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The pulsatile flow of blood through catheterized arteries is analyzed by treating the blood as a
two-fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian
fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in
the core region of the artery is represented by (i) Casson fluid and (ii) Herschel-Bulkley fluid.
The expressions for the flow quantities obtained by Sankar (2008) for the two-fluid Casson model
and Sankar and Lee (2008) for the two-fluid Herschel-Bulkley model are used to get the data for
comparison. It is noted that the plug-flow velocity, velocity distribution, and flow rate of the two-
fluid H-B model are considerably higher than those of the two-fluid Casson model for a given set of
values of the parameters. Further, it is found that the wall shear stress and longitudinal impedance
are significantly lower for the two-fluid H-B model than those of the two-fluid Casson model.

1. Introduction

Catheters are of extensive use in modern medicine. In routine clinical studies, the
measurement of arterial blood pressure/pressure gradient and flow velocity/flow rate are
achieved by the use of an appropriate catheter tool device in the desired part of the arterial
network [1]. Catheters are also used in diagnostic techniques (such as X-ray angiography,
intravascular ultrasound, and coronary balloon angioplasty) as well as in the treatment
(balloon angioplasty) of various arterial diseases [2]. Catheters are even used to clear the
short occlusions from the walls of the stenosed artery [3]. By reducing the obstruction
through balloon angioplasty, the mean translesional pressure drop is reduced [4] and the
coronary blood flow as well as the coronary flow reserve is increased [5]. The insertion
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of a catheter in an artery will alter the flow field, modify the pressure distribution, and
hence increases the flow resistance [6]. Thus, the pressure or pressure gradient recorded by
a transducer attached to the catheter will differ from that of an uncatheterized artery, and
hence it is essential to know the catheter-induced error [7]. Even, a very small angioplasty
guidewire leads to a sizable increase in flow resistance [8]. For smaller infusion catheter, the
increase in flow resistance is less, although still appreciable. Hence, it is meaningful to study
the increase in flow resistance due to catheterization.

Several theoretical and experimental investigations are performed to study the
dynamics of blood flow through catheterized arteries [9–14]. MacDonald [15] discussed
the blood flow characteristics in catheterized arteries using conformal transformation and
finite difference method. Sarkar and Jayaraman [1] obtained the correction to flow rate-
pressure drop relationship in coronary angioplasty with steady steaming effect. Dash et al.
[6] analyzed the effect of catheterization on various flow characteristics in a curved artery
using perturbation method. Dash and Daripa [16] have studied the blood flow characteristics
in an eccentric catheterized artery using a fast algorithm. In all the above investigations,
Newtonian fluid represents blood. But it is well known that blood, being suspension of cells,
behaves like a nonNewtonian fluid at low shear rate (γ̇ < 10/sec) and during its flow through
narrow blood vessels of diameter 0.02–0.1 mm [17–19]. Dash et al. [3] studied the steady and
pulsatile flow of Casson fluid for blood flow through catheterized arteries and estimated the
increase in frictional resistance using the perturbation analysis. Sankar and Hemalatha [7, 20]
have studied the steady and pulsatile flow Herschel-Bulkley fluid for blood flow through
catheterized arteries using perturbation method and estimated the increase in longitudinal
impedance to flow.

Srivastava and Saxena [19] and Misra and Pandey [21] have mentioned that for blood
flowing through narrow blood vessels there is a peripheral layer of plasma and a core region
of suspension of all the erythrocytes. Hence, for a more realistic description of blood flow, it
is appropriate to treat the blood as a two-fluid model consisting of a core region containing
all the erythrocytes as a nonNewtonian fluid and the plasma in the peripheral layer as a
Newtonian fluid [19–21]. Sankar and Lee [22] and Sankar [23] have analyzed the pulsatile
flow of two-phase fluid models for blood flow through catheterized narrow arteries at low
shear rates, by treating the fluid in the core region as Herschel-Bulkley (H-B) model and (ii)
Casson model, respectively. In both of the two-fluid models, Newtonian fluid represents the
fluid in the peripheral layer.

It is noticed that blood obeys Casson’s equation only for moderate shear rate and
the Herschel-Bulkley equation represents fairly closely what is occurring in blood [7, 18].
Chaturani and Ponnalagar Samy [24] have mentioned that for tube diameter 0.095 mm blood
behaves like H-B fluid rather than power-law and Bingham fluids. Iida [25] reports “That
velocity profile in the arterioles having diameter less than 0.1 mm are generally explained
fairly by the two models. However, velocity profiles in the arterioles whose diameters are
less than 0.065 mm does not conform to the Casson model but can still be explained by H-B
fluid model. Moreover, H-B fluid model can be reduced to power-law fluid model when the
yield stress is zero and Bingham fluid model when its power-law index n takes the value 1,
so that the two-fluid power-law and Bingham models can be studied from the two-fluid H-B
model itself as its particular cases. Thus, the two-fluid H-B model has more suitability than
the two-fluid Casson model in the studies of blood flow through narrow arteries. Hence, in
this paper, the expressions for the flow quantities obtained by Sankar and Lee [22] for the
two-fluid H-B model and the expressions for the flow quantities obtained by Sankar [23]
for the two-fluid Casson model are used to compare these fluid models and bring out the
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advantage of using the two-fluid H-B model over two-fluid Casson model for blood flow in
catheterized arteries. In this study, the governing equations and the boundary conditions of
both of the two-fluid models and the expressions obtained for the various flow quantities of
these models by Sankar and Lee [22] and Sankar [23] are mentioned in brief and are used to
perform a comparative study. The layout of the paper is as follows.

The formulation and method of solution of (i) two-phase Casson fluid model and (ii)
two-phase Herschel-Bulkley (H-B) fluid model are briefly given in Section 2. The variations
of the flow quantities of these two-fluid models on the yield stress, catheter radius ratio and
pulsatility of the flow are analyzed in Section 3. The increase in the longitudinal impedance
to flow due to catheterization for different types of catheters which are used in clinics, is also
computed for both of the two-phase fluid models and is discussed in Section 3. The results
are summarized in the concluding Section 4.

2. Mathematical Formulation

Consider an axially symmetric, laminar, pulsatile, and fully developed unidirectional flow of
blood (assumed to be incompressible) in the axial direction in an artery in which a catheter
is introduced coaxially, where the artery is modeled as a rigid-walled circular tube of radius
R. The catheter radius is taken to be kR (k < 1). Blood is represented by a two-fluid model
with the suspension of all of the erythrocytes in the core region as a nonNewtonian fluid and
the plasma in the peripheral region as a Newtonian fluid. The nonNewtonian fluid in the
core region is represented by (i) Casson fluid model and (ii) Herschel-Bulkley fluid model.
We have used the cylindrical polar coordinates (r, φ, z), where r and z denote the radial and
axial coordinates and φ is the azimuthal angle. The flow geometries of the two-fluid model
for blood flow through catheterized artery are shown in Figure 1.

2.1. Two-Fluid Casson Model

2.1.1. Governing Equations and Boundary Conditions

For unidirectional flow of blood (incompressible fluid) in the axial direction, the equation of
continuity reduces to

(
∂ρ

∂t
+ ur

∂uz
∂r

+
uφ

r

∂uz

∂φ
+ uz

∂uz
∂z

)
= 0. (2.1a)

Since the flow is axisymmetric and one dimensional in the axial direction, the radial
component of the velocity ur and the circumferential component of the velocity uφ do not
exit (become zero) and only the axial component of the velocity uz exists, and hence, the
equation of continuity (2.1a) reduces to

∂uz
∂z

= 0. (2.1b)
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Figure 1: Geometry of the catheterized artery modeled as two-fluid model. The flowing blood in the artery
is modeled as a two-fluid model with the fluid (suspension of all the erythrocytes) in the core region
being treated as nonNewtonian fluid and the fluid (plasma) in the peripheral layer region being treated
as Newtonian fluid. Catheter is inserted into the artery coaxially. Since, the nonNewtonian fluid that we
assume in the core region of the two-fluid model has yield stress, there is a plug-flow region which is
bounded by the yield planes.

The axial component of the momentum equation for the one-dimensional flow of blood in
the axial direction is given as

ρ

(
∂uz

∂t
+ ur

∂u

∂r
+
uφ

r

∂uz

∂φ
+ uz

∂uz
∂z

)
= −

∂p

∂z
− 1
r

∂

∂r
(rτ). (2.2a)

Using (2.1b) and ur = uφ = 0 (the radial component of the velocity ur and circumferential
component of the velocity uφ become zero for one-dimensional flow of blood in the axial
direction) in the momentum equation (2.2a), we get

ρ
∂uz

∂t
= −

∂p

∂z
− 1
r

∂

∂r
(rτ). (2.2b)

The momentum equation (2.2b) is rewritten for the fluid flow in the core region and
peripheral region of a two-fluid model, respectively, as

ρC
∂uC

∂t
= −

∂p

∂z
− 1
r

∂

∂r
(r τC) if kR ≤ r ≤ R1, (2.3a)

ρN
∂uN

∂t
= −

∂p

∂z
− 1
r

∂

∂r
(r τN) if R1 ≤ r ≤ R, (2.3b)
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where p denotes the pressure; ρC and ρN denote the density of the Casson fluid and
Newtonian fluid, respectively; τC and τN denote the shear stress of the Casson fluid and
Newtonian fluid, respectively; uC and uN denote the fluid’s velocity in the core region and
peripheral region, respectively; t denotes the time; R1 is the radius of the core region of the
artery. The simplified form of the constitutive equations of the fluid in motion in the core
region (Casson fluid) and peripheral layer (Newtonian fluid) are given by

μC
∂uC
∂r

= |τC|

⎡
⎢⎣1 −

2
√
τy√
|τC|

+
τy

|τC|

⎤
⎥⎦ if

∂uC
∂r

> 0, τC < 0, kR ≤ r ≤ λ1R,

μC
∂uC
∂r

= −|τC|

⎡
⎢⎣1 −

2
√
τy√
|τC|

+
τy

|τC|

⎤
⎥⎦ if

∂uC
∂r

< 0, τC > 0, λ2R ≤ r ≤ R1,

(2.4)

∂uC
∂r

= 0 if |τC| ≤ τy, λ1R ≤ r ≤ λ2R, (2.5)

μN
∂uN
∂r

= −|τN | if
∂uN
∂r

< 0, τN > 0, R1 ≤ r ≤ R, (2.6)

where μC and μN are the viscosities of the Casson fluid and Newtonian fluid, respectively;
τy is the yield stress; λ1 and λ2 are the yield planes bounding the plug-flow region. Equations
(2.3a), (2.3b), and (2.6) are equipped with the following boundary conditions:

∂uC
∂r

= 0 at r = 0, uN = 0 at r = R,

uC = uN, τC = τN at r = R1 (at the interface).

(2.7)

2.1.2. Nondimensionalization

Let p0 be the absolute magnitude of the typical pressure gradient. Let us introduce the
following nondimensional variables:

uC =
uC(

p0R
2
/2μC

) , uN =
uN(

p0R
2
/2μN

) , r =
r

R
, R1 =

R1

R
,

z =
z

R
, τC =

τC(
p0R/2

) , τN =
τN(

p0R/2
) , θ =

τy(
p0R/2

) ,

t = ω t, εC = α2
C =

R
2
0ρCω

μC
, εN = α2

N =
R

2
0ρNω

μN

(2.8)
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where αC and αN are the Womersley numbers of the Casson fluid and Newtonian fluid,
respectively, and θ is the nondimensional yield stress. The pressure gradient can be written
as

∂p

∂z

(
t
)
= −p0P(t) (2.9)

where P(t) is the nondimensional pressure gradient along the axis, which is taken as a
periodic function of time for pulsatile flow. Using (2.8) and (2.9), the momentum equations
(2.3a) and (2.3b), and the constitutive equations (2.4)–(2.6) are simplified, respectively, to

εC
∂uC
∂t

= 2P(t) − 1
r

∂

∂r
(rτC) if k ≤ r ≤ R1, (2.10)

εN
∂uN
∂t

= 2P(t) − 1
r

∂

∂r
(rτN) if R1 ≤ r ≤ 1, (2.11)

∂uC
∂r

= |τC|
(

1 − 2
√
θ

|√τC|
+

θ

|τC|

)
if
∂uC
∂r

> 0, τC < 0, k ≤ r ≤ λ1, (2.12)

∂uC
∂r

= −|τC|
(

1 − 2
√
θ

|√τC|
+

θ

|τC|

)
if
∂uC
∂r

< 0, τC > 0, λ2 ≤ r ≤ R1, (2.13)

∂uC
∂r

= 0 if |τC| ≤ θ, λ1 ≤ r ≤ λ2, (2.14)

∂uN
∂r

= −|τN | if
∂uN
∂r

< 0, τN > 0, R1 ≤ r ≤ 1. (2.15)

The boundary conditions (in the nondimensional form) are

∂uC
∂r

= 0 at r = 0, uN = 0 at r = 1,

uC = uN, τC = τN at r = R1 (at the interface).
(2.16)

2.1.3. Perturbation Method

Since it is not possible to find an exact solution of the nonlinear coupled implicit system
of partial differential equations (2.10)–(2.15), the perturbation method is used to solve the
system of nonlinear partial differential equations. When we nondimensionalize (2.3a), the
Womersley number αC occurs naturally, and hence; it is appropriate to expand the unknown
uC in powers of εC = α2

C as below:

uC(r, t) = u0C(r, t) + εC u1C(r, t) + · · · . (2.17)
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Similarly, one can expand the other unknowns τC, τN, and uN in the perturbation series
as in (2.17). Hereafter, for our convenience, we have used “P” instead of “P(t)”. Using
the perturbation series expansions in the momentum equations (2.10) and (2.11) and then
equating the constant terms and the first-order terms, we get

0 = 2P − 1
r

∂

∂r
(rτ0C),

∂u0C

∂t
= −1

r

∂

∂r
(rτ1C),

0 = 2P − 1
r

∂

∂r
(rτ0N),

∂u0N

∂t
= −1

r

∂

∂r
(rτ1N).

(2.18)

Using the perturbation series expansions of uC, uN, τC, and τN in the constitutive equations
(2.12)–(2.15) and then equating the constant terms and the first-order terms, we obtain

When k ≤ r ≤ λ1,

∂u0C

∂r
=
(
|τ0C| − 2

√
θ|τ0C| + θ

)
if
∂u0C

∂r
> 0, τ0C < 0,

∂u1C

∂r
= |τ1C|

⎛
⎝1 −

√
θ

|τ0C|

⎞
⎠ if

∂u1C

∂r
> 0, τ1C < 0.

(2.19)

When λ1 ≤ r ≤ λ2,

∂u0C

∂r
= 0 if |τ0C| < θ,

∂u1C

∂r
= 0 if |τ1C| < θ.

(2.20)

When λ2 ≤ r ≤ R1,

∂u0C

∂r
= −
(
|τ0C| − 2

√
θ|τ0C| + θ

)
if
∂u0C

∂r
< 0, τ0C > 0,

∂u1C

∂r
= −|τ1C|

⎛
⎝1 −

√
θ

|τ0C|

⎞
⎠ if

∂u1C

∂r
< 0, τ1C > 0.

(2.21)
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When R1 ≤ r ≤ 1,

∂u0N

∂r
= −|τ0N | if

∂u0N

∂r
< 0, τ0N > 0, R1 ≤ r ≤ 1, (2.22)

∂u1N

∂r
= −|τ1N | if

∂u1N

∂r
< 0, τ1N > 0, R1 ≤ r ≤ 1. (2.23)

The boundary conditions (2.16) become

∂u0C

∂r
=
∂u1C

∂r
= 0 at r = 0, u0N = u1N = 0 at r = 1,

u0C = u0N, u1C = u1N, τoC = τ0N, τ1C = τ1N at r = R1.

(2.24)

Equations (2.18)–(2.23) are solved explicitly with the help of the boundary conditions
(2.24). For detailed derivation of the solution to variables u0C, u1C, u0N, u1N, τ0C, τ1C, τ0N

and τ1N from (2.18)–(2.24), one can refer Sankar [23]. The detailed derivation for the flow
rate, wall shear stress and longitudinal impedance are given by Sankar [23] and one can go
through this reference to know about the details of obtaining these flow quantities.

2.2. Two-Fluid Herschel-Bulkley Model

2.2.1. Governing Equations and Boundary Conditions

Following the derivation of (2.3a) and (2.3b), the basic momentum equations in this case
simplify to

ρH
∂uH

∂t
= −

∂p

∂z
− 1
r

∂

∂r
(r τH) if kR ≤ r ≤ R1, (2.25)

ρN
∂uN

∂t
= −

∂p

∂z
− 1
r

∂

∂r
(r τN) if R1 ≤ r ≤ R, (2.26)

where p denotes the pressure; ρH and ρN denote the density of the Herschel-Bulkley (H-B)
fluid and Newtonian fluid, respectively; τH and τN denote the shear stress of the H-B fluid
and Newtonian fluid, respectively; uH and uN denote the fluid’s velocity in the core region
and peripheral region, respectively; t denotes the time; R1 is the radius of the core region of
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the artery. The simplified form of the constitutive equations of the fluid in motion in the core
region (H-B fluid) and peripheral layer (Newtonian fluid) are given by

μH
∂uH
∂r

= |τH |n
(

1 −
nτy

|τH |

)
if
∂uH
∂r

> 0, τH < 0, kR ≤ r ≤ λ1R, (2.27)

μH
∂uH
∂r

= −|τH |n
(

1 −
nτy

|τH |

)
if
∂uH
∂r

< 0, τH > 0, λ2R ≤ r ≤ R1, (2.28)

∂uH
∂r

= 0 if τH ≤ τy, λ1R ≤ r ≤ λ2R, (2.29)

μN
∂uN
∂r

= −|τN | if
∂uN
∂r

< 0, τN > 0, R1 ≤ r ≤ R, (2.30)

where μH, μN are the viscosities of the H-B fluid and Newtonian fluid; τy is the yield stress;
λ1 and λ2 are the yield planes bounding the plug-flow region. Equations (2.25), (2.26) and
(2.27)–(2.30) can be solved with the help of the following boundary conditions:

∂uH
∂r

= 0 at r = 0, uN = 0 at r = R,

uH = uN, τH = τN at r = R1 (at the interface).

(2.31)

2.2.2. Nondimensionalization

Let p0 be the absolute magnitude of the typical pressure gradient. Let us introduce the
following nondimensional variables:

uH =
uH(

p0R
2
/2μ0

) , uN =
uN(

p0R
2
/2μN

) , r =
r

R
, R1 =

R1

R
,

z =
z

R
, τH =

τH(
p0R/2

) , τN =
τN(

p0R/2
) , θ =

τy(
p0R/2

) ,

t = ω t, εH = α2
H =

R
2
0ρHω

μ0
, εN = α2

N =
R

2
0ρNω

μN
,

(2.32)

where μ0 = μH(2/p0R)
n−1

is the typical viscosity coefficient having the dimension as that of
the Newtonian fluid’s viscosity, αH and αN are the Womersley numbers of the H-B fluid
and Newtonian fluid, respectively and θ is the nondimensional yield stress. The pressure
gradient can be written as

∂p

∂z

(
t
)
= −p0 P(t), (2.33)
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where P(t) is the nondimensional pressure gradient along the z axis. Using (2.32) and (2.33),
the momentum equations (2.25) and (2.26) and the constitutive equations (2.27)–(2.30) are
simplified, respectively, to

εH
∂uH
∂t

= 2P(t) − 1
r

∂

∂r
(rτH) if k ≤ r ≤ R1, (2.34)

εN
∂uN
∂t

= 2P(t) − 1
r

∂

∂r
(rτN) if R1 ≤ r ≤ 1, (2.35)

∂uH
∂r

= |τH |n
(

1 − nθ

|τH |

)
if
∂uH
∂r

> 0, τH < 0, k ≤ r ≤ λ1, (2.36)

∂uH
∂r

= −|τH |n
(

1 − nθ

|τH |

)
if
∂uH
∂r

< 0, τH > 0, λ2 ≤ r ≤ R1, (2.37)

∂uH
∂r

= 0 if |τH | ≤ θ, λ1 ≤ r ≤ λ2, (2.38)

∂uN
∂r

= −|τN | if
∂uN
∂r

< 0, τN > 0, R1 ≤ r ≤ 1. (2.39)

The boundary conditions (in the nondimensional form) are

uH = 0 at r = k, uN = 0 at r = 1,

uH = uN, τH = τN at r = R1 (at the interface).
(2.40)

2.2.3. Perturbation Method

As it is not possible to find an analytic solution of the nonlinear coupled implicit system
of partial differential equations (2.34)–(2.39), a perturbation method is used to solve the
system of partial differential equations. When we nondimensionalize (2.25) and (2.26), the
Womersley numbers αH and αN occur naturally and hence it is appropriate to expand the
unknowns τH, τN, uH, and uN in powers of εH = α2

H and εN = α2
N . Let us expand the

velocity uH in the perturbation series as below:

uH(r, t) = u0H(r, t) + εHu1H(r, t) + · · · . (2.41)

Similarly, one can expand τH, τN, and uN in the perturbation series as in (2.41). Hereafter,
for convenience, we have used “P” instead of “P(t)”. Using the perturbation series expansion
of τH, τN, uH, and uN in the momentum equations (2.34) and (2.35) and the constitutive
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equations (2.36)–(2.39) and then equating the constant terms and the first-order terms, one
can obtain

0 = 2P(t) − 1
r

∂

∂r
(rτ0H),

∂u0H

∂t
= −1

r

∂

∂r
(rτ1H),

0 = 2P − 1
r

∂

∂r
(rτ0N),

∂u0N

∂t
= −1

r

∂

∂r
(rτ1N).

(2.42)

When k ≤ r ≤ λ,

∂u0H

∂r
= |τ0H |n−1(|τ0H | − nθ) if

∂u0H

∂r
> 0, τ0H < 0,

∂u1H

∂r
= n|τ0H |n−2|τ1H |(|τ0H | − (n − 1)θ) if

∂u1H

∂r
> 0, τ1H < 0.

(2.43)

When λ1 ≤ r ≤ λ2

∂u0H

∂r
= 0 if |τ0H | < θ,

∂u1H

∂r
= 0 if |τ1H | < θ.

(2.44)

When λ2 ≤ r ≤ R1

∂u0H

∂r
= −|τ0H |n−1(|τ0H | − nθ) if

∂u0H

∂r
< 0, τ0H > 0,

∂u1H

∂r
= −n|τ0H |n−2|τ1H |(|τ0H | − (n − 1)θ) if

∂u1H

∂r
< 0, τ1H > 0.

(2.45)

When R1 ≤ r ≤ 1

∂u0N

∂r
= −τ0N if

∂u0N

∂r
< 0, τ0N > 0, R1 ≤ r ≤ 1,

∂u1N

∂r
= −τ1N if

∂u1N

∂r
< 0, τ1N > 0, R1 ≤ r ≤ 1.

(2.46)

The boundary conditions (2.40) become

∂u0H

∂r
=
∂u1H

∂r
= 0 at r = 0, u0N = u1N = 0 at r = 1,

u0H = u0N, u1H = u1N, τoH = τ0N, τ1H = τ1N r = R1,

(2.47)
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Equations (2.42)–(2.46) can be solved explicitly with the help of the bound-
ary conditions (2.47). Detailed derivation of the solution to the unknowns variables
u0H, u1H, u0N, u1N, τ0H, τ1H, τ0N, and τ1N from (2.42)–(2.47) are given by Sankar and Lee
[22] and one can go through this reference for the detailed solution. The detailed derivation
for the flow rate, wall shear stress, and longitudinal impedance are given by Sankar and Lee
[22] and one can go through this reference to know about the details of obtaining these flow
quantities.

3. Results and Discussion

The objective of the present study is to compare the two-fluid H-B model and two-fluid
Casson model. The typical value of the power-law index n of the H-B fluid for blood flow
models is generally taken as 0.95 [26]. Though the yield stress of blood at a haematocrit of 40
is τy = 0.04 dyne/cm2 [27], the range θ = 0 to 0.1 is more suitable when a catheter is inserted
into the blood vessels [3]. Just to pronounce the variations in the flow quantities, we have
taken the range of yield stress θ as 0 to 0.25 in this study. The range 0–0.6 is used for the
catheter radius ratio k [3].

Since the flow is pulsatile and any periodic function can be represented by a Fourier
series, it is appropriate to choose the pressure gradient as P(t) = 1 + A sin t, where A is the
amplitude parameter and is taken as less than 1. In the present study, we use the range 0.2–0.5
for the amplitude parameter A to discuss its influence [22]. The ratio α(= αN/αH or αN/αC)
between the Womersley numbers of the Newtonian fluid and H-B fluid or Casson fluid is
called Womersley number ratio. It is noted that in this ratio, the numerator corresponds
to the Womersley number of the Newtonian fluid and the denominator corresponds to the
Womersley number of a nonNewtonian fluid. It is well known that the Womersley number of
the Newtonian fluid would be higher than that of the nonNewtonian fluid. Thus, we have
chosen the Womersley number ratio as less than 1 and particularly as 0.5. Although the
Womersley number αH of the H-B fluid also ranges from 0 to 1 [22], the value 0.5 is used
in this study. Given the values of α and αH , the value of αN can be obtained from α = αN/αH .
Similarly, the Womersley number αC of the Casson fluid also ranges from 0 to 1 [23]; the value
0.5 is used in the present study.

3.1. Yield Plane Locations

The location of a point where the shear stress is equal to the yield stress is called a yield point
and the locus of such points is called yield surface or yield plane. In the case of a tube flow,
there is only one yield plane, whereas, for annular flow, there are two yield planes r = λ1 and
r = λ2 and these two yield planes form the boundary of the plug-flow region. The width of
the plug core region is denoted by β and is defined as β = θ/P(= λ2 − λ1), where θ is the
yield stress in the nondimensional form which ranges from 0–0.25, P is the nondimensional
pressure gradient which is taken as 1 +A sin t for pulsatile flow of blood, A is the amplitude
of the flow whose range is taken as 0.2–0.5, and t is the time parameter, Knowing the
values of θ, A and t, one can compute the value of β. For pulsatile flow, the yield plane
locations change not only during the course of motion, but also, with respect to the other
parameters.

Figure 2 illustrates the width of the plug-flow region of the different fluid models for
blood flow through catheterized arteries. The variation of the yield plane locations in a time
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Figure 2: Variation of yield plane locations for different fluid models in a time cycle with k = A = 0.5
and θ = 0.05. The width of the plug-flow region is minimum at 90◦ and maximum at 270◦. At any instant
of time, the width of the plug-flow region of the two-fluid models is marginally lower than that of the
single-fluid models and, there is not much difference between the widths of the plug-flow regions of the
two-fluid models and the similar behavior is noticed for the single-fluid models.

cycle for different fluid models k = A = 0.5 and θ = 0.05 is depicted in Figure 2. It is clear that
for all the fluid models, the width of the plug-flow region decreases as the time parameter
t increases from 0◦ to 90◦ and then it increases as the time variable t increases from 90◦

to 270◦ and then again it decreases as the time t increases further from 270◦ to 360◦. The
width of the plug-flow region is minimum at 90◦ and maximum at 270◦. It is also observed
that at any instant of time, the width of the plug-flow region of the two-fluid models are
marginally lower than those of the single-fluid models. There is not much difference between
the widths of the two-fluid H-B model and Casson models and the similar behavior is noticed
for the single-fluid H-B and Casson models. It is of importance to note that the plot of the
single-fluid H-B model is in good agreement with Figure 2 of Sankar and Hemalatha [7]
and the plot of the single-fluid Casson model is in good agreement with Figure 2 of Dash
et al. [3].

3.2. Plug-Flow Velocity

Figure 3 depicts the simultaneous effects of the nonNewtonian nature of the fluid and
the catheter on plug-flow velocity of different two-fluid models for blood flow through
catheterized arteries. The variation of the plug-flow velocity with catheter radius ratio k for
different two-fluid models with R1 = 0.95, α = αH = 0.5 and A = 0.2 is shown in Figure 3.
The plug-flow velocity for different two-fluid models decreases nonlinearly with the increase
of the catheter radius ratio k. The plug-flow velocity decreases rapidly as the catheter radius
ratio k increases from 0.1 to 0.3 and then it decreases gradually as the catheter radius ratio
increases further from 0.3 to 0.6. It is found that for a given value of the catheter radius ratio
k, the plug-flow velocity is maximum for the two-fluid power-law model and minimum for
the two-fluid Casson model. It is also clear that the plug-flow velocity for the two-fluid H-B
model is higher than that of the two-fluid Casson model. It is also observed that the plug-flow
velocity decreases slightly with the increase of the power-law index n.
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Figure 3: Variation of plug-flow velocity with catheter radius ratio for different fluid models withR1 = 0.95,
α = αH = αC = 0.5 and A = 0.2. For all the two-fluid models, the plug-flow velocity decreases nonlinearly
when the catheter radius ratio k increases from 0.1 to 0.3 and then it decreases linearly when the catheter
radius ratio increases further from 0.3 to 0.6. The plug-flow velocity is maximum for the two-fluid power-
law model and minimum for the two-fluid Casson model and, the plug-flow velocity for the two-fluid H-B
model is higher than that of the two-fluid Casson model. The plug-flow velocity decreases slightly with
the increase of the power-law index n.

3.3. Velocity Distribution

The velocity distribution for different two-fluid models with k = α = αH = αC = 0.5, R1 = 0.95
and A = 0.2 is shown in Figure 4. One can easily observe the flattened velocity profiles for
the two-fluid models, which have fluids with yield stress in the core region, and the usual
parabolic velocity profile for the two-fluid power model, which has no yield stress. The two-
fluid power-law model has the velocity with highest magnitude and the two-fluid Casson
model has the velocity with lowest magnitude. The velocity for the two-fluid H-B model is
considerably lower than that of the two-fluid power-law model and significantly higher than
that of the two-fluid Casson model.

3.4. Flow Rate

Figure 5 depicts the transient changes in the flow rate of different fluid models for blood
flow through catheterized arteries. The variation of the flow rate in a time cycle for different
fluid models with R1 = 0.95, A = k = α = αH = αC = 0.5 and θ = 0.1 is plotted in
Figure 5. It is found that for all the fluid models, the flow rate increases as the parameter t
increases from 0◦ to 90◦ and then it decreases as the time t increases from 90◦ to 270◦ and
then it increases as the time t increases from 270◦ to 360◦.The flow rate is maximum at 90◦

and minimum at 270◦. At any instant of time t, the flow rate of the two-fluid H-B model is
significantly higher than that of the two-fluid Casson model. A similar behavior is observed
for the single-fluid H-B and Casson models, but the difference between the flow rates of these
models is high when the time parameter t lies between 0◦ and 180◦ and marginal when the
time variable t lies between 180◦ and 360◦. It is also noticed that for a given set of values of
the parameters, the flow rate of the two-fluid H-B model is significantly higher than that of
the single-fluid H-B model and the flow rate of the two-fluid Casson model is marginally
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Figure 5: Variation of flow rate in a time cycle for different fluid models with R1 = 0.95, t = 45◦,A = k = α =
αH = αC = 0.5 and θ = 0.1. It is found that for all the fluid models, the flow rate is maximum at 90◦ and it is
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than that of the two-fluid Casson model. A similar behavior is seen for the single-fluid H-B and Casson
models. The flow rate of the two-fluid H-B model is significantly higher than that of the single-fluid H-B
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higher than that of the single-fluid H-B model. It is of interest to note that the plot of the
single-fluid H-B model is in good agreement with Figure 7 of Sankar and Hemalatha [7]
and the plot of the single-fluid Casson model is in good agreement with Figure 9 of Dash
et al. [3].

Figure 6 shows the influence of the nonNewtonian effects on the flow rate of the
different two-fluid models. The variation of the flow rate with yield stress for different
two-fluid models with R1 = 0.95, t = 45◦, k = A = α = αH = αC = 0.5 is depicted in
Figure 6. It is observed that the flow rate decreases linearly with the increase of the yield
stress θ for the two-fluid H-B model and it decreases very slowly with the increase of the
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Figure 6: Variation of flow rate with yield stress for different two-fluid models with R1 = 0.95, t = 45◦,
A = k = α = αH = αC = 0.5. It is seen that for increasing values of the yield stress θ, the flow rate decreases
linearly for the two-fluid H-B model and it decreases very slowly for the two-fluid Casson model. For a
given set of values of the parameters, the flow rate decreases marginally with the increase of the power-law
index n. The flow rate of the two-fluid H-B model is significantly higher than that of the two-fluid Casson
model.

yield stress for the two-fluid Casson model. It is also noted that for a given set of values
of the parameters, the flow rate decreases marginally with the increase of the power-law
index n. One can note that the flow rate of the two fluid H-B model is significantly higher
than that of the two-fluid Casson model when all of the other parameters were kept as
constant.

3.5. Wall Shear Stress

The variation of the wall shear stress in a time cycle for different fluid models with R1 = 0.95,
k = A = αN = 0.5 and θ = 0.05 is plotted in Figure 7. It is observed that the wall shear stress
increases when the time parameter t increases from 0◦ to 90◦ and then it decreases as the time
t increases from 90◦ to 270◦ and then it increases when the time t increases from 270◦ to 360◦.
The wall shear stress is maximum at 90◦ and minimum at 270◦. It is found that for a given
set of values of the parameters, the wall shear stress of the two-fluid models are marginally
lower than those of the single-fluid models. Also, it is noticed that the wall shear stress of
the two-fluid H-B model is marginally lower than that of the two-fluid Casson model. It
is of interest to note that the plot of the single-fluid H-B model is in good agreement with
Figure 9 of Sankar and Hemalatha [7] and the plot of the single-fluid Casson model is in
good agreement with Figure 11 of Dash et al. [3].

Figure 8 shows the effects of catheterization on wall shear stress of the different fluid
models for blood flow through catheterized arteries. The variation of wall shear stress with
catheter radius ratio for different fluid models with R1 = 0.95, t = 45◦, θ = 0.05 and A = αN =
0.5 is sketched in Figure 8. It is seen that the wall shear stress decreases almost linearly with
the increase of the catheter radius ratio for all the fluid models. For a given set of values of
the parameters, the wall shear stress of the two-fluid models is slightly higher than that of
the single-fluid models. There is not much of the difference between the wall shear stress of
two-fluid H-B and Casson models.
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models. This graph exhibits the effects of catheterization on wall shear stress of the different fluid models
for blood flow through catheterized arteries.

3.6. Resistance to Flow

Figure 9 shows the variation of the longitudinal impedance to flow with yield stress θ for two-
fluid H-B and Casson models with k = A = α = αH = αC = 0.5 and t = 45◦. It is observed that
for the two-fluid H-B model, the longitudinal impedance to flow increases very slowly with
the increase of the yield stress, but, for the two-fluid Casson model, the impedance increases
linearly when the yield stress increases from 0 to 0.15 and then it increases slowly when the
yield stress increases from 0.15 to 0.25. The longitudinal impedance to flow of the two-fluid
H-B model is significantly lower than that of the two-fluid Casson model.
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Table 1: Estimates of the increase in the longitudinal impedance for two-fluid H-B model and two-fluid
Casson model with effects on the catheterization and yield stress with R1 = 0.95, A = α = αH = αC = 0.5,
and t = 45◦.

Catheter radius ratio k Two-fluid H-B model with n = 0.95 Two-fluid Casson model
θ = 0.1 θ = 0.15 θ = 0.2 θ = 0.25 θ = 0.1 θ = 0.15 θ = 0.2 θ = 0.25

0.1 1.336 1.353 1.372 1.392 1.423 1.439 1.450 1.458
0.2 1.714 1.752 1.793 1.839 1.994 2.029 2.055 2.069
0.3 2.243 2.315 2.397 2.491 2.892 2.959 3.004 3.022
0.4 3.023 3.168 3.329 3.519 4.456 4.577 4.642 4.652
0.5 4.257 4.529 4.857 5.262 7.478 7.679 7.753 7.864
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Figure 9: Variation of longitudinal impedance with yield stress for two-fluid H-B and Casson models with
A = k = α = αH = αC = 0.5, R1 = 0.95 and t = 45◦. When the yield stress increases, the longitudinal
impedance to flow increases very slowly two-fluid H-B model and it increases linearly for the two-fluid
Casson model when the yield stress increases from 0 to 0.15 and then it increases slowly when the yield
stress increases from 0.15 to 0.25. The longitudinal impedance to flow of the two-fluid H-B model is
significantly lower than that of the two-fluid Casson model.

The increase in the longitudinal impedance due to the catheterization is defined as
the ratio between the longitudinal impedance of a fluid model in a catheterized artery for a
given set of values of the parameters and the longitudinal impedance of the same fluid in the
uncatheterized artery for the same set of values of the parameters [23]. The estimates of the
increase in the longitudinal impedance with effects on catheterization for different values of
the yield stress θ for the two-fluid H-B and Casson models with R1 = 0.95, k = A = α = αH =
αC = 0.5 and t = 45◦ are given in Table 1. For the range 0.1–0.5 of the catheter radius ratio,
the range of increase in longitudinal impedance of the two-fluid H-B model are 1.34–4.26,
1.35–4.53, 1.37–4.86 and 1.39–5.26 when the yield stress θ values are 0.1, 0.15, 0.2 and 0.25,
respectively. For the two-fluid Casson model, the estimates of the increase in the longitudinal
impedance increase are 1.42–7.47, 1.44–7.68, 1.45–7.75 and 1.46–7.86 when the yield stress θ
values are 0.1, 0.15, 0.2 and 0.25, respectively. It is important to note that the estimates of
the increase in the longitudinal impedance considerably much smaller for the two-fluid H-B
model than those of the two-fluid Casson model.

Catheters play an important role in the clinical investigations, since they are used to
measure different types of flow quantities. Some types of catheters used in clinics, their sizes
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Table 2: Different types of catheters used in cardiovascular treatment, their sizes, and the flow quantities
measured using them.

Type of catheter Catheter diameter di (mm) Flow quantity measured
Angioplasty catheter guidewire 0.356 Pressure drop
Coronary angioplasty catheter 1.400 Pressure distal to lesion
Guiding catheter 2.600 Pressure at coronary ostium
Doppler catheter 1.000 Velocity proximal to lesion
Coronary infusion catheter 0.660 Pressure drop across lesion

Table 3: Range of increase in the longitudinal impedance for different types of catheters for two-fluid H-B
model and two-fluid Casson model with A = α = αH = αC = 0.5, R1 = 0.95, t = 45◦, and θ = 0.1.

Type of catheter Range of catheter Two-fluid H-B Two-fluid
size di/d0 model with n = 0.95 Casson model

Guidewire 0.08–0.18 1.143–1.303 1.159–1.375
Infusion 0.14–0.33 1.239–1.569 1.264–1.768
Angioplasty catheter 0.3–0.6 1.512–2.314 1.641–3.558

and their usage are mentioned in Table 2 [20], where di is the diameter of the catheter and
d0 is the diameter of the artery. As an application of the present study to the medical field,
the different types of the catheters (with sizes), which are used in the medical field [23],
and the corresponding range of estimates of the increase in the longitudinal impedance for
the two-fluid H-B and Casson models with θ = 0.1, k = A = α = αH = αC = 0.5 and
t = 45◦ and R1 = 0.95 are computed in Table 3. It is observed that the range of estimates of the
increase in the longitudinal impedance to flow for the two-fluid H-B model are significantly
very lower than those of the two-fluid Casson model. Hence, it is strongly felt that the two-
fluid H-B model will have more applicability than the two-fluid Casson model in the clinical
use.

3.7. Usefulness of the Present Study

Figure 4 could be useful to the physicians in predicting the postcatheterization velocity
profiles and thus, they can predict the effect of introducing the catheter on the velocity
profiles and flow rate of the blood in the artery. Figure 8 might be useful to clinicians
to predict and analyze the wall shear stress after inserting the catheter into the artery
coaxially. Tables 1 and 3 might be used by clinicians to obtain the rough estimates of
increase in longitudinal impedance due to the insertion of the catheter into the artery and
the influence of nonNewtonian behavior of blood on impedance to flow. Since, catheters are
used widely clinically; these estimates might be useful to physicians to decide their future
course of action. Furthermore, as catheters are used clear the short occlusions or stenosis
in the arterial wall, the present study could also be useful in estimating the increase in
the longitudinal impedance and wall shear stress, since, the insertion of a catheter into the
artery alters the flow field, modifies the pressure distribution and hence increases the flow
resistance. Thus, there is considerable usefulness of the present study in the physiological
context.
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4. Conclusions

The pulsatile flow of blood through catheterized arteries is analyzed, assuming blood as a (i)
two-fluid Casson model and (ii) two-fluid Herschel-Bulkley model. This study brings out the
advantages of using the two-fluid Herschel-Bulkley (H-B) model over the two-fluid Casson
model for pulsatile blood flow through catheterized arteries. The effects of the catheterization,
nonNewtonian nature of blood and pulsatility of the flow on the yield plane locations,
velocity, flow rate, wall shear stress and longitudinal impedance are analyzed for different
two-fluid models. It is found that the width of the plug-flow velocity, velocity distribution
and thee flow rate for the two-fluid H-B model are considerably higher than those of the two-
fluid Casson model for a given set of values of the parameters. Also, it is observed that the
longitudinal impedance is significantly very low for the two-fluid H-B model than those of
the two-fluid Casson model. It is of interest to note that the difference between the estimates
of the increase in the longitudinal impedance of the two-fluid H-B model and the two-fluid
Casson model is substantial and hence, one can expect a significant increase in the flow of
the two-fluid H-B model. Thus, it is concluded that the two-fluid H-B model will have more
applicability in analyzing the blood flow through catheterized arteries.
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