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The stability of a delay differential equation can be investigated on the basis of the root location
of the characteristic function. Though a number of stability criteria are available, they usually do
not provide any information about the characteristic root with maximal real part, which is useful
in justifying the stability and in understanding the system performances. Because the characteristic
function is a transcendental function that has an infinite number of roots with no closed form, the
roots can be found out numerically only. While some iterative methods work effectively in finding
a root of a nonlinear equation for a properly chosen initial guess, they do not work in finding the
rightmost root directly from the characteristic function. On the basis of Lambert W function, this
paper presents an effective iterative algorithm for the calculation of the rightmost roots of neutral
delay differential equations so that the stability of the delay equations can be determined directly,
illustrated with two examples.

Copyright © 2008 Z. H. Wang. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Many engineering systems can be modeled as neutral delay differential equations (NDDEs)
that involve a time delay in the derivative of the highest order [1-9], which are different from
retarded delay differential equations (RDDEs) that do not involve a time delay in the derivative
of the highest order [10-14]. For example, a system, which consists of a mass mounted on a
linear spring to which a pendulum is attached via a hinged massless rod, is used to predict the
dynamic response of structures to external forces using a set of actuators, and it is modeled as
an NDDE if the delay in actuators is taken into consideration [7]. While the RDDEs have been
studied intensively in the literature (see, e.g., [10-14]), the NDDEs have been investigated
relatively few. Analysis shows that, both RDDEs and NDDEs may exhibit very complicated
nonlinear dynamics. For example, a first-order autonomous DDE can exhibit chaotic motion,
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and a first-order autonomous NDDE with a single delay can even admit homoclinic snaking
[5]. Complex behaviors of dynamical systems come out after certain stationary solutions lose
their stability, so stability analysis plays a fundamental role in system dynamics. Usually, the
stability analysis for equilibriums of DDEs can be investigated on the basis of the method of
Lyapunov’s function (al) including the LMI (linear matrix inequality) method, or by means
of the root location of the characteristic functions for equilibriums [10-14]. In particular, the
stability can be studied on the basis of stability switches [7, 8, 10, 14], if the delay effect on the
stability is addressed. In this case, the delay interval is divided into a number of subintervals by
the critical values of delay for which the system changes its equilibriums from stable status to
unstable status, or from unstable status to stable status, as the delay passes through the critical
delays, and the system has the same stability in each subinterval. If a DDE admits a number
of stability switches, then the system can be stabilized or destabilized by adjusting the delay
value only. It is worthy to note that, however, the stability may be very poor in some delay
intervals for which the system is asymptotically stable [14]. Thus, in practical applications, it is
required not only to know whether the time-delay system is asymptotically stable, but also to
know the stability margin. Therefore, a computational algorithm for finding the characteristic
root with maximal real part (rightmost root for short) of an NDDE is preferable.

The characteristic quasipolynomial of a DDE has an infinite number of roots that do not
have closed form, and the roots can be found numerically only. Though the famous Newton-
Raphson method works effectively in finding a root of a nonlinear equation for a properly
chosen initial guess, it does not work in finding the rightmost root of an NDDE directly from the
characteristic quasipolynomial. In [15], an iterative scheme was proposed for the calculation of
the rightmost root of an RDDE, where the rightmost root was assigned to be the rightmost root
of a simplified polynomial resulted from the quasipolynomial in each step of the iteration. The
problem is that the iterative sequence in [15] is frequently not convergent. Recently, the author
shows in [16] that the Newton-Raphson method or the Halley method computes effectively
the rightmost roots of RDDEs if Lambert W function [17] is applied.

In this paper, we are interested in the stability test of NDDEs,

x(t) +Cx(t—71) = Ax(t) + Bx(t—-1), x€R", (1.1)

whose characteristic equations are assumed in the form
A = (1-pe?)A\" +a; (e )A"  +--- +a,(e7) =0, (1.2)
where p is a constant, and the coefficients a;(z) are polynomials in z. The systems discussed
in [1-9] fall into the category of (1.1). If p = 0, then the trivial solution x = 0 is asymptotically

stable if and only if A(\) has roots with negative real parts only [10-14], which is equivalent
to a < 0, where

a=max{Rel: A1) =0, A € C}. (1.3)

This may not be the case of NDDEs. If |p| = 1, the condition “A () has roots with negative real
parts only” is not equivalent to a < 0, because the infinite characteristic roots with negative
real parts may accumulate on the imaginary axis as shown in Section 2.1. If |p| > 1, A(})
has always roots with positive real part, so x = 0 is unstable for all given 7 > 0. Thus, only
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Ip| < 1is assumed true in this paper, for which “A(\) has roots with negative real parts only”
is equivalent to a < 0.

The aim of this paper is to generalize the iterative method developed in [16] for
calculating the rightmost root of RDDEs to the stability test of NDDEs. The method will be
briefly introduced in Section 2, and two examples will be given in Section 3 to demonstrate the
efficiency of the proposed method. A few concluding remarks will be given in Section 4.

2. An algorithm for calculating the rightmost characteristic root of time-delay systems

A real a corresponds to a real characteristic root or a pair of complex conjugate characteristic
roots. For simplicity, such characteristic root(s) is called the rightmost root in this paper. In this
section, the Newton-Raphson method will be combined with a special function-Lambert W
function to find out the rightmost root of A(A).

2.1. An explicit stability criterion for a first-order RDDE

Let us consider a first-order retarded delay differential equation described by
x(t) +ax(t) +bx(t—7) =0. (2.1)
The characteristic equation corresponding to the trivial solution x = 0 is
A(N) :=A+a+be =0. (2.2)

On the basis of Lambert W function, the stability condition can be presented explicitly. In fact,
Lambert W function w = W(z) is defined as the solution of a transcendental equation

we’ =z, (ze(). (2.3)

It has infinite branches, denoted by Wi(z), k = 0,£1,+2, ..., respectively. Wy(z) is the unique
branch that is analytic at the origin z = 0, and is called the principal branch. For more details
about Lambert W function, it is referred to [17-19].

Now, if A(A) = 0, then (A+a)e'” = —b, and T(A+a)eW* 47T = —bre®". Thus, the characteristic
roots can be expressed explicitly in terms of Lambert W function [17]

Wi (- bre
a+—k( e )
.

A =-— , k=0,4£1,£2,.... (2.4)

Moreover, it has been proved in [19]: for arbitrary z € C, one has

max Re Wk (z) = Re Wy(z), (2.5)
k=0,£1,42,...

where Re z stands for the real part of z € C. Thus, the rightmost root of (2.1) is 1¢, and the
trivial solution, x = 0, of (2.1) is asymptotically stable if and only if Re 1y < 0, namely,

Re Wy(-bte?") < TRe a. (2.6)

Such a stability condition can be checked easily, because Maple, Matlab, and Mathematica, the
three popular mathematical softwares, provide a calculator of Lambert W function.
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2.2, A numerical scheme for neutral delay differential equations

It is not possible to gain an explicit form of the rightmost root, as done above, for other delay
differential equations. Thus, an iterative algorithm was proposed in [16] for calculating the
rightmost root of RDDEs whose characteristic equation reads

A = A"+ ar (e, e, e ) 4y g, (e7M, e, e ) = 0, (2.7)

where the coefficients a;(z1,z2,...,2z,) are polynomials. The main points of this iterative
method are summarized as follows.

2.2.1. Choice of the initial guess

A properly chosen initial value is important in the applications of iterative methods. For our
problem, one can firstly chose freely a complex number 1y and then refine it to be the rightmost
root of the following polynomial equation

A 4 ay(e7hm e el )\ g, (e el 7o) =, (2.8)

where the coefficients a; are assigned to fixed values. Note that the notation Ay here denotes
the initial guess, rather than the rightmost root given in Section 2.1.

2.2.2. Construction of the algorithm

For certain fixed constants a > 0 and b, define
F(A) = al+b-Wy((al +b- A(L))e™?), (2.9)

where Wy(z) is the principal branch of Lambert W function, and the constants a, b are not
large to avoid numerical problems due to large factor. Then the Newton-Raphson method is
employed to find the rightmost root of A(A) = 0;

F(L)

Xiv1 =X — )

(i=0,1,2,...); (2.10)

which has quadratic convergence for unrepeated roots. Alternatively, Halley’s method

1FQ)F (W) \ 7 FL)
)Li+ :)Li_ 2 4 =Y, 1,4... .
1 <1 2 (P’(A»)Z) Fay GT0b2e) (2.11)

can be used. This algorithm has order 3 of convergence for unrepeated roots. The iteration is
stopped at step N if

AN = ANl <€, (212)

for a given tolerance e.
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2.2.3. Verification of the computational result

Due to (2.5), it is expected that Ay resulted from (2.10) or (2.11) is the rightmost root of the
delay differential equation, namely, for any root A of A(A) = 0, one has

Rel < Rely. (2.13)

Equation (2.13) is guaranteed if the Nyquist plot of A(iw + Re An)/(1 +iw)" passes through
the origin of the complex plane and the Nyquist plot of A(iw + Re Ay + p) /(1 +iw)" does not
encounter the origin for very small y > 0. The method of Nyquist plot was originally proposed
in [20] for RDDEs, and extended to NDDEs in [21].

Such a scheme works also for the quasipolynomial defined in (1.1) for NDDEs with
Ipl <1.

2.3. Accumulation of the characteristic roots

The different braches of Lambert W function can be used to find different roots of A(A) = 0. For
simplicity, let us calculate the roots of a first-order autonomous NDDE x(t) = —-x(t — ) — ax(t)
with

AN =L+Lte™ 7 +a (2.14)
Let Wi(z) be the kth branch of Lambert W function defined in Section 2.1, and define
FiM)=A+a-Wi(-1re™) /T, (k=0,£1,%2,..)), (2.15)

then all the characteristic roots, computed by using the Newton-Raphson method or Halley’s
method for Fi(\), have negative real parts, and they accumulate on the imaginary axis as
shown in Table 1. As a result, the solution x = 0 is not stable, though all the roots of A(\) have
negative real parts.

The condition |p| < 1, required in the proposed algorithm for finding the rightmost root,
is not satisfied in this example. The branch Wy(z) yields the leftmost root, rather than the
rightmost root.

3. Two illustrative examples

In this section, the iterative method proposed in Section 2 will be applied to calculate the
rightmost roots of two NDDESs discussed in the literature.

3.1. A neutral delayed oscillator

Let us firstly consider the stability of a second-order NDDE [7] arising from structure dynamics
X(t) +28x(t) + x(t) + px(t—71) =0, (3.1)

where 0 < p < 1. The characteristic equation is

A) = A2+ 28 +1+pA2e ™™ =0. (3.2)
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Table 1: Numerical calculation of the roots of A(1) in (2.14) with 7 = 0.3, a = 0.5.

Branch Characteristic root Branch Characteristic root

-200 —0.2572 x 1077 - 0.4178 x 10*i 1 ~0.3631 x 1072 + 0.1063 x 10%i
-100 —0.9644 x 1077 - 0.2084 x 10*i 2 —0.4200 x 1073 + 0.3147 x 10
-20 —0.2498 x 107> — 0.4084 x 10% i 3 —0.1517 x 1073 + 0.5239 x 10%i
-10 —0.1052 x 107 - 0.1990 x 10% i 4 —0.7747 x 107 + 0.7333 x 10%i
-5 —0.4688 x 107 — 0.9427 x 10%i 5 —0.4688 x 107 + 0.9427 x 10
-4 —0.7747 x 107 - 0.7333 x 10%i 10 —0.1052 x 107 + 0.1990 x 10%i
-3 ~0.1517 x 1073 - 0.5239 x 10%i 20 —0.2498 x 107° + 0.4084 x 10% i
-2 —0.4200 x 107% - 0.3147 x 10%i 100 —-0.9644 x 1077 + 0.2084 x 10*i
-1 —0.3631 x 1072 = 0.1063 x 10%i 200 —0.2572 x 1077 + 0.4178 x 10*i
0 -0.2410 500 ~0.1386 x 1071° + 0.1046 x 10° i

Each root must be a root of a certain branch of the following equation:
Fr(L) =280+ 1= Wi (= A2 (1 +pe™)e?** ) =0, (k=0,+1,+2,...). (3.3)

Then the rightmost root can be found out from Fy(A) = 0 via the Newton-Raphson method or
Halley’s method. For example, let p = 0.2, £ = 0.05, and calculate the rightmost root for four
special cases: 7 =1,5,7.5,11.

To this end, one chose freely an initial guess, say Ay = 1.0 + 3.0i. Because the simplified
polynomial equation A% + 2¢A + 1 + pA%e™ = 0, corresponding to (2.8), has two complex roots

-0.5971 x 1071 +0.1036 x 107, —0.4813 x 107 +0.1038 x 104, (3.4)

the initial guess can be refined as Ay = —0.4813 x 107" + 0.1038 x 1017 for T = 1. The choice of
an initial guess with negative real part is also understandable from the Nyquist plot. Due to
Figure 1(a), where the Nyquist plot does not encounter the origin of the complex plane, so the
trivial solution x = 0 is asymptotically stable, and consequently, the rightmost root must have
negative real part.

With this Ay, the 4th iteration of the Newton-Raphson method gives A4 = -0.1155 —
0.92201i. As shown in Figure 1(b), the Nyquist plot of A(icw —0.1155)/(1 + iw)? passes through
the origin, it follows that A4 = —=0.1155 - 0.92201 is the rightmost root for 7 = 1.

Similarly, starting from 1y = —0.4813 x 107! + 0.1038 x 101, the 4th iteration, 6th iteration,
and 4th iteration of the Newton-Raphson method give the rightmost roots 0.3125 x 107" +
0.98107, —0.6278 x 107! - 0.86921i, and 0.2546 x 10~ — 0.99861i for 7 = 5,7.5,11, respectively.
The numerical results are in agreement with that obtained in [7].

Moreover, as shown in Figure 2, the curve of the real parts of the rightmost roots with
respect to the delay can be produced numerically by means of the proposed algorithm, if the
delay effect on the asymptotical stability is addressed. From Figure 2, where the initial guess is
taken as 19 = —0.4813 x 10! +0.1038 x 10 i, we see that the trivial solution x = 0 of (3.1) exhibits
two stability switches in 7 € [0,7], occurs at 719 = 3.2742, and 1 = 6.1742, respectively, and
the corresponding rightmost roots can be found to be +1.1032 i, +£0.9252 i, respectively. This is
the same result as that obtained on the basis of stability switches [7]. In fact, A(iw) = 0 gives
(1-pHw* + (4¢* - 2)w? +1 = 0. When p = 0.2, ¢ = 0.05, one has two positive roots w; = 1.1032
and w; = 0.9252, and the corresponding minimal critical delays, determined from A (iw) = 0,
are found easily to be 79 = 3.2742 and T = 6.1742, respectively.
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Figure 1: Graphical test for the rightmost root of (3.1): (a) the Nyquist plot of A(iw)/(1 + iw)* zoomed
around the origin in Nyquist plot; (b) the Nyquist plot of A (iw —0.1155) /(1 + iw)*.
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Figure 2: The solution x = 0 of (3.1) is asymptotically stable if T € [0,3.2742) U (6.1742,7], or it is unstable
if T € (3.2742,6.1742).

@) (b)

Figure 3: Graphical test for the rightmost root of (3.5): (a) the Nyquist plot of A(iw)/(1 + iw); (b) the
Nyquist plot of A(iw +0.7581 + 0.001) /(1 + icw).
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From Figure 2, we see also that at 7 = 2.12, the rightmost root —0.2201 - 0.1061 x 10i has
the smallest negative real part. This fact indicates that a proper chosen delay value can improve
the stability of an NDDE.

3.2. An NDDE with two delays

Now, let us consider an NDDE with two delays [22]

d

3 1 1 3
E< () - Zx(t -1+ zx(t - 2)) = Zx(t) + Zx(t -1) (3.5)

to show that the method work also for NDDEs with multiple delays. The characteristic
equation is

o 3 . 1_u>_1_3_1_
A() ._A<1 et e ;-3¢ =0 (3.6)

As shown in Figure 3(a), the Nyquist plot of A(iw)/(1 + iw) encounters the origin of the
complex plane, so the trivial solution x = 0 of (3.5) is unstable, and the rightmost root must
have positive real part. To find out the rightmost root, let

F(\) =A- i - W0<</\ - 31 - A(x)>e*-1/4>, (3.7)

where Wy (z) is the principal branch of Lambert W function. Then, choose freely an initial
guess, say Ao = 1.0+2.01, and refine it as the root of A\(1-3e™% /4 +e 20 /2) ~1/4-3e™ /4 =,
namely, replace it with 1o = —0.9513 x 107" — 0.2924i. Then the third iteration of the Newton-
Raphson method gives A3 = 0.7581. Moreover, the Nyquist plot in Figure 3(b) shows that A3 =
0.7581 is the rightmost root, because the Nyquist plot of A (i + 0.7581 + 0.001) /(1 + iw) does
not encounter the origin. This result is the same as the one obtained by using DDE-BIFTOOL
[22,23].
Moreover, when a negative feedback control —u x(t) is performed on to (3.5),

d

I (x(t) - Zx(t -1+ %x(t - 2)> - }Ix(t) - ?Ix(t -1) = —ux(t), (3.8)

the unstable equilibrium is stabilized if one chooses, for example, 0.5 < u < 1.5, as shown in
Figure 4.

4. Conclusions

In this paper, the iterative method based on Lambert W function for calculating the rightmost
roots of RDDEs is extended to the stability test of a kind of NDDEs for which the asymptotical
stability is guaranteed if all the characteristic roots have negative real parts. Two illustrative
examples show that the method works effectively. The numerical scheme enables one not
only to know whether the time-delay system is asymptotically stable, but also to know the
stability margin. A rigorous mathematical treatment of the iterative method such as the
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Figure 4: The plot of the real part of the rightmost root with respect to the feedback gain u for (3.8).

convergence of the iterative sequence, however, is not available in this paper and is left for
future consideration.

Though the investigation is made mainly for NDDEs with fixed parameters, the
proposed scheme does work for some NDDEs with a parameter falling in a given interval.
As shown in the first illustrative example from structure dynamics, for example, the iterative
method can produce a plot of the real part of the rightmost root with respect to the delay, from
which one can easily determine for what value of delay the system is asymptotically stable,
and for what value of delay, the system is unstable. It reveals also that a proper chosen delay
value can improve the stability of an NDDE. In the second illustrative example, an interval of
the feedback gain is determined for stabilizing the unstable equilibrium of the NDDE by using
the iterative method.
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