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The frequency response is an important tool for practical and efficient design of control systems.
Control techniques based on frequency response are of special interest to dealing with important
subjects such as the bandwidth and the cost of feedback. Furthermore, these techniques are easily
adapted to deal with the uncertainty of the process to control. Quantitative feedback theory (QFT)
is an engineering design technique of uncertain feedback systems that uses frequency domain
specifications. This paper analyzes the phase specifications problem in frequency domain using
QFT. This type of specification is not commonly taken into account due to the fundamental
limitations of the linear control given by Bode’s integral. An algorithm is proposed aimed at
achieving prespecified closed-loop transfer function phase and magnitude variations, taking into
account the plant uncertainty. A two-degrees-of-freedom feedback control structure is used and a
new type of boundary is defined to satisfy these objectives. As the control effort heavily depends
on a good estimation of these boundaries, the proposed algorithm allows avoiding overdesign.

1. Introduction

Feedback around a plant P is mandatory because of uncertainty, including uncertain
disturbances acting on P . The main task of feedback in control must be to achieve a desired
input-output relation within desired tolerances despite plant uncertainty. However, not all
control techniques deal with the uncertainty in an explicit form; in particular in the literature
the control techniques dealing with the uncertainty are called robust control techniques
[1]. Another fundamental subject in feedback control is the quantitative sense. The plant
uncertainty and the desired tolerances of the input-output relation must be able to be
quantitatively formulated.
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Figure 1: The typical 2DoF control scheme used in QFT.

Feedback is fundamental in order to achieve a particular behavior of a system but
unfortunately there exist limitations. The greater the bandwidth of a system, the faster
the tracking of reference input, but the sensitivity to sensor noise is augmented. Also, the
frequency range over which one must be reasonably confident of the uncertainty of the
system is increased. This is the cost of the feedback [2], and it is important to be able to
deal with it in a quantitative form.

The benefits and cost of feedback are strongly frequency dependent, so design in
this domain has the added advantage of direct, powerful control of the system’s feedback
properties and costs [2]. Also, the trade-off between compensator complexity and bandwidth
economy is highly visible in this domain.

Quantitative Feedback Theory is a frequency domain robust control technique that
can be considered as a framework to design robust controllers, where the system uncertainty
is typically of parametric nature, commonly given in form of templates (see [3] for an
introduction to QFT). QFT uses a two-degrees-of-freedom control scheme (see Figure 1),
where the uncertain system is represented by a transfer function P(s) belonging to a family of
plants P, and whereG(s) and F(s) are the compensator and the precompensator, respectively,
which must be designed in order to achieve performance and stability robust specifications.

In QFT, the specifications on input-output relations are given in the frequency domain,
in terms of admissible bounds on the frequency response of the closed-loop transfer functions
between the different inputs and outputs. For a number of design frequencies, these
specifications are combined with the system uncertainty description (templates) in order to
obtain constraints, usually referred to as boundaries in the QFT literature. For each design
frequency ω, boundaries are given as curves in the Nichols plane, delimiting allowable
regions for G(jω) (or equivalently for L0(jω) = P0(jω)G(jω), where P0 is the nominal plant).
In a second step, nominal specifications are used to shape the precompensator F(s).

This paper focuses on the analysis of the problems associated with the simultaneous
consideration of magnitude and phase specifications for the closed loop transfer function
from reference input to system output (which can be of interest in high-precision tracking
problems as for instance coordinated movement in robotics, CNC, flight simulators, and in
dealing with nonlinear elements, as actuator saturation, in the control loop, as will be pointed
out later).

Few works about phase specifications and their applications can be found in the
QFT literature [4–9]. The way in which these papers address the problem differs from the
approach used in this paper, which mainly consists of shaping F(s) and G(s) to achieve
some nominal phase and magnitude specifications using a new set of boundaries. Another
important point considered is the computation of multiple-valued boundaries. For instance,
the algorithm proposed in [5] to compute the phase tracking boundaries did not exploit the
fact that boundaries can be multiplevalued.
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The consideration of multiple-valued boundaries may have an important practical
relevance, as the control effort is directly related to them. This fact was pointed out in [10]
and considered in the subsequent works, but general solutions to this problem have not
been found. The computation of multiple-valued tracking boundaries has been analyzed in
[11] and extended in [12] to include phase tracking boundaries to guarantee certain phase
variations on closed loop transfer function from reference input to system output. In this
work, a new type of boundary (the nominal phase tracking boundary) is proposed to cope
with the nominal phase specifications.

As has been pointed out, phase specifications appear in some practical applications,
for example in coordinated motion, and have been studied in QFT in several works including
[5, 8]. In robotics, the robot motion control problems can be separated into two categories:
positioning and contouring. In contouring problems, the robot tool tip is commanded to
follow a specific path. Here, the spatial contour tracking accuracy of the robot is of paramount
concern, since it directly influences the quality of the final product. In other contour control
systems like the computerized numerical control (CNC) machines, contouring accuracy
is also crucial. All of these cases can be handled using phase specifications. This type of
specifications are also important for flight simulators and in general for any high-accuracy
tracking system. Feed-forward controllers like zero phase error tracking controllers (ZPETC)
[13] and cross-coupled controllers (CCC) have been developed to effectively reduce tracking
error and contouring error, respectively. They have been used in some cases with robust
controllers, usually H∞ or QFT, to take the plant uncertainty into account [14–16]. Other
papers in this topic are based on a feedforward control for set-point tracking and QFT [17–19].
It is important to note that in [14, 16–19] the precompensator F in Figure 1 is always fixed to
1, and the uncertainty is taken into account to design compensator G only for the magnitude
specifications. Other authors deal with the phase in an implicit form using the magnitude
of the tracking error [6, 7, 9] however; the study of phase specifications is important
by itself. For example, in [20], phase specifications are used in the design of feedback
systems with actuator saturation in order to guarantee the stability of a nonlinear control
system.

The design of control systems with phase specifications (and uncertainty) is hard
to handle, basically because it is an optimization problem with nonconvex constraints, a
problem without a closed solution. In this paper, the QFT framework is used to deal with
the problem. The phase constraints are transformed into an additional set of boundaries, and
the QFT methodology is used to solve the controller optimization/design problem.

The paper is organized as follows. After some preliminaries in Section 2, the
subsequent sections show different approaches for solving the phase specification problem.
Section 3 considers a first solution for a particular case, when the plant is an integrator with
uncertain gain. In Section 4, a general solution is investigated. An example is developed in
Section 5, and, finally, conclusions are outlined in Section 6.

2. Preliminaries

The problem that will be considered in this work is the design of a control system (Figure 1) to
satisfy tracking specifications, considering a nominal value T0 (for P = P0) of the closed loop
transfer function from reference input r to system output c, T = FGP/(1 +GP) (the complex
variable s is omitted in general for simplicity in the notation), and allowed deviations. P is
any element of a family of LTI (linear time invariant) plants P, and P0 is the nominal plant.
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For the nominal value and allowed variations, the specifications are given for both magnitude
and phase.

G can be designed to meet variations over both magnitude and phase of the closed
loop transfer function T . The role of the precompensator F is to fix the nominal value of
T , T0, but due to the fact that phase and magnitude of T are related, by Bode’s integral
assuming minimum phase systems, or analogous constraints for unstable and nonminimum
phase systems, phase and magnitude can not be independently manipulated in design.

Usually, F and G are designed without taking into account the phase specifications in
the design process, then a satisfactory design can be obtained meeting variations over the
nominal magnitude of T , but this is not the general case.

In the following, some key definitions for the design method are introduced.

Definition 2.1. Let L = GP with P ∈ P the open loop transfer function and X = L/(1 + L)
the complementary sensitivity function of system in Figure 1, then the following sets � −
template(ω) = {L(jω) : P ∈ δP}, with δP ⊂ P the set of plants defining the border of the
typical template in QFT, for each frequency ω and Θ = {X : P ∈ P} are defined.

Definition 2.2. Θ is a crossing set of functions if ∃X1 and X2 ∈ Θ : |X1(jω)| = |X2(jω)| for
some frequency ω > 0. The rank of frequencies in which there are crossings is noted by
Γ(Θ) = [0, ωs], where ωs = sup{ω > 0 : |Xi(jω)| = |Xj(jω)|, i /= j, Xi, Xj ∈ Θ}. Equivalently a
set of functions is noncrossing if Xi(jω)/=Xj(jω) for all Xi,Xj ∈ Θ, for all ω > 0 with i /= j.

Definition 2.3. For a crossing set of functions Θ, MD(Θ) is defined as Max{||Xi(jω)|dB −
|Xj(jω)|dB|, Xi and Xj ∈ Θ, i /= j, ω ∈ Γ(Θ)}, the maximum difference between the magnitud
of transfer functions belonging to Θ for all frequencies in Γ(Θ).

In this paper tracking specifications given by

|Tl(jω)|dB = Bl(ω) ≤ |T(jω)|dB ≤ Bu(ω) = |Tu(jω)|dB. (2.1)
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From tracking specifications in (2.1), typical specifications over the variations in (2.4)
are obtained

Δ
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≤ Bu(ω) − Bl(ω). (2.4)

The specifications in (2.2) are not commonly used in QFT but as in the previous case,
from them also specifications over the variations in (2.5) can be obtained
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Figure 2: Comparison between the three most well-known forms of dealing with the tracking specifications
in QFT.
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It is important to note that normally the specifications in (2.1)–(2.5) are defined in
a frequency range [0, ωmax] because of for frequencies ω greater than ωmax, |T(jω)| ≈ 0 is
satisfied.

In [7] a two degrees of freedom quantitative procedure design (solidly based on the
general framework of QFT) is presented, in order to guarantee frequency-domain tracking
error tolerances despite uncertainties in the feedback and feed-forward components of the
system. In that paper, the phase problem is considered in an implicit form as shown in
the following. Assuming the control structure in Figure 1, the relative tracking error for
a plant P ∈ P and the system tracking error defined in [7] are given by (2.6) and (2.7),
respectively,
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In [7] the tracking specifications are given in form of relative error on sensitivity
function as shown in.

∣∣S
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∣∣1 − T
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(
jω

)
. (2.8)

In [4, 9] a similar type of specification is used. In Figure 2, the three most well-
known approaches to deal with typical tracking specifications for lowmedium frequencies
are shown: specifications in classical QFT, specifications from [7], and specifications given by
(2.1) and (2.2).
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Figure 3: Specifications on the variation of magnitude of T(jω) in (2.4).
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Figure 4: Specifications on the variation of phase of T(jω) in (2.5).

3. A Solution for a Particular Case

In order to satisfy the set of closed-loop specifications in (2.1) and (2.2), the first step is,
given design specifications in (2.4) and (2.5) over a frequencies set W (Figures 3 and 4),
to find G in order to satisfy them. Once G has been obtained, fulfilling the corresponding
set of bounds obtained from the specifications and the templates, F has to be designed to
achieve nominal specifications in (2.1) and (2.2) (Figures 5 and 6). In [12] an algorithm to
compute the boundaries over the nominal open-loop transfer function (equivalently over
G) is presented. This algorithm is based on the construction of a 3-D surface, where the
boundaries are simply contour lines, and here is used to compute the tracking magnitude
boundaries for specifications in (2.4), and the tracking phase boundaries for specifications
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Figure 5: Specifications on the magnitude of T(jω).
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Figure 6: Specifications on the phase of T(jω).

in (2.5). After boundaries computation, the G compensator is shaped to fulfill them, so
that the specifications in (2.4) and (2.5) are satisfied, and, finally, the precompensator F is
designed.

The main problem in the design of F is that, in our case, two objectives (nominal
phase and magnitude specifications in (2.1) and (2.2)) have to be met with only one degree
of freedom, F. A first approach to cope with this problem is summarized in Algorithm 3.1.

Algorithm 3.1. We have the following steps.

Step 1. Shape the G compensator fulfilling boundaries for specifications in (2.4) and (2.5),
computed with the algorithm in [12].
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Figure 7: Frequency response in Nichols plane for a noncrossing set of open-loop transfer functions
computed from (3.3) and (3.4).

Step 2. For each frequency ω ∈W compute Pm ∈ δP such that

∣∣∣∣∣
Pm

(
jω

)
G
(
jω

)

1 + Pm
(
jω

)
G
(
jω

)

∣∣∣∣∣
= max

P∈δP

{∣∣∣∣∣
L
(
jω

)

1 + L
(
jω

)

∣∣∣∣∣

}

, (3.1)

taking

Xsup
(
jω

)
�

Pm
(
jω

)
G
(
jω

)

1 + Pm
(
jω

)
G
(
jω

) . (3.2)

Step 3. Choose F = Bu/Xsup.

In Step 2, the point Pm has been calculated for each � − template(ω), in such a way that
the M-contour passing through the point Pm is the maximum M-contour passing through the
� − template(ω). If Θ is a noncrossing set of functions then the computation of Xsup is very
simple, due to the fact that maximum M-contour passes through the same point Lm (Lm =
PmG) for all �-templates, so that Xsup = Lm/(1+Lm). In general, the algorithm guarantees the
fulfillment of the specifications in (2.1) but not necessarily the satisfaction of specifications
in (2.2) (in general, the maximum N-contour passing through each �-template does not pass
through the point Pm). Furthermore, in order to guarantee a proper selection of F, the pole-
zero excess ofXsup must be less than or equal to the pole-zero excess of Bu. This last constraint
can be overcome if the satisfaction of phase specifications is not demanded at high frequency
(the normal situation in practical cases).

If the plant is a single integrator with uncertain gain, and a robust stability specification
less or equal to 0 dB is used, then the maximum M and N contours pass through the same
point of each �-template. In this particular case, the above algorithm is a good solution for
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the problem. For example, if the uncertain plant and the compensator are given, respectively,
by

P(s) ∈ P =
{
k

s
: k = 0.01, 0.05, 0.1, 0.5, 1

}
, (3.3)

G(s) =
6s + 5
s

, (3.4)

then a non-crossing set of open-loop transfer functions (Figure 7) and a crossing set Θ
(Figure 8) are obtained. So, there exists a value of k in (3.3) such that the maximum in the set
of open loop transfer functions is achieved for this value in all frequencies, but this is not the



10 Mathematical Problems in Engineering

0−50−100−150−200−250−300−350−400

Phase (degrees)

−60

−40

−20

0

20

40

60

80

M
ag

ni
tu

d
e
(d

B
)

ω = 0.1 rps

ω = 1 rps

ω = 10 rps

ω = 100 rps

ω = 1000 rps

Figure 10: Magnitude tracking boundaries.

Table 1: Magnitude and phase tracking specifications.

ω (rps) Δ|T(jω)| (dB) ΔPhase(T(jω)) (degrees)
0.1 0.0017 1.1458
1 0.1703 11.3099
10 6.9897 63.4349
100 26.0314 87.1376
1000 46.0207 89.7135

case when obtaining Xsup, due to the location of open loop transfer functions on the Nichols
Plane (NP) and the form of the M-contour (an M-contour is the locus of points L such that
|X| = M) at this location. As shown in Figure 9, the member of set Θ(ω) with maximum
magnitude depends on the ω frequency, so that a crossing set Θ(ω) as shown in Figure 8 is
obtained.

The specifications for this example are given by the following functions:

Tu(s) =
1.2 · 109

(s + 10)
(
s + 104

)
(s + 12 · 103)

,

Tl(s) =
5 · 109

(s + 10)(s + 5)
(
s + 104

)2
.

(3.5)

In this case, the tracking specifications given by (2.4) and (2.5), and a robust stability
specification of 0.2 dB are used, in order to show that an adequate approximation to the
tracking specifications in (2.1) and (2.2) can be achieved, using Algorithm 3.1.

The following set of design frequencies W = {0.1, 1, 10, 100, 1000} rps is considered.
The tracking specifications, from (2.4) and (2.5), for functions in (3.5) are shown in Table 1.

Using the algorithm in [12], the magnitude and phase tracking boundaries are
computed (Figures 10 and 11). The nominal open loop transfer function (Figure 12) is
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obtained using the computer tools in [21]. The designed controller is given by (3.6), where a
high-frequency pole is added in order to achieve a pole-zero excess of one. In Figure 13, the
Bode diagrams for magnitude and phase of X functions in the set Θ, with G given by (3.6)
and P given by (3.3), and specifications given by (3.5), are shown,

G(s) = 1.952 ·
(s/49.92 + 1)(s/2.85 + 1)(s/0.48 + 1)

(
s/6.55 · 10−6 + 1

)

(s/0.11 + 1)(s/0.10 + 1)(s/2.07 + 1)(s/35.17 + 1)(s/10000 + 1)
. (3.6)
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Figure 13: X(s) transfer functions (-) and specifications (- -).

Then Algorithm 3.1 is applied to obtain F(s) that after some simplifications is given
by

F(s) =
(s/3439.5 + 1)(s/50.14 + 1)

(s/5438.8 + 1)(s/49.92 + 1)(s/10 + 1)
. (3.7)

In Figure 14, magnitude and phase of the closed-loop transfer functions T(s) are
shown approximately satisfying the specifications in (3.5). Function Xsup has been selected
belonging to the set Θ, but it can be observed in Figure 15 that this selection is incorrect,
since Θ is a crossing set of transfer functions. The approximation in this case has provided
good results because MD(Θ) is small. Obviously, there exists a relation between MD(Θ) and
the situation of nominal open loop transfer function in NP. So, when the �-template is near
point (−180◦,0 dB), MD(Θ) is higher than when it is far. In this example, a robust stability
specification of 0.2 dB has been used, this being related with the approximation error incurred
when selecting Xsup belonging to the set Θ.

This example has shown that the computation ofXsup, in some cases, can be performed
by defining an approximation error, given by a robust stability specification, and choosing as
Xsup a X function belonging to set Θ. The approximation will be better as the plant is closer
to an integrator.

4. A New Type of Boundary

The idea developed in this section is based on using G and F in Figure 1, in order to achieve
a design satisfying nominal magnitude and phase specifications, given by (2.1) and (2.2).
A new type of specification and a new type of boundary that G must fulfill are considered
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Figure 14: T(s) = F(s)X(s) transfer functions (-) and specifications (- -).
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Figure 15: Set Θ at low-medium frequencies for P given by (3.3) and G given by (3.6).

instead of using only the precompensator F(s) for this purpose after G is designed taking
into account only the specifications in (2.4) and (2.5).

In the nominal open loop transfer function shaping, the allowed region of the NP has to
be restricted to a zone such that maximum M- and N-contours passing through the �-template
cross the same point. This is possible only for a template with all its points lying at the same
phase (an example is the plant in (3.3)). In general, a new specification has to be defined
directly related with the approximation error. So, a new type of boundary is proposed in
order to satisfy this new type of specification, which denominated the nominal phase shaping
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boundary. This boundary provides an allowed region C(ω), for nominal open loop transfer
function L0(jω) in NP, given by the following expression

C(ω) =

{
(
x, y

)
∈ NP : max

P∈P

Phase

(
P
(
jω

)
G
(
jω

)

1+P
(
jω

)
G
(
jω

)

)

−Phase

(
Pm

(
jω

)
G
(
jω

)

1+Pm
(
jω

)
G
(
jω

)

)

�δ(ω) ,

where x =
∣
∣P0

(
jω

)
G
(
jω

)∣∣
dB, y = Phase

(
P0
(
jω

)
G
(
jω

))
}

(4.1)

with

Pm ∈ P satisfying

∣∣∣∣∣
Pm

(
jω

)
G
(
jω

)

1 + Pm
(
jω

)
G
(
jω

)

∣∣∣∣∣
= max

P∈P

∣∣∣∣∣
P
(
jω

)
G
(
jω

)

1 + P
(
jω

)
G
(
jω

)

∣∣∣∣∣
(4.2)

and P0 ∈ P being the nominal plant.
In order to compute this region, the algorithm in [12] is easily adapted. For each

frequencyω, the template is shifted (denoted by (P)S) over the NP so that, for each phase and
each magnitude, the difference between the maximum N-contour passing through the (P)S
and the N-contour passing through the point Pm given by (4.2) (the maximum M-contour
passes through this point) is computed. This generates a surface in a three-dimensional space,
in such a way that the new boundary for frequency ω can be computed by taking a section of
this surface corresponding to a constant value δ(ω).

This algorithm can be formulated as the set of the following three steps.

Algorithm 4.1. We have the following steps.

Step 1. Choose an array of phases Φ and an array of magnitudes Ω.

Step 2. For each phase φ in Φ and for each magnitude l in Ω:
if (−180 deg, 0 dB) /∈ (P)S then

S
(
φ, l

)
= D (4.3)

else

S
(
φ, l

)
= 360◦ (4.4)

end-if.

Step 3. Boundary = level curve of S at the height of the specification δ(ω).



Mathematical Problems in Engineering 15

T1 T2

Figure 16: Examples of the different types of templates.

Where

D = max
P∈∂P
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(
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)
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(
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(
jω
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)

, (4.5)

and ∂P represents the(P)S border.

The allowed region for L0 shaping with this type of boundaries is the region above
them if they are open, or the outer region if they are closed. Due to the shape of the N-
contours in the NP, it can be assured that the fulfillment of this constraint is compatible with
the fulfillment of constraints given by the magnitude and phase tracking boundaries in (2.1)
and (2.2).

Furthermore, the shape of this new type of boundary can be characterised from the
shape of the templates, which can be typified within two types T1 and T2 (see Figure 16).

(i) T1: the largest magnitude points are located at the greatest phase (right part of the
template).

(ii) T2: the largest magnitude points are not located at the greatest phase.

The shape of the nominal phase shaping boundary will be:

(i) closed (the allowed region is the outside of the boundary) for T1 type templates.
Due to the fact that at small magnitudes, the phase of the template points is the
same that the N-contours passing through these points.

(ii) open (the allowed region is above the boundary) for T2 type templates. Obviously
for large enough specifications the boundaries for this type of templates may be
closed.

In addition, δ(ω) can be used in the algorithm as a parameter to obtain less
conservative results (restrictiveless boundaries for greater values of δ(ω)). So, the design
procedure to compute G and F in Figure 1 consists of the application of Algorithm 3.1, and
updating Step 1 so that the new type of boundaries computed with Algorithm 4.1 are taken
into account. It is important to note that Steps 2 and 3 in Algorithm 3.1 can be modified to
use Xinf and Bl instead of Xsup and Bu, respectively. In this case, D in (4.5) would have to be
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Table 2: Magnitude specifications for the tracking problem.

ω (rps) Δ|T(ω)| (dB) ΔPhase(T(ω)) (degrees)
0.01 0.0004 0.5729
0.1 0.0432 5.7106
1 3.01 45
2 6.99 63.44
10 20.04 84.29

easily updated to adapt to this change. It is important to note that these results are applicable
to minimum phase plants, nonminimum phase plants, and unstable plants.

5. An Illustrative Example

Consider the uncertain plant (taken from [22]) given by

P(s) =
ka

s(s + a)
with k ∈ [1, 10], a ∈ [1, 10], (5.1)

the array of frequencies W , used for design purposes, is W = {0.01, 0.1, 1, 2, 10} rps, the
nominal plant is given by (5.1) with k = a = 1, and the tracking specifications in (2.1) and
(2.2) are given by the following bounds

Tu(s) =
5 · 1010

(s + 10)(s + 103)2(s + 5 · 103)
,

Tl(s) =
1010

(s + 1)(s + 10)(s + 103)3
,

(5.2)

Firstly, magnitude and phase specifications in (2.4) and (2.5) are considered. Table 2
gives values of Δ|T(jω)| and ΔPhase(T(jω)) for the design frequencies. A value of δ(ω) = 0.1
degrees is used as the nominal phase shaping specification for all frequency ω ∈ W . Using
Algorithm 4.1 to compute the nominal phase shaping boundaries and the algorithm in [12] in
order to compute the tracking phase and magnitude boundaries, results shown in Figure 17
are obtained. Using computer tools [21] the nominal open loop transfer function is designed
(Figure 17(d)). In this case, the G(s) compensator is given by

G(s) = 9.544 · (s/0.11 + 1)(s/0.01 + 1)(s/0.086 + 1)
(s/10000 + 1)(s/0.009 + 1)(s/0.12 + 1)(s/5000 + 1)

, (5.3)

where a high-frequency pole is added in order to achieve a pole-zero excess of one.
Figure 18, containing the final result of the design stage using the proposed algorithm,

shows how specifications are satisfied almost over the whole frequency axis. Specifications
are not satisfied in interval [103.7, 104.4], so a new boundary could be computed for 104 rps
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Figure 17: Phase (a): magnitude, (b): nominal phase shaping, (c): tracking boundaries and the nominal
open loop transfer function fulfilling all of them (d).

for example and G should be redesigned introducing poles and zeros around this frequency,
but in this case the redesign of the compensator is not necessary due to the fact that the
specifications are not satisfied at very high frequency. The selected precompensator is given
by

F(s) =
(s/14185 + 1)

(
(s/6200.2)2 + 2.0.067.s/6200.2 + 1

)

(s/5000 + 1)(s/1000 + 1)(s/1000 + 1)(s/10 + 1)
. (5.4)

Suppose that only the magnitude tracking specifications from (2.1) are taken into
account, as done traditionally in QFT, then the G controller in (5.5) is computed to satisfy
specifications in (2.4) for all frequency in set W , fulfilling all the constrains as shown in
Figure 19. After that, the F precompensator, given by (5.6), is computed, using three notch
filters to deal with the specifications at medium frequencies, to satisfy the specifications in
(2.1). Figure 20 shows how the magnitude tracking specifications are fulfilled but not the
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Figure 18: Variations over the magnitude and the phase of T(s) due to uncertainty in plant.
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Figure 19: Magnitude tracking boundaries and the nominal open loop transfer function fulfilling all of
them.

phase specifications. So, the new set of specifications and corresponding boundaries must be
taken into account if specifications on phase are required

G(s) = 4 · (s/3 + 1)
(s/197 + 1)(s/10000 + 1)

, (5.5)

F(s) =
(s/44.5 +1)

(
(s/10)2+ (2 · 0.5s)/10+ 1

)(
(s/20)2+ (2 · 0.5s)/20+1

)
A

(s/1693 + 1)(s/3.1 + 1)
(
(s/10)2+ (2 · 0.38s)/10+ 1

)(
(s/20)2+ (2 · 0.21s)/20 + 1

)
B
,

(5.6)
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Figure 20: Variations over the magnitude and the phase of T(s) due to uncertainty in plant without
considering phase specifications.

where A denotes ((s/50)2+ (2 · 0.5s)/50 +1) and B denotes ((s/50)2+(2 · 0.29s)/50 + 1).

6. Conclusions

In this paper, the problem of dealing with phase specifications in frequency domain to achieve
robust designs for uncertain systems has been studied, and an algorithm based on QFT has
been proposed to solve it. The algorithm is based on the inclusion of a new types of boundary
in the loop-shaping stage. The different approaches to deal with phase specifications are
shown and compared. By means of the classical control structure used in QFT, a 2DoF
controller is synthesized to solve the problem. A typical example in the QFT literature is used
to compare the Bode diagram of a classical design without taking the phase specifications into
account and the Bode diagram of a design resulting of the application of the new algorithm.
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