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Multichannel Blind Deconvolution (MBD) is a powerful tool particularly for the identification
and estimation of dynamical systems in which a sensor, for measuring the input, is difficult
to place. This paper presents an MBD method, based on the Malliavin calculus MC (stochastic
calculus of variations). The arterial network is modeled as a Finite Impulse Response (FIR) filter
with unknown coefficients. The source signal central arterial pressure CAP is also unknown.
Assuming that many coefficients of the FIR filter are time-varying, we have been able to get
accurate estimation results for the source signal, even though the filter order is unknown. The
time-varying filter coefficients have been estimated through the proposedMalliavin calculus-based
method.We have been able to deconvolve the measurements and obtain both the source signal and
the arterial path or filter. The presented examples prove the superiority of the proposed method,
as compared to conventional methods.

1. Introduction

In this paper, we present a new approach to monitor central arterial pressure using the
Multichannel Blind Deconvolution (MBD) [1, 2]. A multichannel blind deconvolution
problem can be considered as natural extension or generalization of instantaneous Blind
Source Separation (BSS) problem [3, 4]. The problem of BSS has received wide attention
in various fields such as signal analysis and processing of speech, image [5, 6], and
biomedical signals, especially, signal extraction, enhancement, denoising, model reduction,
and classification problems [7–9].
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The MBD is the technique that allows the estimation of both an unknown input
and unknown channel dynamics from only channel outputs. Although one cannot place a
sensor [10] to directly measure the input, yet, it may be recovered from the outputs that
are simultaneously measured at the multiple branches of the system. The MBD technique
distinguishes itself from other techniques that apply a predetermined transfer function [11,
12] to interpret sensor data. The other techniques cannot account for individual differences
nor can they account for dynamic changes in the subject’s physiologic state.

The physiologic state of the cardiovascular (CV) system can be most accurately
assessed by using the aortic blood pressure or CAP [7, 13, 14] and flow. However, standard
measurement of these signals, such as catheter, entails costly and risky surgical procedures.
Therefore, most of the practically applicable methods aim to monitor the CV system based on
peripheral circulatory signals, for example, arterial blood pressure at a distant site. Various
methods have been developed to relate the peripheral signals to the CV state. These include
blind deconvolution [15–17] methods for recovering the CAP signal from the upper-limb
arterial blood pressure, and the estimation of CV parameters such as left ventricular elasticity,
end diastolic volume, total peripheral resistance (TPR), andmean aortic flow from arterial BP
measurement [18, 19]. A chronic challenge of these previous methods is that the dynamics of
the CV system, which relates the aortic and peripheral signals, is unknown and time-varying
as well. So this problem turns out to be an ill-posed system identification problem because we
are asked to identify both the unknown system dynamics and input signal using the output
signal measurement alone.

Because of the practical difficulty in measuring the arterial pressure waveform near
the heart [13, 15, 20], several mathematical transformation methods have been developed
based on a generalized transfer function approach [21, 22]. Over the years many methods
have been suggested for blind deconvolution for estimating central aortic pressure and
flow [3, 9, 19, 23, 24]. One of the most popular and effective techniques is to assume
an FIR model [1] and IIR model [18, 19, 25] for the modulating channels/paths and to
estimate the coefficients [26] of this model. Through the inversion of the FIR filter, we get
the original source signals. The principal assumption underlying these methods is that the
arterial tree properties are constant over time and between individuals. A few methods
have therefore been more recently developed towards “individualizing” the transfer function
[1, 12, 21] relating peripheral artery pressure to central aortic pressure. These methods
essentially involve (1) modeling the transfer function [11, 23] with physiologic parameters,
(2) estimating a subset of the model parameters [7, 15] from the peripheral arterial pressure
waveforms and/or other measurements from an individual while assuming values for the
remaining parameters, (3) constructing a transfer function based on the estimated and
assumed parameter values [26], and (4) applying the transfer function to the measured
peripheral arterial pressure waveforms to predict the corresponding central aortic pressure
waveform. While these methods attempt to determine a transfer function that is specific to an
individual over a particular time period, only a partial individualization is actually obtained.
Perhaps, as a result, these methods have found only limited success with results not much, if
at all, better than the generalized transfer function approach.

In this paper, we suggest characterizing the channels of the single-input, multioutput
systemmodel of the arterial tree by linear and time-variant FIR filters. If we make only one of
the FIR filter parameters changing over time, then the problem is handled by the Ito calculus
[27, 28], while, if wemakemore than one of the FIR filter parameters changing over time, then
the problem could be handled by the Malliavin calculus [29] as we propose in this paper.
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This way, the ambiguity in the order of the impulse response is compensated by the time
variations of the filter parameters [29–31].

In this paper, we introduce a method that could estimate time-varying parame-
ters/coefficients. It is based on the stochastic calculus of variations (Malliavin calculus)
[28, 32–35]. We derive a closed-form expression for the unknown time varying FIR filter
parameters by using the Clark-Ocone formula [30]. This will enable us to find a stochastic
differential equation (SDE) for each unknown time-varying parameter of the FIR filter. Each
SDE is function of PAP and some other unknown deterministic parameters. The unknown
deterministic parameters are estimated through Monte Carlo simulation methods.

The proposed method is then applied to noninvasive monitoring of the cardiovascular
system of the swine. The arterial network is modeled as a multichannel system where the
CAP is the input and pressure profiles measured at different branches of the artery, for
example, radial and femoral arteries, are the outputs. The proposed method would allow
us to estimate both the waveform of the input pressure and the arterial channel dynamics
from outputs obtained with noninvasive sensors placed at different branches of the arterial
network. Numerical examples verify the major theoretical results and the feasibility of the
method. In Section 2, we describe the blind deconvolution problem, conventional solution
methods. In Section 3 we introduce the proposed method based on the Malliavin calculus.
In Section 4, we present the results for the reconstruction of single-input CAP from two
distant measures outputs PAP. Finally in Section 5, we provide summary and conclusions.
The Appendix contains the technical derivations of the proposed method.

2. Problem Formulation

2.1. Multichannel Dynamic Systems

The cardiovascular system is topologically analogous to a multichannel dynamic system.
Pressure wave emanating from a common source, the heart, is broadcast and transmitted
through the many vascular pathways. Therefore, noninvasive circulatory measurements
taken at different locations (as shown in Figure 3) can be treated as multichannel data and
processed with an MBD algorithm. Figure 1 illustrates, in a block diagram form, the relation
between the central aortic pressure waveform u(t) and the peripheral arterial pressure
waveforms yi(t). The arterial channels hi(t) relating the common input to each output
represent the vascular dynamic properties of different arterial tree paths as characterized by
finite impulse responses (FIRs). The main idea is therefore to determine the absolute central
aortic pressure waveformwithin an arbitrary scale factor bymathematically analyzing two or
more PAP waveforms or related signals so as to extract their common features. An ancillary
idea is to then determine the parameters of the determined central aortic pressure waveform.

We estimate the FIR filter coefficients by the conventional methods in Section 2.2. We
introduce our proposed method that is based on Malliavin calculus in Section 3. We will be
working in the probability space (Ω, F, P). To simplify the exposure, we shall assume that
we have only two measurements outputs of a modulated version of the source signal that are
given as

y1(t) = h1(t) ∗ u(t) + ε1(t), (2.1)

y2(t) = h2(t) ∗ u(t) + ε2(t), (2.2)
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Channel h1 (t)

Channel h2 (t)

Channel hM (t)

Output y1 (t)

Output y2 (t)

Output yM (t)

u(t)

Figure 1: TheM (>1)measured and sampled peripheral AP waveforms [yi(t), 1 ≤ i ≤ M] are modeled as
outputs of M unknown channels driven by the common input [u(t)].

where u(t) is the unknown source signal (central AP), h1(t) and h2(t) are unknown filters
(hemodynamic response at time t) or arterial paths, “∗” is the convolution operation, y1(t)
(femoral AP) and y2(t) (radial AP) are the observed measurements, and ε1(t) and ε2(t) are
the measurements noise. The objective is to deconvolve y1(t) and y2(t) to estimate u(t). If we
convolve y1(t) with h2(t), we will get

h2(t) ∗ y1(t) = h2(t) ∗ (h1(t) ∗ u(t)) + h2(t) ∗ ε1(t), (2.3)

since the convolution is a commutative operation, then exchanging h1(t) and h2(t) and on the
right-hand side we get:

h2(t) ∗ y1(t) = h1(t) ∗ (h2(t) ∗ u(t)) + h2(t) ∗ ε1(t) = h1(t) ∗ y2(t) − h1(t) ∗ ε2(t) + h2(t) ∗ ε2(t).
(2.4)

Thus,

h2(t) ∗ y1(t) = h1(t) ∗ y2(t) − h1(t) ∗ ε2(t) + h2(t) ∗ ε1(t). (2.5)

Note that this equation does not include the unknown input u(t). It represents the constraints
among the channel dynamics or filters and observed output. Substituting a measured time
series of output data for y1(t) and y2(t), the above equation can be solved for the unknown
parameters involved in h1(t) and h2(t). Once the filters are obtained, wewill use their inverses
to find an estimate for the source signal. To simplify the exposure further, assume that the
modulating filters, that represent the signal paths or channel dynamics, are second-order
linear time invariant and have the Z transforms:

h1(z) = 1 + β1z
−1 + β2z

−2, (2.6)

that is,

y1(k) = u(k) + β1u(k − 1) + β2u(k − 2) + ε1(k), (2.7)
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and in matrix format for N data points:

⎡
⎢⎢⎢⎣

y1(2)

y(3)
· · ·

y(N − 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β2 β1 1 0 · · · 0
0 β2 β1 1 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 · · · 0 β2 β1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u(0)

u(1)
· · ·

u(N − 1)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

ε1(2)

ε1(3)
· · ·

ε1(N − 1)

⎤
⎥⎥⎥⎦, (2.8)

that is,

Y 1 = H1U + ε1, (2.9)

where

Y 1 =
[
y1(2) y1(3) · · · y1(N − 1)

]T
, (2.10)

U = [u(0) u(1) · · · u(N − 1)]T , (2.11)

ε1 = [ε1(2) ε1(3) · · · ε1(N − 1)]T , (2.12)

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β2 β1 1 0 · · · 0

0 β2 β1 1 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 · · · 0 β2 β1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.13)

and “T” stands for transpose.
Similarly,

h2(z) = 1 + α1z
−1 + α2z

−2, (2.14)

that is,

y2(k) = u(k) + α1u(k − 1) + α2u(k − 2) + ε2(k), (2.15)

where h1(z) and h2(z) are the Z transforms of the discrete versions of h1(t) and h2(t),
respectively. Since,

h2(t) ∗ y1(t) = h1(t) ∗ y2(t) − h1(t) ∗ ε2(t) + h2(t) ∗ ε1(t), (2.16)
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taking the Z transform of the discrete version of both sides, we get

h2(z)y1(z) = h1(z)y2(z) − h1(z)ε2(z) + h2(z)ε1(z). (2.17)

In the time domain, we get the equation:

y1(k) + α1y1(k − 1) + α2y1(k − 2)

= y2(k) + β1y2(k − 1) + β2y2(k − 2)

+
[−ε2(k) − β1ε2(k − 1) − β2ε2(k − 2) + ε1(k) + α1ε1(k − 1) + α2ε1(k − 2)

]
.

(2.18)

2.2. A Conventional Method for the Estimation of the System

The familiar scalar regression format as shown in (2.18) is the shape of a regression
equation with a correlated error (colored noise). Unless we take this into consideration, the
ordinary least square (OLS) method will yield biased estimates for the unknown coefficients
α1, α2, β1, and β2.

Rearrange (2.18), we gets

a
[
y1(k) − y2(k)

]
= −α1y1(k − 1) − α2y1(k − 2) + β1y2(k − 1) + β2y2(k − 2)

+
[−ε2(k) − β1ε2(k − 1) − β2ε2(k − 2) + ε1(k) + α1ε1(k − 1) + α2ε1(k − 2)

]
.

(2.19)

For the general case where the order of the FIR filters are I and J , we get

[
y1(k) − y2(k)

]
= −

I∑
i=1

αiy1(k − i) +
J∑
j=1

βjy2
(
k − j

)

+

⎧
⎨
⎩

⎡
⎣−

J∑
j=1

βjε2
(
k − j

)
+

I∑
i=1

αiε1(k − i)

⎤
⎦ + [ε1(k) − ε2(k)]

⎫
⎬
⎭.

(2.20)

This could be approximated as

[
y1(k) − y2(k)

] ≈ −
I∑
i=1

αiy1(k − i) +
J∑
j=1

βjy2
(
k − j

)
+ ε(k). (2.21)

Since the filter orders are unknown, one could use the corrected Akaike information criterion
AICc to determine both “I” and “J”. Assume that the error term, ε(k), is zero mean Gaussian
with variance σ2, the AICc is defined as [36]

AICc = n
(
lnσ2 + 1

)
+

2n
(
q + 1

)
(
n − q − 2

) , (2.22)
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where n is the number of observations, q = I + J is a number of unknown, and σ2 is an
estimate of the error variance. We choose the order q such that AICc is minimized.

Once the coefficients of the FIR filter are estimated, we use inverse filtering to find an
estimate for the source signal U as follows:

Û = ĤT
1

(
Ĥ1Ĥ

T
1

)−1
Y 1, (2.23)

where

Y 1 =
[
y1(2) y1(3) · · · y1(N − 1)

]T
, (2.24)

Û = [û(0) û(1) · · · û(N − 1)]T , (2.25)

Ĥ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̂2 β̂1 1 0 · · · 0

0 β̂2 β̂1 1 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 · · · 0 β̂2 β̂1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.26)

The symbol “∧” on top of the variable refers to estimation. For example, β̂2 and β̂1 are the
estimates for β2 and β1, respectively. Due to its simplicity, the above mentioned method is the
one that is commonly used [19].

3. The Malliavin Calculus and the Generalized Clark-Ocone
Formula for the Estimation of the Unknown Time-Varying
Coefficients: The Proposed Approach

The linear filter assumption is just an approximation to reality. Sometimes the media (arterial
tree) is nonlinear, time varying, random, or all. Moreover and above the measured signals
are usually noisy. The filter order is usually unknown. All the factors suggest that the
FIR filter model is just an approximation. To compensate for these approximations, we
suggest making some of the unknown filter coefficients varying with time, for example,
(α1(t), α2(t), β1(t), β2(t)). Notice that in this case, the filter coefficients do not have any
physical meaning and we are only concerned with the estimation of their values. Now the
problem becomes that of the estimation of the unknown time-varying coefficients. The details
of the estimation procedure are, briefly, given in this section. More details could be found in
the appendix.

We now recast the problem in the format that could be handled by the Malliavin
calculus. Using (2.21), the observed signal/regressor, py(k) = y1(k) − y2(k), is the sum of
stochastic processes, y1(k−1), y1(k−2), . . . , y2(k−1), y2(k−2), . . .weighted by the unknown
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time-varying parameters, α1(k), α2(k), . . . , β1(k), β2(k), . . .. The objective is to estimate, from
the observations, the unknown time-varying coefficients α1(k), α2(k), . . . , β1(k), β2(k), . . ..

3.1. The Estimates for the Time-Varying Filter Parameters

To solve the estimation of the time-varying parameters problem, we imbed the sum of the
processes (the observations) into another signal, p(t), which we call the augmented observed
signal. The augmented observations are the original observations plus a deterministic
component. The addition of the known deterministic component is needed to facilitate the
analysis.

The augmented observed signal, p(t), with (d) components, could be modeled, in the
continuous time, as follows:

p(t) = η1(t)S1(t) +
d∑
i=2

ηi(t)Si(t) t ∈ [0, T]

= η1(t)S1(t) + py(t),

(3.1)

where py(t) = [y1(t) − y2(t)]; see (2.21). ηi(t), i > 1, is the ith unknown time-varying
coefficient and are defined as follows for second-order filters:

η2(t) = −α1(t), η3(t) = −α2(t), η4(t) = β1(t), η5(t) = β2(t), S2(t) = y1(t − Δ), S3(t) =
y1(t − 2Δ), S4(t) = y2(t − Δ), S5(t) = y2(t − 2Δ),Δ is the sampling interval, η1(t) = known
constant, with

η1(t) = known constant, (3.2)

dS1(t) = λ1S1(t)dt, (3.3)

where λ1 and S1(t) are known.
In this analysis, the presence of a deterministic component will make the exposition

easier. In this case, It is S1(t). This component acts as a reference signal or a numeraire. Since
the observed signal does not usually comewith a known deterministic component, we should
add a known deterministic component and proceed with the analysis. We will then try to
find an expression for the SDE that describes the evolution of p(t). This expression will be
a function of the unknown stochastic coefficients ηi(t). Assuming a shape for the final value
p(T), as a function of the Wiener processes W(t), and using the generalized Clark-Ocone
formula [30, 37, 38], we will be able to find a closed-form expression for the coefficients ηi(t)
as a function of the Wiener processes W(t). The details of the derivations are given in the
appendix and are also given in [29].

Assume that the unknown coefficients, ηi(t), are varying slowly with time, that is

dηi(t) −→ 0, (3.4)

or more precisely, dηi(t) � dSi(t).
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There are several commonly models that represent different physical situations. In our
case, the signals, Si(t), each has an SDE of the form of an Ornstein-Uhlenbeck (OU) process
with trend

dSi(t) = ci(t)[Oi(t) − Si(t)]dt + ei(t)dWi(t), i > 1. (3.5)

This form represents an Ornstein-Uhlenbeck (OU) process and has the solution [12, 39]

Si(t) = e−Ci(t)

[
Si(0) +

∫ t

0
ci(u)Oi(u)eCi(u)du

]
+ e−Ci(t)

∫ t

0
ei(u)eCi(u)dWi(u), i > 1, (3.6)

where Ci(t) =
∫ t
0 ci(u)du.

The coefficients ci(t), ei(t), and the trend Oi(t) are estimated from the observed data.
For constant quantities ci, Oi, ei, and after some manipulations we end up with the estimate
of the unknown time-varying parameters (see the appendix):

ηi(t) =
eλ1t

ei
EQ

⎧
⎨
⎩

[
Di

tF(T) − F(T)
∫T
t Di

tθi(s,Wi(s))dW̃i(s)
]

Ft

⎫
⎬
⎭, (3.7)

where

θi(u, Wi(u)) =
ci − λ1
ei

[
Si(0)eciu +

∫u

0
eie

ci(u−r)dWi(r)
]
, (3.8)

F(T) = e−λ1Tp(T), (3.9)

EQ{X/Ft} is the conditional expectation of the random variable X under the probability
measure Q [37] and X = [Di

tF(T) − F(T)
∫T
t Di

tθi(s,Wi(s))dW̃i(s)]. This measure Q is related
to the old probability measure P through a function of the stochastic process θi(u,Wi(u)).Ft

is the filtration generated by the Wiener vector W(t). t ∈ [0, T]. Ft contains exactly the
information learned by observing the Wiener vector processes up to time t. Di

tθi(s,Wi(s)) is
the Malliavin derivative of θi(s) with respect to the ith Wiener process Wi(s) · F(T) is, in
general, a function of the Wiener vector W(T). EQ{X/Ft} is usually difficult to calculate.
ηi(t) is in general a function of W(t), and it could be approximated by the SDE:

dηi(t) = μi

(
W(t), t

)
dt +

∑
j

κij

(
W(t), t

)
dWj(t), (3.10)

and eiηi(t) could be represented by the SDE

d
[
eiηi(t)

]
= eiμi

(
W(t), t

)
dt + ei

∑
j

κij

(
W(t), t

)
dWj(t). (3.11)
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Notice that the drift and the diffusion are related to each other through θi(t,Wi(t)) [29, 32]
see the appendix. Let

eiμi

(
W(t), t

)
=
∑
j

φij

(
t,W(t)

)
θj
(
t,W(t)

)
, (3.12)

then

eiκij

(
W(t), t

)
= φij

(
t,W(t)

)
. (3.13)

The last equality comes from the solution of the CO formula θi(t,Wi(t)) (see the appendix).
An expression for φij(t,W(t)) is needed to solve for the unknowns ηi(t). An exact expression,
however, is difficult to obtain. Instead, we assume a polynomial shape with unknown
parameters (δij , γ

ij

k , λ
ij

kl), namely,

φij

(
t,W(t)

)
= δij +

∑
k

γ
ij

k
Wk(t) +

∑
k

∑
l

λ
ij

kl
Wk(t)Wl(t) + · · · . (3.14)

The unknown parameters are estimated by minimizing the squared error, e2(T), between the
observed, p(t), and the estimated observations p̂(t), where

p̂(t) =
∑
i

η̂i(t)Si(t), i ≥ 1, (3.15)

d
[
eiη̂i(t)

]
= eiμ̂i

(
W(t), t

)
dt + ei

∑
j

κ̂ij

(
W(t), t

)
dWj(t), (3.16)

eiμ̂i

(
W(t), t

)
=
∑
j

φ̂ij

(
t,W(t)

)
θj
(
t,W(t)

)
, (3.17)

eiκ̂ij

(
W(t), t

)
= φ̂ij

(
t,W(t)

)
, (3.18)

φ̂ij

(
t,W(t)

)
= δij +

∑
k

γ
ij

k
Wk(t) +

∑
k

∑
l

λ
ij

kl
Wk(t)Wl(t), (3.19)

e2(T) =
∫T

0

[
p(t) − p̂(t)

]2
dt. (3.20)

Once the parameters ηi(t) are estimated, we use inverse filtering to find U (the aortic
pressure waveform). In the case that the filter order is two, that is, only two time-varying
parameters, η̂2(t) = α̂1(t), η̂3(t) = α̂2(t), η̂4(t) = β̂1(t), and η̂5(t) = β̂2(t). In this case, the aortic
pressure Û is estimated as

Û = ĤT
1

(
Ĥ1Ĥ

T
1

)−1
Y 1, (3.21)
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where

Y 1 =
[
y1(2) y1(3) · · · y1(N − 1)

]T
,

Û = [û(0) û(1) · · · û(N − 1)]T ,

Ĥ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̂2(t1) β̂1(t2) 1 0 · · · 0

0 β̂2(t2) β̂1(t3) 1 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 · · · 0 β̂2(tN−2) β̂1(tN−1) 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.22)

We note from matrix that the parameters β̂1(t) and β̂2(t) have values that are changing across
the sample.

In order to further reduce the mathematical complexity, one could restrict the analysis
to the estimation of only two coefficients α1(t) and β1(t). The rest of filters coefficients are
considered constants and the OLS estimates of them are used in the equations.

3.2. Summary of the Proposed Algorithm and its Assumptions

Our MBD technique is based on a set of assumptions as follows.

(1) The common input is obtained at the output of two sensors. The channels relating
the common input to each distinct output, as in Figure 1, are linear time variant.

(2) The system is represented by FIR filters. The filters h1(t) and h2(t) are second-order
and contain many parameters some of which are time-varying.

(3) The FIR filter parameters α1(t), α2(t), β1(t), and β2(t) are varying slowly with
time.

(4) An OU model is assumed to describe the signals/regressors Si(t) which represent
the processes y1(t −Δ), y1(t − 2Δ), y2(t −Δ), and y2(t − 2Δ)); see (3.1) and (3.6).

(5) The time-varying FIR filter parameters ηi(t) are estimated by using Malliavin
calculus and the generalization Clark-Ocone formula; see (3.7).

(6) Equataion (3.21) is used with the time-varying parameters/coefficients η̂i(t) to find
an estimate for the input AP.

An absolute central aortic pressure waveform is determined by scaling the estimated
input based on the measured waveforms. In certain embodiments, the reconstructed
waveform is calibrated to absolute pressure based on themeasured peripheral artery pressure
waveforms. For example, the reconstructed waveform is scaled to have a mean value similar
to the mean value of the measured waveforms. This scaling step is well justified, since the
paths from the central aorta to peripheral arteries offer very little resistance to blood flow
due to Poiseuille’s law [1]. Certain embodiments scale the reconstructed waveform to have
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a mean value specifically equal to that of one of the measured peripheral artery pressure
waveforms or the waveform with the largest mean value plus a constant (whose value may
be between, e.g., 0 and 3mmHg). Certain alternative embodiments scale the reconstructed
waveform to have a mean value equal to the mean (or medium) of the mean values of some
or all of the measured peripheral artery pressure waveforms plus a constant (whose value
may be between, e.g., 0 and 3mmHg).

The reconstructed waveform Û is calibrated to absolute pressure by scaling it to have
the same mean value as the measured peripheral artery pressures as follows:

ÛS(t) = Û(t)
∑N−1

t=0 ((Y1(t) + Y2(t))/2)∑N−1
t=0 Û(t)

, t ∈ [0, N − 1], (3.23)

where ÛS(t) is the final absolute (scaled) estimated aortic pressure, that is, ÛS(t) =
Û(t)× Scale factor,

Scale factor =
average femoral pressure/2 + average radial pressure/2

average estimated aortic pressure
. (3.24)

3.3. The Proposed Algorithm

We now give a brief summary in an algorithmic form to describe themethodology as follows.

(1) Insert data in [1] as shown in Figure 2.

(2) Describe the form of the stochastic process OU using the formula in (3.5).

(3) Estimate the parameters ηi(t) by the following steps for each unknown time-
varying coefficient ηi(t).

(i) Initiate an estimate for the unknown parameters δij , γ
ij

k
, λ

ij

kl
.

(ii) Use Monte Carlo simulation method to generate Wiener processes W(t).

(iii) Use (3.19) to an estimate for φ̂ij(t,W(t)).

(iv) Use (3.16) to find an estimate for η̂i(t).

(v) Calculate the summed squared error of (3.20).

(vi) Change the estimate for the unknown parameters δij , γ
ij

k
, and λ

ij

kl
using the

least square method, for example, such that the error is reduced.

(vii) Repeat steps (ii)−(vi) and stop when the error is minimum or the number of
iterations is exceeded.

(4) Calculate the matrix Ĥ1 in (3.25).

(5) Estimate the source signal by (3.21).

(6) Calculate the estimated aortic pressure within scale factor by (3.23).
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Figure 2: Segments of measured central arterial pressure (AP), femoral AP, and radial AP waveforms from
one swine dataset.

Aorta

Radial

Femoral artery

artery

Figure 3: The arterial pressure measurements at displayed points in the figure.

4. Computed Examples

To test the proposed approach, first, we took real data from [1] by inserting the graph that
contains the measured data on software CURVESCAN and extracting points (see Figure 2).
Second, we simulated a set of 300 data points on computer measured data.
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Table 1: The performance measure as the signal-to-noise ratio of the aortic pressure estimates (SNRE)
using the conventional FIR-based method (FIR-2 model with two orders and FIR-4 model with 4 orders)
and the proposed Malliavin-calculus-based method.

Methods FIR-2 FIR-4 Malliavin calculus
SNRE 15.125 db 18.754 db 25.111 db

Multichannel blind deconvolution was experimentally evaluated with respect to
measured data in which femoral artery pressure, radial artery pressure waveforms, and aortic
pressure waveformwere simultaneously measured (see Figure 3). Third, we demonstrate the
ability of the proposed approach to extract aorta AP waveform from multichannel. All the
calculations in the algorithmwere performed under Excel by using Risk Solver Platform V9.0
[40, 41]. Fourth, we evaluated the proposed method by the performance measure SNRE. The
signal-to-noise ratio of the estimates (SNRE) was taken as the measure of performance for
this evaluation. It is defined as

SNRE = 10 log
∑

k u
2(k)

∑
k [u(i) − û(i)]2

db, (4.1)

where û(i) is the estimated value of the pressure at instant “i” (see Table 1).
In the first example, it was assumed that the data were noise free but the order

of each of the filters was unknown. In the second example, the data was assumed noisy
and the order of each of the filters was unknown. The filter order was estimated using a
corrected Akaike information criterion (AIC) [36]. In both examples, by using the proposed
method, all coefficients of the two filters were assumed to be unknown slowly time-
varying, η2(t), . . . , ηd(t). It was assumed that the signals/regressors Si(t) follow an Ornstein-
Uhlenbeck (OU) process [31] with some unknown constant parameters see; (3.5).

In both cases, the proposed approach outperformed the conventional method. The
pressure at the root of the aorta (central AP) was successfully estimated.

4.1. Example 1 Noise-Free Measurements

We have two measurements, y1(k) (femoral AP) and y2(k) (radial AP) that are assumed to
be represented by the equations

y1(k) = u(k) + β1u(k − 1) + β2u(k − 2), (4.2)

y2(k) = u(k) + α1u(k − 1) + α2u(k − 2) + α3u(k − 3) + α4u(k − 4). (4.3)

In the conventional method, the order of the filters was assumed to be just two, that is,
α3 = α3 = 0. In the proposed method, we made the same order assumption of two but all
coefficients are slowly time-varying. Specifically, we assumed that the SDE of the signals,
Si(t), of each has the form of the Ornstein-Uhlenbeck (OU) process

dSi(t) = ci[Oi(t) − Si(t)]dt + eidWi(t), i > 1, (4.4)



Mathematical Problems in Engineering 15

40

60

80

100

120

1 24 47 70 93 116 139 162 185 208 231 254 277 300

Sample number

A
P
(m

m
H
g)

Measured aorta AP
Estimated aorta AP-Malliavin

Figure 4: The estimated aorta AP using Malliavin calculus and measured aorta or central AP waveforms.
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Typical estimate of η3 using malliavin calculus
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Typical estimate of η4 using malliavin calculus
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(d)

Figure 5: Typical estimate of ηi, i > 1, using Malliavin calculus method.

where ci, ei are unknown constants,Oi(t) is a polynomial in time that represents the trend or
the base data, and Si(t) bounces around Oi(t). Remember that in the conventional method

[
y1(k) − y2(k)

]
= −α1y1(k − 1) − α2y1(k − 2) + β1y2(k − 1) + β2y2(k − 2). (4.5)

We estimate the unknown coefficients α1, α2, β1, and β2, through regression analysis. In the
proposed method, however, the slowly time-varying coefficients η̂i(t), i = 2, 3, 4, 5; are
estimated by the (3.16) in Figure 5 and assumed η̂1(t) = 1.

Figure 4 shows the estimated pressure at the root of the aorta AP using the
proposed method based on the Malliavin calculus (Section 3.2) and measured aorta or
central AP, (SNRE= 25.111 db) (see Table 1). In Figure 7, we compared the estimated central
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Figure 6: The performace measure SNRE of the estimated noise aorta AP at variant noise by using
Malliavin and FIR 4 and FIR-2 methods.

40

60

80

100

120

1 51 101 151 201 251 301

A
P
(m

m
H
g)

Estimated aorta AP-FIR 2
Estimated aorta AP-FIR 4
Measured aorta AP

Estimated aorta AP-Malliavin

Figure 7: Estimated aorta AP waveform using the conventional methods (FIR-2 model with two orders
and FIR-4 model with four orders) and proposed method (Malliavin calculus).

arterial pressure using the conventional method (Section 2.2) with second-order FIR-2
(SNRE= 15.125 db) and the proposed Malliavin calculus-based method (SNRE= 25.111 db).
So applying the conventional method with fourth-order FIR-4, we obtained a better result
than by using FIR-2. But still the Malliavin calculus (MC) proved to be the best (see Table 1
and Figure 7). We note the difference between three methods in Figures 6 and 7. Therefore,
typical estimates for η̂2(t), η̂3(t), η̂4(t), η̂5(t) using the Malliavin calculus are shown in
Figure 5, where η̂2(t) = α̂1(t), η̂3(t) = α̂2(t), η̂4(t) = β̂1(t), and η̂5(t) = β̂2(t).
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Table 2: The performance measure (SNRE) after added white Gaussian noise.

FIR-2 FIR-4 Malliavin calculus
Noise variance SNR SNRE SNRE SNRE
1 38.199 db 13.8976 db 18.599 db 24.927 db
10 28.217 db 13.479 db 18.356 db 23.443 db
70 19.833 db 12.748 db 16.548 db 18.808 db
100 18.312 db 12.441 db 15.767 db 17.664 db
300 13.705 db 10.851 db 13.044 db 13.768 db
500 11.633 db 9.7677 db 11.466 db 11.803 db
700 10.309 db 8.9428 db 10.374 db 10.523 db
The multichannel blind deconvolution (MBD) technique was applied by using the conventional method (FIR-2 model with
two orders and FIR-4 model with 4 orders) and the proposed method (Malliavin calculus). We compared between these
methods by using the performance measure SNRE (3.1)with the signal-to-noise ratio SNR at variant noise.
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Figure 8: Estimated noisy aorta AP waveforms using the conventional methods FIR-4 model with 4 orders
and FIR-2 Model with 2 Orders. (SNR= 19.833 db, SNRE= 16.548 db)

4.2. Example 2 Noisy Measurements

In this example, white Gaussian noise was added to the original values of the measured
pressures. It is assumed that the channels are represented by a second-order FIR filter and
fourth order FIR filter (4.2) and (4.3). However, in this case, for conventional method, the
order of the filters was estimated by using the corrected AIC. The estimated orders turned
out to be I = 4, J = 2. Table 2 shows the estimated values of central AP using both methods.

Figure 9 shows the measured pressure at the root of the aorta (with added high
noise) and the estimated pressure using the proposed method that is based on the Malliavin
calculus. By using the proposed method based on Malliavin calculus (stochastic calculus of
variations), the SNRE (as shown in Table 2) at noise variance 70= 18.808 db, where the signal-
to-noise ratio (SNR= 19.833 db). While, in Figure 8, the estimated central arterial pressure
(with added the same noise variance) using the conventional method with second-order
FIR-2 (SNRE= 12.748 db) and with four order FIR-4 (SNRE= 16.548 db). The performance
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Figure 9: The estimated aorta AP using Malliavin calculus at high noise variance and measured aorta or
central AP waveforms. (SNR= 19.833 db, SNRE= 18.808 db).

measure (as shown in Figure 6) of the FIR filter-based methods and the proposed method are
compared in Table 2 for different noise levels. The results show the superior performance of
the proposed method.

5. Discussion and Conclusions

We have developed a new technique to estimate the aortic pressure waveform from multiple
measured peripheral artery pressure waveforms. The technique is based on multichannel
blind deconvolution in which two or more measured outputs (peripheral artery pressure
waveforms) of a single input, multioutput system (arterial tree) are mathematically analyzed
so as to reconstruct the common unobserved input (aortic pressure waveform). Each channel
is modeled as an FIR filter. We assumed that all of the FIR filter parameters/coefficients are
varying slowly with time. Their values were estimated using methods based on theMalliavin
calculus. By this assumption, time-varying parameters, we were able to compensate for
the wrong FIR filter order and the possible time variations/nonlinearities of the channels.
The blind deconvolution problem was reformulated as a regression problem with unknown
time-varying regression coefficients. We introduced a new method for the estimation of
these slowly time-varying regression coefficients. The method relies heavily on the Malliavin
calculus (stochastic calculus of variations) and the generalized Clark-Ocone formula to find
a closed-form expression for the estimates of the unknown time-varying coefficients. Some
approximations were needed to find mathematically tractable estimates. While the approach
is quite general and can be applied to any signal model, we present only one signal model,
the Ornstein Uhlenbeck process. Other models could have been used as well.

We tested the proposed technique in swine experiments, and our results showed
superior performance for our proposed approach compared to conventional methods.
Our way to reconstructed AP is simple and straightforward. Our method needs only the
calculation of pressure wave components in the time domain and does not need calculations
in the frequency domain and no need to large computer time. Because of this simplicity
it is quite possible to implement this method in monitoring central pressure AP on-line.
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In the future, we suggest expanding this method by applying it to real data taken from
human cardiovascular simulator. We suggest studying the case where the time-varying
parameters/coefficients are rapidly changing over time. Another extension is the estimation
of the flow at the root of the Aorta from peripheral measurements of the flow/pressure.

Appendix

A. Derivation of the Estimates [37, 38, 42]

Let the augmented signal p(t) be defined as

p(t) =
d∑
i=1

ηi(t)Si(t). (A.1)

It is assumed that we have slowly varying unknown coefficients ηi(t), that is;

dηi(t) ≈ 0, (A.2)

or more precisely

dηi(t) � dSi(t). (A.3)

The signals, Si(t), each has an SDE of the form:

dSi(t) = ai(t, Si(t))dt + bi(t, Si(t))dWi(t), i > 1, (A.4)

which has a solution:

Si(t) = Si(0) +
∫ t

0
ai(u, Si(u))du +

∫ t

0
bi(u, Si(u))dWi(u), i > 1, (A.5)

and assume that

dS1(t) = a1(t, S1(t))dt = λ1S1(t)dt. (A.6)

with known S1(0) and known λ1.
Under the slowly varying-coefficient assumptions we have:

dp(t) =
∑
i

ηi(t)dSi(t). (A.7)

Substituting for dSi(t),we get an expression for the SDE of p(t) as

dp(t) =
∑
i

ηi(t)ai(t, Si(t))dt +
∑
i

ηi(t)bi(t, Si(t))dWi(t), (A.8)
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Rearrange (A.1), we get

η1(t) =
p(t) −∑i>1 ηi(t)Si(t)

S1(t)
, (A.9)

then,

dp(t) =
∑
i>1

ηi(t)
{
ai(t, Si(t)) − a1(t, S1(t))

S1(t)
Si(t)

}
dt

+
p(t)a1(t, S1(t))

S1(t)
dt +

∑
i>1

ηi(t)bi(t, Si(t))dWi(t)

(A.10)

which is reduced to:

dp(t) = λ1p(t)dt +
∑
i>1

ηi(t){ai(t, Si(t)) − λ1Si(t)}dt +
∑
i>1

ηi(t)bi(t, Si(t))dWi(t). (A.11)

We need to find an expression for p(t) that is function only of p(t) and Si(t); more specifically
as function of p(t) and the parameters of Si(t). The first step is to find ηi(t) as function of p(t)
and Si(t) orWi(t). This will be obtained through the generalized Clark-Ocone formula. To do
this, we need to do some mathematical manipulations such as the change of the probability
measure. This will enable us to find an expression for ηi(t) as function of p(t) and Si(t).

Let vi(ηi, Si, t) = ηi(t)bi(t, Si(t)), S(t) = [S2(t), . . . , Sd(t)]
T , η(t) = [η2(t), . . . , ηd(t)]

T ,

v(t) = [v2(t), . . . , vd(t)]
T ,W(t) = [W2(t), . . . ,Wd(t)]

T , a (d−1)-dimensional Brownian motion,
Ft, is the accompanying filtration, θ(t) = [θ2(t), . . . , θd(t)]

T is a (d − 1)-dimensional adapted
process and 0 ≤ t ≤ T .

Define

W̃j(t) =
∫ t

0
θj(u)du +Wj(t), j = 2, . . . , d, (A.12)

that is,

dW̃j(t) = θj(t)dt + dWj(t), (A.13)

Z(t) = exp

{
−
∫ t

0
θT (u)dW(u) − 1

2

∫ t

0
θT (u)θ(u)du

}
, (A.14)

and define the new probability measure

dQ = Z(T)dP, (A.15a)

where P is the old probability measure and Q is the new probability measure.
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Notice that, for a random variable x,

EQ

[
x

Ft

]
=

1
Z(t)

EP

[
Z(T)x
Ft

]
=

1
Z(t)

E

[
Z(T)x
Ft

]
, (A.15b)

where EQ[] the expected value with respect to the new probability measure Q, and E[] is the
expected value with respect to the old probability measure P.

Girsanov’s theorem states that W̃j(t) is aWiener process with respect to the probability
measure Q. In addition W̃j(t) is a Ft martingale with respect to Q [37, 43]. We choose θi(t)
such that the drift coefficient is function only of p(t). Other options or shapes could also be
used. Thus, let

θi(t) =
ai(t, Si(t)) − λ1Si(t)

bi(t, Si(t))
, i > 1. (A.16a)

Notice that

∂θi(t)
∂Sj(t)

= 0, i /= j, i, j > 1. (A.16b)

Substitute (A.13), (A.16a), and (A.16b) into (A.11), we get:

dp(t) = λ1p(t)dt + vT (t)dW̃(t), (A.17)

this has the form

dp(t) = ρ(t)p(t)dt + vT (t)dW̃(t), (A.18)

where

ρ(t) = λ1. (A.19)

1. The Estimates for the Stochastic Time-Varying Coefficients ηi(t) [30, 34]

The generalized version of the Clark-Ocone formula will now be used to find an estimate for
the unknown time-varying coefficients ηi(t) as function of p(t) and Si(t).

Let U(t) = e−
∫ t
0 ρ(s)dsp(t) = e−λ1tp(t), applying Ito lemma, we get

dU(t) = e−λ1tvT (t)dW̃(t). (A.20)

Or, equivalently,

e−λ1tp(T) = p(0) +
∫T

0
e−λ1tvT (t)dW̃(t). (A.21)
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Define the random variable

F = F(T) = e−λ1Tp(T) = p(0) +
∫T

0
e−λ1tvT (t)dW̃(t). (A.22)

We shall now use the generalized Clark-Ocone formula [30] that represents the random
variable F as:

F = EQ[F] +
∫T

0
EQ

⎧
⎨
⎩

[
DtF − F

∫T
t Dtθ(s)dW̃(s)

]

Ft

⎫
⎬
⎭dW̃(t), (A.23)

where DtF is the Malliavin derivative of F [34] and it is a (d − 1) × 1 vector, Dtθ(s) is the
Malliavin derivative of θ(s) and it is a (d−1)×(d−1) diagonal matrix since (∂θi(t))/(∂Sj(t)) =
0, i /= j. Equating (A.22) and (A.23) we get

∫T

0
e−λ1tvT

(
η, S, t

)
dW̃(t) =

∫T

0
EQ

⎧
⎨
⎩

[
DtF − F

∫T
t Dtθ(s)dW̃(s)

]

Ft

⎫
⎬
⎭dW̃(t). (A.24)

Equating the coefficients of dW̃(t) on both sides, we get

e−λ1tvT
(
η, S, t

)
= EQ

⎧
⎨
⎩

[
DtF − F

∫T
t Dtθ(s)dW̃(s)

]

Ft

⎫
⎬
⎭, (A.25a)

hence,

vT
(
η, S, t

)
= e−λ1tEQ

⎧
⎨
⎩

[
DtF − F

∫T
t Dtθ(s)dW̃(s)

]

Ft

⎫
⎬
⎭. (A.25b)

Remember that vi(ηi, Si, t) = ηi(t)bi(t, Si(t)), η(t) = [η2(t), . . . , ηd(t)]
T , and v(t) = [v2(t), . . . ,

vd(t)]
T . After some manipulations, we get (d − 1) equations in the (d − 1) unknowns

[η2(t) · · · ηd(t)]. Using the probability measure Q, each equation is of the form:

ηi(t) =
e−λ1t

bi(t, Si(t))
EQ

⎧
⎨
⎩

[
Di

tF − F
∫T
t (∂θi(s))/(∂Si(s))DtSi(s)dW̃i(s)

]

Ft

⎫
⎬
⎭. (A.26)
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Or, using the probability measure P

ηi(t) =
e−λ1t

bi(t, Si(t))Z(t)
E

⎧
⎨
⎩

Z(T)
[
Di

tF − F
∫T
t (∂θi(s))/(∂Si(s))DtSi(s)dW̃i(s)

]

Ft

⎫
⎬
⎭, (A.27)

where θi(t) = (ai(t, Si(t)) − λ1Si(t))/(bi(t, Si(t))).
In our case, ai(t, Si(t)) = ci(Oi(t) −Si(t)), and bi(t, Si(t)) = ei. Substituting these values

and setting λ1 = 0, we get

eiηi(t) = EQ

⎧
⎨
⎩

[
Di

tF − F
∫T
t (∂θi(s))/(∂Si(s))DtSi(s)dW̃i(s)

]

Ft

⎫
⎬
⎭. (A.28)

Equation (A.28) when solved yields an estimate for the unknown time-varying
coefficient ηi(t). This requires a knowledge of the shapes of DtF, ai(t, Si(t)), bi(t, Si(t)),
DtSi(s), and Si(t). Since amathematical model for Si(t) is available, it is easy to get the desired
values.

2. An Approximate Expression for EQ{[Di
tF(T) − F(T)

∫T
t Di

tθi(s)dW̃i(s)]/Ft}
Most of the time, it is difficult to find a closed-form expression for this equation. Instead
we shall try to put it as a summation of three terms: (1) constant, (2) integration w.r.t. time,
and (3) Integration w.r.t. a Wiener process. This way we will be able, in our case, to find a
closed-form solution to this formula. We shall present an approximate solution to the above
formula.

Since ηi(t) is in general function of W(t), it could be represented by the SDE

dηi(t) = μi

(
W(t), t

)
dt +

∑
j

κij

(
W(t), t

)
dWj(t). (A.29)

In our analysis we are more concerned with eiηi(t). Thus we need an SDE for eiηi(t). This has
the form

d
[
eiηi(t)

]
= eiμi

(
W(t), t

)
dt + ei

∑
j

κij

(
W(t), t

)
dWj(t). (A.30)

Let

fi
(
W, t
)
= EQ

⎧
⎨
⎩

[
Di

tF(T) − F(T)
∫T
t Di

tθi(s)dW̃i(s)
]

Ft

⎫
⎬
⎭. (A.31)
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Using the generalized Clark-Ocone formula for the vector case and the fact that “dW̃j(t) =
θj(t)dt + dWj(t),” one obtains an expression for the random variable fi(W, t) as:

fi
(
W, t
)
= EQ

{
fi
(
W, t
)}

+
∫ t

0

∑
j

φij

(
s,W(s)

)
dW̃j(s)

= EQ

{
fi
(
W, t
)}

+
∫ t

0

∑
j

φij

(
s,W(s)

)
θj
(
s,W(s)

)
ds +

∫ t

0

∑
j

φij

(
s,W(s)

)
dWj(s),

(A.32)

where, from the generalized Clark-Ocone formula,

φij

(
u,W(u)

)
= EQ

⎧
⎨
⎩

D
j
ufi
(
W, t
) − fi

(
W, t
) ∫ t

u D
j
uθj
(
u,W(u)

)
dW̃j(u)

Fu

⎫
⎬
⎭. (A.33)

In (A.32), the term “EQ{fi(W, t)}” could be approximated as a constant value. Thus, (A.32)
or the random variable fi(W, t) could be approximated as

fi
(
W, t
) ≈ Constant + Integration w.r.t. time + Integration w.r.t. the Wiener processes.

(A.34)

An approximate SDE for fi(W, t) could thus be obtained as

dfi
(
W, t
) ≈
∑
j

φij

(
t,W(t)

)
θj
(
t,W(t)

)
dt +

∑
j

φij

(
t,W(t)

)
dWj(t). (A.35)

Since

eiηi(t) = EQ

⎧
⎨
⎩

[
Di

tF − F
∫T
t (∂θi(s))/(∂Si(s))DtSi(s)dW̃i(s)

]

Ft

⎫
⎬
⎭ = fi

(
W, t
)
. (A.36)

Then

d
[
eiηi(t)

]
= dfi

(
W, t
)
. (A.37)

Substituting the different expressions for d[eiηi(t)] and for dfi(W, t) and equating them, we
get

eiμi

(
W(t), t

)
dt + ei

∑
j

κij

(
W(t), t

)
dWj(t) =

∑
j

φij

(
t,W(t)

)
θj
(
t,W(t)

)
dt

+
∑
j

φij

(
t,W(t)

)
dWj(t),

(A.38)
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that is,

eiμi

(
W(t), t

)
=
∑
j

φij

(
t,W(t)

)
θj
(
t,W(t)

)
,

eiκij

(
W(t), t

)
= φij

(
t,W(t)

)
.

(A.39)

Notice that the drift and the diffusion coefficients of d[eiηi(t)] are related to each other.
This came from the approximate solution of the CO formula.

Without an expression for φij(t,W(t)), we would not be able to solve for the unknowns
ηi(t). Instead of an exact expression, which is difficult to obtain, we shall assume a polynomial
shape with unknown parameters δij , γij

k
, and λ

ij

l
, namely,

φij

(
t,W(t)

)
= δij +

∑
k

γ
ij

k
Wk(t) +

∑
k

∑
l

λ
ij

kl
Wk(t)Wl(t) + · · · . (A.40)

The unknown parameters are estimated by minimizing the squared error, e2(T), between the
observed, p(t), and estimated observations p̂(t), where

p̂(t) =
∑
i

η̂i(t)Si(t), (A.41)

d
[
eiη̂i(t)

]
= eiμ̂i

(
W(t), t

)
dt + ei

∑
j

κ̂ij

(
W(t), t

)
dWj(t), (A.42)

eiμ̂i

(
W(t), t

)
=
∑
j

φ̂ij

(
t,W(t)

)
θj
(
t,W(t)

)
, (A.43)

eiκ̂ij

(
W(t), t

)
= φ̂ij

(
t,W(t)

)
, (A.44)

φ̂ij

(
t,W(t)

)
= δ̂ij +

∑
k

γ̂
ij

k Wk(t) +
∑
k

∑
l

λ̂
ij

klWk(t)Wl(t), (A.45)

e2(T) =
∫T

0

[
p(t) − p̂(t)

]2
dt. (A.46)

Abbreviations

AIC: Akaike information criterion
AP: Arterial pressure
BP: Blood pressure
CO: Clark-Ocone
CV: Cardiovascular
FIR: Finite impulse response
OLS: Ordinary least square
PAP: Peripheral arterial pressure
SDE: Stochastic differential equation
SNR: Signal-to-noise ratio
SNRE: Signal-to-noise ratio of the estimate
TPR: Total peripheral resistance.
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