AχU � σψ � BχU. (3.27)

When ψ is a M-TFW, for the spaceW0, one has the following results.

Lemma 3.8 (see [21, Theorem 2.7]). Suppose that ψ is a M-TFW. The followings are equivalent:

(a) {ψ(· − k)}k∈Zd is a tight frame (of constant 1) forW0 (i.e., ψ is aW0-TF),

(b) ‖ψ‖22 =
∑

k∈Zd |〈ψ, ψ0k〉|2,
(c) ψ is semi-orthogonal,

(d) σψ = χU a.e. on R
d.
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Proof. It is clear that (a) implies (b), this is (2.3)with f = ψ,H =W0. Since

∥∥ψ∥∥22 = ∑
k∈Zd

∣∣〈ψ, ψ0k
〉∣∣2

(3.28)

and {ψjk} is a tight frame, (b) implies 〈ψ, ψjk〉 = 0 whenever j /= 0. This clearly implies the
semiorthogonality. Thus, (b) implies (c). If we assume (c), so that 〈f, ψjk〉 = 0 whenever
f ∈W0 and j /= 0, an application of (2.3) gives us

∥∥f∥∥22 =∑
j∈Z

∑
k∈Zd

∣∣〈f, ψjk〉∣∣2 = ∑
k∈Zd

∣∣〈f, ψ0k
〉∣∣2

(3.29)

and we see that (c) implies (a).
Lemma 3.7 with A = B = 1 tells us that (a) and (d) are equivalent.

Although the proof of Lemma 3.8 is rather simple, the result is not obvious. Some
aspects of this lemma are counter intuitive: the properties (a), (b), and (d) are tied to the inner
structure ofW(ψ) = W0. On the other hand, (c) provides information about the relationship
between W0 and the other space Wj, j /= 0. The assumption that ψ is an M-TFW is very
important. If we do not assume this to be the case, (a) and (d) are still equivalent. However,
(b) is not equivalent to (d) (see [21]).

Now, we need to make some facts clear. For Theorem 3.3, Lemma 3.4, and Lemma 3.8,
the assumption of Md = 2Id can be weakened into |detM| = 2, and the assumption
of integer-valued dilation matrix can be weakened into noninteger-valued dilation matrix,
Theorem 3.3, Lemma 3.4, and Lemma 3.8 still hold; their proofs work more or less in an
unchanged form from the original ones. On the other hand, for Lemma 3.5 and Theorem 3.6,
the assumption of integer-valued dilationmatrix cannot be weakened into noninteger-valued
dilation matrix, because we can obtain DZ

d ⊂ Z
d and Z

d = DZ
d + Z

d \ DZ
d if and only if

dilation matrix is integer valued, in fact, during the course of these proofs we always use∑
k∈Zd =

∑
k∈DZd +

∑
Zd\DZd .

4. Dimension Function of M-TFW

The dimension function of a multivariate orthonormal wavelet ψ is integer value; moreover,
unless ψ is an MRA wavelet, it attains each of the integer values in the interval [0,M], where
M is the supremum of Dimψ , on sets of positive measure (see [8, 21]). We will investigate the
properties of the dimension function for M-TFW.

Theorem 4.1. Suppose that ψ is a M-TFW. Then ψ is semi-orthogonal if and only if Dimψ is integer
valued a.e.

Proof. First, let us prove the sufficiency. Suppose that Dimψ is integer valued a.e. From
Lemma 3.5, we see that σψ must also be integer valued a.e. By (3.18) and σψ(ξ) � 1 a.e.,
we have σψ(ξ) = χUψ (ξ) a.e. By Lemma 3.8, part (c) and (d), we conclude that ψ is semi-
orthogonal.



12 Mathematical Problems in Engineering

Now, we prove the necessity. Let us assume that ψ is semi-orthogonal, denote

Gn(ξ) =
∞∑
j=1

ψ̂
(
Djξ
)∑
k∈Zd

ψ̂(Dn(ξ + 2πk))ψ̂
(
Dj(ξ + 2πk)

)
, n � 1. (4.1)

Apply Schwart’s inequality to the sum in (4.1)with respect to k, we obtain

∞∑
j=1

∣∣∣ψ̂(Djξ
)∣∣∣∑

k∈Zd

∣∣ψ̂(Dn(ξ + 2πk))
∣∣ · ∣∣∣ψ̂(Dj(ξ + 2πk)

)∣∣∣

�
∞∑
j=1

∣∣∣ψ̂(Djξ
)∣∣∣
(∑

k∈Zd

∣∣ψ̂(Dn(ξ + 2πk))
∣∣2)1/2(∑

k∈Zd

∣∣∣ψ̂(Dj(ξ + 2πk)
)∣∣∣2
)1/2

�
∞∑
j=1

∣∣∣ψ̂(Djξ
)∣∣∣
(∑

k∈Zd

∣∣∣ψ̂(Dj(ξ + 2πk)
)∣∣∣2
)1/2(

σψ(Dnξ)
)1/2

.

(4.2)

Using the fact that σψ(Dnξ) � 1 a.e. and appling Schwart’s inequality to the sum over j, we
obtain that

⎛
⎝ ∞∑

j=1

∣∣∣ψ̂(Djξ
)∣∣∣2
⎞
⎠

1/2⎛
⎝ ∞∑

j=1

∑
k∈Zd

∣∣∣ψ̂(Dj(ξ + 2πk)
)∣∣∣2
⎞
⎠

1/2

�
√
Dimψ(ξ). (4.3)

Therefore, the sum in (4.1) is absolutely convergent. The fact allows us to interchange the
sums in the expression Gn(ξ). By Proposition 2.3, we have

Gn(ξ) =
∑
k∈Zd

ψ̂(Dn(ξ + 2πk))
∞∑
j=1

ψ̂
(
Djξ
)
ψ̂
(
Dj(ξ + 2πk)

)

+ ψ̂(ξ)
∑
k∈Zd

ψ̂(Dn(ξ + 2πk))ψ̂(ξ + 2πk)

=
∑
k∈Zd

ψ̂(Dn(ξ + 2πk))
∞∑
j=0

ψ̂
(
Djξ
)
ψ̂
(
Dj(ξ + 2πk)

)

=
∑
k∈Zd

ψ̂(Dn(ξ + 2πk))�k(ξ),

(4.4)

where �k(ξ) is defined as in (2.6). Since �k(ξ) = 0, a.e. ξ ∈ R
d, k ∈ S, we obtain

Gn(ξ) =
∑
k∈Zd

ψ̂(Dn(ξ + 2πDk))
∞∑
j=0

ψ̂
(
Djξ
)
ψ̂
(
Dj(ξ + 2πDk)

)
. (4.5)



Mathematical Problems in Engineering 13

On the other hand,

Gn+1

(
D−1ξ
)
=
∑
k∈Zd

ψ̂
(
Dn+1
(
D−1ξ + 2πk

)) ∞∑
j=1

ψ̂
(
DjD−1ξ

)
ψ̂
(
Dj
(
D−1ξ + 2πk

))

=
∑
k∈Zd

ψ̂(Dn(ξ + 2πDk))
∞∑
j=0

ψ̂
(
Djξ
)
ψ̂
(
Dj(ξ + 2πDk)

)

= Gn(ξ).

(4.6)

Therefore, we have shown that Gn(ξ) = Gn−1(Dξ), and consequently, Gn(ξ) = G1(Dn−1ξ) for
n � 1. By Propositions 2.2 and 2.3, we have

G1(ξ) =
∑
k∈Zd

ψ̂(D(ξ + 2πk))
∞∑
j=1

ψ̂
(
Djξ
)
ψ̂
(
Dj(ξ + 2πk)

)

=
∑
k∈Zd

ψ̂(Dξ + 2πDk)
∞∑
j=0

ψ̂
(
Dj ·Dξ

)
ψ̂
(
Dj(Dξ + 2πDk)

)

=
∑
k∈Zd

ψ̂(Dξ + 2πDk)
∞∑
j=0

ψ̂
(
Dj ·Dξ

)
ψ̂
(
Dj(Dξ + 2πDk)

)

+
∑
k∈S

ψ̂(Dξ + 2πk)
∞∑
j=0

ψ̂
(
Dj ·Dξ

)
ψ̂
(
Dj(Dξ + 2πk)

)

=
∑
k∈Zd

ψ̂(Dξ + 2πk)
∞∑
j=0

ψ̂
(
Dj ·Dξ

)
ψ̂
(
Dj(Dξ + 2πk)

)

=
∞∑
j=0

ψ̂
(
Dj ·Dξ

)∑
k∈Zd

ψ̂(Dξ + 2πk)ψ̂
(
Dj(Dξ + 2πk)

)

=
∞∑
j=1

ψ̂
(
Dj ·Dξ

)∑
k∈Zd

ψ̂(Dξ + 2πk)ψ̂
(
Dj(Dξ + 2πk)

)
+ ψ̂(Dξ)σψ(Dξ)

= ψ̂(Dξ)σψ(Dξ).

(4.7)

This shows that

Gn(ξ) = ψ̂(Dnξ)σψ(Dnξ). (4.8)

Finally, since ψ is a semi-orthogonal M-TFW, σψ(Dnξ) is either 0 or 1 a.e.; this and the
last fact, which implies that ψ̂(Dnξ) = 0 when σψ(Dnξ) = 0, give us

ψ̂(Dnξ) = Gn(ξ), a.e., n � 1. (4.9)
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Now, let

Ψj(ξ) =
{
ψ̂
(
Dj(ξ + 2kπ)

)
: k ∈ Z

d
}
, j � 1. (4.10)

Using the fact that σψ(ξ) � 1 once again, we see that Ψj ∈ �2(Zd) for a.e. ξ ∈ R
d. But, from

(2.6), (2.7), and (2.8), we see that

Ψj(ξ) =
∞∑
n=1

〈
Ψn(ξ),Ψj(ξ)

〉
�2(Zd)Ψn(ξ) (4.11)

for j � 1.
By the definition of Dimψ , we have

Dimψ(ξ) =
∞∑
j=1

∥∥Ψj(ξ)
∥∥2
�2(Zd). (4.12)

Hence, we conclude that

Dimψ(ξ) = dimFψ(ξ), a.e. ξ ∈ R
d, (4.13)

where Fψ(ξ) = span{Ψj(ξ) : j � 1}; this is a well-defined subspace of �2(Zd). Obviously, (4.13)
implies that Dimψ is integer valued a.e. The proof of Theorem 4.1 is completed.

Theorem 4.1 provides us with the following interesting statement.

Corollary 4.2. Suppose that ψ is a M-TFW. Then Dimψ(ξ) = dimFψ(ξ), for a.e. ξ ∈ R
d, if and only

if ψ is semi-orthogonal.

The dimension function of an orthonormal wavelet which attains valueN > 1 on a set
of positive measure, must also attain valueN − 1 on a set of positive measure (for details, see
[14]). Equation (3.12) is used there to prove that

Dimψ(Dξ) � Dimψ(ξ) − 1, a.e. ξ. (4.14)

Fortunately, (4.14) is also valid for semi-orthogonal M-TFWs. More precisely, one has the
following result.

Proposition 4.3. Suppose that ψ is a semi-orthogonal M-TFW. LetN > 1 be an integer. If there exits
a set A ⊆ R

d of positive Lebesgue measure, such that Dimψ(ξ) � N for all ξ ∈ A, then there exits a
set B ⊆ R

d of positive Lebesgue measure such that Dimψ(ξ) =N − 1 for all ξ ∈ B.

There is another interesting consequence of Theorem 4.1. Notice that a consequence of
(2.5) is that for every M-TFW ψ, one has

∣∣ψ̂(ξ)∣∣ � 1, a.e. (4.15)
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An interesting class consists of those M-TFW for which |ψ̂(ξ)| attains only values 0 and 1; in
accordance with the orthonormal wavelet terminology one will call such M-TFW, MSF M-
TFW. One may expect that MSF M-TFW may or may not be semi-orthogonal. Theorem 4.1,
however, implies that they have to lie within the realm of semi-orthogonal M-TFW since the
corresponding dimension function must be integer-valued. Let us state this in the form of a
corollary (see [21]).

Corollary 4.4. If ψ is an MSF M-TFW, then ψ is semi-orthogonal.

Theorem 4.5. Suppose that ψ is a M-TFW, then, ψ is an MRA M-TFW if and only if dimFψ(ξ) ∈
{0, 1}, for a.e. ξ ∈ R

d.

Proof of Theorem 4.5. First, we prove the necessity. Suppose that ψ is an MRA M-TFW, thus, it
satisfies (2.12) for an appropriate H,ρ and ϕ. If dimFψ(ξ) � 2, for some ξ ∈ R

d, then there
exist k, � such thatΨk(ξ) andΨ�(ξ) are linearly independent in �2(Zd). It is then impossible to
have a vector ν ∈ �2(Zd) such that both Ψk(ξ) and Ψ�(ξ) are in the one-dimensional subspace
span{ν}. However, by (2.10) and (2.12), for every j � 1, we have

ψ̂
(
Dj(ξ + 2πk)

)

= eiε0·D
j−1(ξ+2πk)ρ

(
Dj(ξ + 2πk)

)
H
(
Dj−1(ξ + 2πk) + 2πD−1ε0

)
ϕ̂
(
Dj−1(ξ + 2πk)

)

= eiε0·D
j−1ξρ
(
Djξ
)
H
(
Dj−1ξ + 2πD−1ε0

) j−2∏
n=0

H(Dnξ)ϕ̂(ξ + 2πk), k ∈ Z
d.

(4.16)

Since {ϕ̂(ξ + 2πk) : k ∈ Z
d} is in �2(Zd), for a.e. ξ ∈ R

d, by Lemma 3.5 and Theorem 3.6, we
conclude that dimFψ(ξ) is at most 1, for a.e. ξ ∈ R

d.
Now, we will prove the sufficiency. In other words, we have to prove that ψ is an MRA

M-TFW, assuming that ψ is an M-TFW such that dimFψ(ξ) is either 0 or 1, for a.e. ξ ∈ R
d.

We noticed that Fψ(ξ) is always defined for a M-TFW ψ and is a closed subspace of �2(Zd).
Theorem 4.1 implies that, for j � 1,Ψj(ξ) ∈ �2(Zd), for a.e. ξ ∈ R

d.
Therefore, we need to prove that there exist a generalized filterH and a corresponding

pseudoscaling function ϕ such that (2.12) is satisfied, that is, a.e. ξ ∈ R
d

ψ̂(Dξ) = eiε0·ξρ(Dξ)H
(
ξ + 2πD−1ε0

)
ϕ̂(ξ). (4.17)

Thus, we begin to prove that it is enough to show that there exist a generalized filter
H0, a corresponding pseudoscaling function ϕ0, and a 2π-Zd periodic, unimodular function
ρ such that

ψ̂(Dξ) = eiε0·ξρ(Dξ)H0
(
ξ + 2πD−1ε0

)
ϕ̂0(ξ). (4.18)

Let,

Z :=
{
ξ ∈ R

d : Dimψ(ξ) = 0
}

(4.19)
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and, for j ∈ N, we define the set Pj to be

Pj :=
{
ξ ∈ R

d :
∥∥Ψj(ξ)

∥∥
�2(Zd) /= 0, ‖Ψ�(ξ)‖2 = 0 for 1 � � � j − 1

}
. (4.20)

It is clearly that Z is the set where all vectors Ψj(ξ), j � 1, are zero (or, equivalently,
where dimFψ(ξ) = 0). Moreover, the set Z and the Pj , j � 1, are 2π-Zd periodic, measurable
and they form a partition of R

d.
We define ϕ̂0 as follows:

ϕ̂0(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, ξ ∈ Z,√√√√ Dimψ(ξ)∑

k∈Zd

∣∣ψ̂(Dj(ξ + 2πk)
)∣∣2 · ψ̂(Djξ

)
, ξ ∈ Pj .

(4.21)

Observe that (4.21) makes sense and defines a measurable function ϕ̂0 : R
d → C.

Furthermore, the function clearly satisfies

∑
k∈Zd

∣∣ϕ̂0(ξ + 2πk)
∣∣2 = Dimψ(ξ), a.e. (4.22)

Using (4.22), we obtain that ‖ϕ̂0‖22 =
∫
Td Dimψ(ξ)dξ. It follows that ϕ̂0 ∈ L2(Rd). Thus, ϕ0 ∈

L2(Rd).
Next, we divide the argument into six steps (six lemmas).

Lemma 4.6. For a.e. ξ ∈ R
d, one has

∣∣ϕ̂0(ξ)
∣∣2 = ∞∑

j=1

∣∣∣ψ̂(Djξ
)∣∣∣2. (4.23)

Proof. If ξ ∈ Z, then, (4.23) is trivially true. We only need to consider ξ ∈ P�, � ∈ N. Thus,
Ψ�(ξ)/= 0 and, by assumption, dimFψ(ξ) = 1. This implies that for every j � 1 there exists a
2π-Zd periodic, measurable function λ�j : P� → C, such that, for a.e. ξ ∈ P� ,

Ψj(ξ) = λ�j (ξ)Ψl(ξ). (4.24)

Coordinatewise, this means that for every k ∈ Z
d, a.e. ξ ∈ P�

ψ̂
(
Dj(ξ + 2πk)

)
= λ�j (ξ)ψ̂

(
D�(ξ + 2πk)

)
. (4.25)

It follows that the right hand side of (4.23) satisfies

∞∑
j=1

∣∣∣ψ̂(Djξ
)∣∣∣2 =

⎡
⎣ ∞∑
j=1

∣∣∣λ�j (ξ)∣∣∣2
⎤
⎦ ·
∣∣∣ψ̂(D�ξ

)∣∣∣2 (4.26)
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for a.e. ξ ∈ P� . Keeping in mind formula (4.21) for ξ ∈ P� , (4.26) implies that

∞∑
j=1

∣∣∣λ�j (ξ)∣∣∣2 =
∑∞

j=1

∣∣ψ̂(Djξ
)∣∣2∣∣ψ̂(D�ξ

)∣∣2 , (4.27)

for a.e. ξ ∈ P� . On the other hand, we obtain

Dimψ(ξ) =
∞∑
j=1

∑
k∈Zd

∣∣∣ψ̂(Dj(ξ + 2πk)
)∣∣∣2

=
∞∑
j=1

∑
k∈Zd

∣∣∣λ�j (ξ)∣∣∣2∣∣∣ψ̂(D�(ξ + 2πk)
)∣∣∣2

=
∞∑
j=1

∣∣∣λ�j (ξ)∣∣∣2∑
k∈Zd

∣∣∣ψ̂(D�(ξ + 2πk)
)∣∣∣2.

(4.28)

Using (4.26), (4.27), and the above equation, we obtain

∞∑
j=1

∣∣∣ψ̂(Djξ
)∣∣∣2 = Dimψ(ξ)∑

k∈Zd

∣∣ψ̂(D�(ξ + 2πk)
)∣∣2
∣∣∣ψ̂(Dlξ

)∣∣∣2. (4.29)

Combine (4.29)with definition of ϕ0, for a.e. ξ ∈ P� , we obtain

∣∣ϕ̂0(ξ)
∣∣2 = ∞∑

j=1

∣∣∣ψ̂(Djξ
)∣∣∣2. (4.30)

This completes the proof of Lemma 4.6 since Z and Pj , j � 1 cover all of R
d.

Lemma 4.7. There exists a 2π-Zd periodic, measurable functionH1 : ZC → C such that

|H1(ξ)| � 1, a.e. ξ ∈ ZC, (4.31)

ψ̂(Dξ) = eiε0·ξH1(ξ)ϕ̂0(ξ), a.e. ξ ∈ ZC. (4.32)

Proof. Notice that the 2π-Zd periodicity of H1 is consistent with the 2π-Zd periodicity of the
measurable set

ZC =
⋃
�∈N

P�. (4.33)
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DefineH1 as the following formula

H1(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, ξ ∈ P�, � � 2,

eiε0·ξ

√√√√∑k∈Zd

∣∣ψ̂(D(ξ + 2πk))
∣∣2

Dimψ(ξ)
, ξ ∈ P1.

(4.34)

Since all the functions and sets involved in (4.34) are measurable and 2π-Zd periodic,
it is obvious that (4.34) defines a 2π-Zd periodic, measurable function H1 : ZC → C.
Furthermore,

∑
k∈Zd

∣∣ψ̂(D(ξ + 2πk))
∣∣2 � Dimψ(ξ) (4.35)

implies that (4.31) is valid. For ξ ∈ P1, (4.32) is the direct consequence of (4.21) and (4.34).
For ξ ∈ P�, � � 2,Ψ1(ξ) = 0. In particular, ψ̂(Dξ) = 0; thus (4.32) is trivially satisfied. The
proof of Lemma 4.7 is completed.

Lemma 4.8. There exists a 2π-Zd periodic, measurable functionH0 : ZC → C such that

|H0(ξ)| � 1, a.e. ξ ∈ ZC, (4.36)

ϕ̂0(Dξ) = H0(ξ)ϕ̂0(ξ), a.e. ξ ∈ ZC. (4.37)

Proof. Again, by (4.33), the 2π-Zd periodicity will be clear from the argument, and we need
only to prove (4.36) and (4.37) on

⋃
�∈N

P� .
First, we consider P�, � � 2. For a.e. ξ ∈ P� , we obtain

‖Ψ�−1(Dξ)‖2�2(Zd) =
∑
k∈Zd

∣∣∣ψ̂(D�−1(Dξ + 2πk)
)∣∣∣2

=
∑
k∈Zd

∣∣∣ψ̂(D�
(
ξ + 2πD−1k

))∣∣∣2

�
∑
k∈Zd

∣∣∣ψ̂(D�(ξ + 2πk)
)∣∣∣2

= ‖Ψ�(ξ)‖2�2(Zd) > 0.

(4.38)

This and the definition (4.20) of P� imply that for a.e. ξ ∈ P� , there exists k = k(ξ) ∈
{1, 2, . . . , � − 1} such that Dξ ∈ Pk. It is easy to check, using (4.20), that ξ → k(ξ) is 2π-Zd

periodic and measurable (defined on P�). Since, according to our assumption, dimFψ(Dξ) =
1 for a.e. ξ ∈ P� , there exists a 2π-Zd periodic, measurable function λ : P� → C such that, for
a.e. ξ ∈ P� ,

Ψ�−1(Dξ) = λ(ξ)Ψk(ξ)(Dξ). (4.39)
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Notice that λ(ξ)/= 0, since otherwise we would have

0 = ‖Ψ�−1(Dξ)‖2�2(Zd) � ‖Ψ�(ξ)‖2�2(Zd) � 0 (4.40)

which would implyΨ�(ξ) = 0; this is impossible for ξ ∈ P� . Hence, (4.39) implies that, for a.e.
ξ ∈ P� ,

ϕ̂0(Dξ) =

√√√√ Dimψ(Dξ)∑
j∈Zd

∣∣ψ̂(Dk
(
Dξ + 2πj

))∣∣2 · ψ̂
(
Dk ·Dξ

)

=

√√√√ Dimψ(Dξ)∑
j∈Zd

∣∣ψ̂(Dk
(
Dξ + 2πj

))∣∣2 · 1
λ(ξ)

ψ̂
(
D�−1 ·Dξ

)
.

(4.41)

Notice that (4.41) shows that there exists a 2π-Zd periodic, measurable functionA : P� → C

such that, for a.e. ξ ∈ P� ,

ϕ̂0(Dξ) = A(ξ)ψ̂
(
D�ξ
)
. (4.42)

At the same time it follows directly from (4.21), that there exists a 2π-Zd periodic, measurable
function B : P� → C such that, for a.e. ξ ∈ P�,B(ξ)/= 0, and

ϕ̂0(ξ) = B(ξ)ψ̂
(
D�ξ
)
. (4.43)

We defineH0(ξ) on P� by

H0(ξ) :=
A(ξ)
B(ξ) . (4.44)

By (4.42) and (4.43), it is clear that H0(ξ) is a 2π-Zd periodic, measurable function, and
satisfies (4.37) on P� . Therefore, it remains to defineH0 on P1. Observe that for ξ ∈ P1, either
Dξ ∈ Z, or, otherwise, there is a 2π-Zd periodic, measurable function ξ → �(Dξ) ∈ N, such
thatDξ ∈ P�(Dξ). IfDξ ∈ Z, then we defineH0(ξ) to be 0. Otherwise, we define, by (4.21), that
there exists a 2π-Zd periodic, measurable function Ã such that

ϕ̂0(Dξ) = Ã(Dξ)ψ̂
(
D�(Dξ) ·Dξ

)
= Ã(Dξ)ψ̂

(
D�(Dξ)+1ξ

)
. (4.45)

Finally, we consider ξ ∈ P1, we know that there exists a 2π-Zd periodic, measurable function
λ̃, such that

Ψ�(Dξ)+1(ξ) = λ̃(ξ) ·Ψ1(ξ), (4.46)
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and a 2π-Zd periodic, measurable function B̃/= 0, such that

ϕ̂0(ξ) = B̃(ξ) · ψ̂(Dξ). (4.47)

Hence, for ξ ∈ P1 and Dξ /∈ Z, we defineH0 by

H0(ξ) :=
Ã(Dξ)λ̃(ξ)

B̃(ξ)
. (4.48)

It is now clear thatH0 is a 2π-Zd periodic, measurable function on P1 and satisfies (4.37) on
P1. It follows that we have a 2π-Zd periodic, measurable function H0 : ZC → C, such that
(4.37) is satisfied.

Let us prove (4.36). For ξ ∈ ZC, we have, by (4.22), that there exists k ∈ Z
d such that

ϕ̂0(ξ + 2πk)/= 0. SinceH0 is a 2π-Zd periodic we obtain, by (4.37),

ϕ̂0(D(ξ + 2πk)) = H0(ξ + 2πk)ϕ̂0(ξ + 2πk) = H0(ξ)ϕ̂0(ξ + 2πk). (4.49)

Hence

|H0(ξ)| =
∣∣ϕ̂0(D(ξ + 2πk))

∣∣∣∣ϕ̂0(ξ + 2πk)
∣∣ . (4.50)

However, Lemma 4.6 implies that for a.e. μ ∈ R
d, |ϕ̂0(Dμ)|2 � |ϕ̂0(μ)|2. Thus, |H0(ξ)| � 1,

and this completes the proof of Lemma 4.8.

Now, let us extend the definition of H0 and H1 to Z, as well. Since H0 is already
defined on ZC, the following definition ofH1 on Zmakes sense:

H1(ξ) =

⎧⎪⎨
⎪⎩

1√
2
, ξ ∈ Z, ξ + 2πD−1ε0 ∈ Z,

H0
(
ξ + 2πD−1ε0

)
, ξ ∈ Z, ξ + 2πD−1ε0 /∈ Z.

(4.51)

Using Lemmas 4.7 and 4.8 and (4.51), we obtain that H1 : R
d → C is a 2π-Zd periodic,

measurable function, such that

|H1(ξ)| � 1, a.e. ξ ∈ R
d. (4.52)

Moreover, we conclude that (4.32) is now satisfied for a.e. ξ ∈ R
d. By Lemma 4.7, we need

to check (4.32) only on Z. But, for ξ ∈ Z, we have that ϕ̂0(ξ) = 0, by (4.21), and ψ̂(Dξ) = 0,
since Dimψ(ξ) = 0. Hence, on Z (4.32) is satisfied irrespective of the value onH1(ξ). We have
established, that

ψ̂(Dξ) = eiε0·ξH1(ξ)ϕ̂0(ξ), a.e. ξ ∈ ZC. (4.53)
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Let us turn our attention toH0. Now thatH1 is defined on all of R
d, we defineH0 on

Z by

H0(ξ) := H1

(
ξ + 2πD−1ε0

)
, a.e. ξ ∈ R

d. (4.54)

Obviously,H0 : R → C is a 2π-Zd periodic, measurable function, such that

|H0(ξ)| � 1, a.e. ξ ∈ R
d. (4.55)

Again, we obtain that suchH0 satisfies (4.37) on R
d. And, again, because of Lemma 4.8, it is

enough to check (4.37) on Z. Since ϕ̂0(ξ) = 0, for ξ ∈ Z, it is enough to show that ϕ̂0(Dξ) = 0,
for ξ ∈ Z. But this is an immediate consequence of Lemma 4.6. We conclude that, for a.e.
ξ ∈ R,

ϕ̂0(Dξ) = H0(ξ)ϕ̂0(ξ). (4.56)

The following lemma connectsH0 andH1.

Lemma 4.9. For a.e. ξ ∈ R
d

|H0(ξ)|2 + |H1(ξ)|2 = 1. (4.57)

Proof. (1) If ξ ∈ Z and ξ + 2πD−1ε0 ∈ Z, then, by (4.51) and (4.37), H1(ξ) = 1/
√
2, and, since

ξ + 4πD−1ε0 ∈ Z, so

H0(ξ) = H1

(
ξ + 2πD−1ε0

)
=

1√
2
. (4.58)

Obviously, (4.57) is satisfied.
(2) If ξ ∈ Z, and ξ + 2πD−1ε0 /∈ Z, then by (4.51) and (4.54),

|H0(ξ)|2 + |H1(ξ)|2 =
∣∣∣H0

(
ξ + 2πD−1ε0

)∣∣∣2 + ∣∣∣H1

(
ξ + 2πD−1ε0

)∣∣∣2. (4.59)

Hence, (4.57) is going to be satisfied if we can prove it on ZC. We present this argument.
Lemma 4.6 implies that, for a.e. ξ ∈ R

d

∣∣ϕ̂0(ξ)
∣∣2 = ∣∣ψ̂(Dξ)∣∣2 + ∣∣ϕ̂0(Dξ)

∣∣2. (4.60)

From (4.53) and (4.56) we obtain that, for a.e. ξ ∈ R
d

∣∣ϕ̂0(ξ)
∣∣2 = [|H0(ξ)|2 + |H1(ξ)|2

]
· ∣∣ϕ̂0(ξ)

∣∣2. (4.61)
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Using the fact that H0(ξ) and H1(ξ) are 2π-Zd periodic, we can periodize (4.61). This
periodization and (4.22) provides us with

Dimψ(ξ) =
[
|H0(ξ)|2 + |H1(ξ)|2

]
·Dimψ(ξ). (4.62)

Recall that on ZC,Dimψ(ξ)/= 0; thus (4.62) provides us with (4.57) on ZC.

The following lemma establishes that H0(ξ) and H1(ξ) are generalized filters, and
provides the crucial step to find ρ such that (4.18) is satisfied. It is interesting to observe
that the proof of this lemma relies on the fact that �q(ξ) = 0, q ∈ S.

Lemma 4.10. For a.e. ξ ∈ R
d

H0(ξ)H0
(
ξ + 2πD−1ε0

)
= H1

(
ξ + 2πD−1ε0

)
H1(ξ), (4.63)

|H0(ξ)| =
∣∣∣H1

(
ξ + 2πD−1ε0

)∣∣∣, (4.64)

|H0(ξ)|2 +
∣∣∣H0

(
ξ + 2πD−1ε0

)∣∣∣2 = |H1(ξ)|2 +
∣∣∣H1

(
ξ + 2πD−1ε0

)∣∣∣2 = 1. (4.65)

Proof. We only need to prove (4.63). Indeed, (4.63) and Lemma 4.9 imply that

|H0(ξ)|2 = |H0(ξ)|2 ·
∣∣∣H0

(
ξ + 2πD−1ε0

)∣∣∣2 + |H0(ξ)|2 ·
∣∣∣H1

(
ξ + 2πD−1ε0

)∣∣∣2

= |H1(ξ)|2 ·
∣∣∣H1

(
ξ + 2πD−1ε0

)∣∣∣2 + |H0(ξ)|2 ·
∣∣∣H1

(
ξ + 2πD−1ε0

)∣∣∣2

=
∣∣∣H1

(
ξ + 2πD−1ε0

)∣∣∣2.
(4.66)

This clearly implies (4.64). Lemma 4.9 and (4.64) imply (4.65) straightforwardly.
Let us prove (4.63). First, we consider ξ ∈ Z⋃(Z + 2πD−1ε0). We have three cases.
(1) If ξ ∈ Z and ξ + 2πD−1ε0 /∈ Z. By (4.51) and (4.54), we have

H0(ξ) = H1

(
ξ + 2πD−1ε0

)
, H1(ξ) = H0

(
ξ + 2πD−1ε0

)
(4.67)

which clearly establishes (4.63).
(2) If ξ ∈ Z and ξ + 2πD−1ε0 ∈ Z. By (4.51) and (4.54), we have

H0(ξ) = H1

(
ξ + 2πD−1ε0

)
, H1(ξ) = H0

(
ξ + 2πD−1ε0

)
=

1√
2
. (4.68)

Again, (4.63) follows.
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(3) If ξ /∈ Z and ξ + 2πD−1ε0 ∈ Z, then ξ + 4πD−1ε0 /∈ Z, thus, by (4.51) and (4.54), we
have,

H1

(
ξ + 2πD−1ε0

)
= H0

(
ξ + 4πD−1ε0

)
= H0(ξ), H0

(
ξ + 2πD−1ε0

)
= H1(ξ). (4.69)

Obviously, (4.63) follows.
Finally, let us consider ξ ∈ [Z⋃(Z + 2πD−1ε0)]

C. Using (4.53), (4.56), and (4.57), we
obtain, for j � 1, q ∈ S, and a.e. ζ ∈ R

d,

ψ̂
(
Djζ
)
ψ̂
(
Dj
(
ζ + 2πq

))
= ϕ̂0

(
Dj−1ζ

)
ϕ̂0
(
Dj−1(ζ + 2πq

)) − ϕ̂0

(
Djζ
)
ϕ̂0
(
Dj
(
ζ + 2πq

))
. (4.70)

By Proposition 2.2, for q ∈ S, and a.e. ζ ∈ R
d, we obtain

0 = �q(ζ) =
+∞∑
j=0

ψ̂
(
Djζ
)
ψ̂
(
Dj
(
ζ + 2πq

))

= ψ̂(ζ)ψ̂
(
ζ + 2πq

)
+ ϕ̂0(ζ)ϕ̂0

(
ζ + 2πq

)
=
[
H0

(
D−1ζ
)
H0
(
D−1ζ + 2πD−1ε0

) −H1
(
D−1ζ
)
H1

(
D−1ζ + 2πD−1ε0

)]

· ϕ̂0

(
D−1ζ
)
ϕ̂0
(
D−1ζ + 2πD−1q

)
.

(4.71)

Now suppose ξ /∈ Z and ξ + 2πD−1ε0 /∈ Z. By (4.22) there exist k, � ∈ Z
d such that

ϕ̂0(ξ + 2πk)/= 0, ϕ̂0

(
ξ + 2π� + 2πD−1ε0

)
/= 0. (4.72)

Let

D−1ζ = ξ + 2πk, q = D(� − k) + ε0 (4.73)

and we conclude

0 = H0(ξ + 2πk)H0
(
ξ + 2πD−1ε0

) −H1(ξ + 2πk)H1

(
ξ + 2πD−1ε0

)

= H0(ξ)H0
(
ξ + 2πD−1ε0

) −H1(ξ)H1

(
ξ + 2πD−1ε0

)
.

(4.74)

This proves the case ξ ∈ [Z⋃(Z + 2πD−1ε0)]
C and completes the proof of Lemma 4.10.

We have established so far that H0 and H1 are generalized filters, and that ϕ0 is a
pseudoscaling function and thatH0 is its corresponding filter, and that ψ̂ satisfies (4.53). We
will now prove that (4.53) provides us with (4.21), which is going to complete the proof of
the Theorem 4.5.
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Let

Ω =
{
ξ ∈ R

d : H0

(
ξ + 2πD−1ε0

)
= 0
}
. (4.75)

It is clear that bothΩ andΩC are measurable and 2π-Zd periodic. Furthermore, by (4.65), we
have

ξ ∈ Ω −→ ξ + 2πD−1ε0 ∈ ΩC, a.e. (4.76)

For ξ ∈ ΩC, define a function S as follows:

S(ξ) := H1(ξ)
H0
(
ξ + 2πD−1ε0

) . (4.77)

By (4.64), it follows that S : ΩC → C is a 2π-Zd periodic, unimodular function. For ξ ∈ Ω, we
use (4.76) to conclude that ξ + 2πD−1ε0 ∈ ΩC, and we define S by

S(ξ) := S
(
ξ + 2πD−1ε0

)
. (4.78)

Hence, S(ξ) is an unimodular, 2π-Zd periodic function on R
d, which satisfies

H1(ξ) = S(ξ)H0

(
ξ + 2πD−1ε0

)
, a.e. (4.79)

.

Lemma 4.11. S(ξ) is a π-Zd periodic function.

Proof. Firstly, if ξ ∈ R
d such that H0(ξ)H0(ξ + 2πD−1ε0) = 0. By (4.76), we have two

possibilities: ξ ∈ Ω and ξ + 2πD−1ε0 /∈ Ω, or ξ /∈ Ω and ξ + 2πD−1ε0 ∈ Ω. In both cases
(4.78) and 2π-Zd periodic S(ξ) provide us with the conclusion that S(ξ) = S(ξ + 2πD−1ε0).

Secondly, if ξ ∈ R
d such that H0(ξ)H0(ξ + 2πD−1ε0)/= 0. In this case, we apply (4.63),

(4.79), and the unimodularity of S(ξ) to obtain

H0(ξ)H0
(
ξ + 2πD−1ε0

)
= H1(ξ)H1

(
ξ + 2πD−1ε0

)

= S
(
ξ + 2πD−1ε0

)
H0(ξ)S(ξ)H0

(
ξ + 2πD−1ε0

)
=
{
S
(
ξ + 2πD−1ε0

)
S(ξ)
}
H0(ξ)H0

(
ξ + 2πD−1ε0

)
.

(4.80)

Therefore,

S(ξ) = S
(
ξ + 2πD−1ε0

)
. (4.81)

The proof of Lemma 4.11 is completed.
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For ξ ∈ R
d, let

ρ(ξ) = S(D−1ξ
)
. (4.82)

Since S(ξ) is a π-Zd periodic, unimodular function, so ρ(ξ) is a 2π-Zd periodic, unimodular
function. Hence, H0, ϕ0 and ρ(ξ) satisfy all the necessary requirements. It remains to check
that they satisfy (4.18), as well. Indeed, by (4.53), (4.79), and (4.82), we obtain

ψ̂(Dξ) = eiε0·ξH1(ξ)ϕ̂0(ξ) = eiε0·ξρ(Dξ)H0
(
ξ + 2πD−1ε0

)
ϕ̂0(ξ). (4.83)

The proof of Theorem 4.5 is completed.

Theorem 4.12. Suppose that ψ is a M-TFW. Then, ψ is a semi-orthogonal MRAM-TFW if and only
if

Dimψ(ξ) ∈ {0, 1}, for a.e. ξ ∈ R
d. (4.84)

Proof. Suppose that ψ is a semi-orthogonal MRA M-TFW, using Theorems 4.1 and 4.5, then
(4.84) is valid.

Suppose that ψ is a M-TFW and (4.84) is valid. By Theorem 4.1, we conclude that ψ is
semi-orthogonal, and, thus, by (4.13), Dimψ(ξ) ∈ {0, 1}, for a.e. ξ ∈ R

d. By Theorem 4.5, we
conclude that ψ is an MRA M-TFW.

5. Conclusions

In this paper, we study all generalized low-pass filters and M-TFW. Firstly, we study the
pseudoscaling function, generalized low-pass filters, and MRA M-TFW and give some
important characterizations about them. Then, we characterize all M-TFW by showing that
they correspond precisely to those of which the dimension function is nonnegative integer
valued. Finally, we also show that an M-TFW arises from our MRA construction if and only
if the dimension of a particular linear space is either zero or one.
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