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K-L Galerkin projection is used as a model reduction technique for nonlinear systems to derive a
system of ordinary differential equations (ODEs) that mimics the dynamics of the GKdVB equation.
The data coefficients derived from the ODE system are then used to approximate the solutions of
the GKdVB equation. Finally, three state feedback linearization control schemes with the objective of
enhancing the stability of the GKdVB equation are proposed. Simulations of the controlled system
are given to illustrate the developed theory.
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1. Introduction

The generalized Korteweg-de Vries-Burgers (GKdVB) equation

ut − νuxx + μuxxx + uαux = 0, x ∈ [0, 2π], t ≥ 0,

u(x, 0) = u0(x),
(1.1)

where ν, μ ≥ 0, and α is a positive integer, is one of the simplest partial differential equations
that displays nonlinearity, with fixed level of dissipation and dispersion. It has depicted many
phenomena, for example strain wave and longitudinal deformation in a nonlinear elastic rod
[1]. If α = 1, and ν = 0 in (1.1), the GKdVB equation becomes the classical KdV equation which
was derived in 1872 by Boussinesq and Korteweg and de Vries to model the unidirectional
propagation of waves in many physical systems [2, 3]. If α = 1, the GKdVB equation becomes
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the KdVB equation which was used as a model for long waves in shallow water [4] and as
model of unidirectional propagation of planar waves [5]. If α = 1 and μ = 0, the GKdVB
equation becomes the well-known Burgers equation [6]. If α = 2, the GKdVB equation becomes
a model of some physical phenomena [7]. Moreover, the importance of the GKdVB equation
for larger values of α was discussed by Benjamin et al. [7] and Bona et al. [8].

Recently, the control problem of the KdVB equation, KdV equation, and Burgers
equation has been treated by many investigators; see [9–19] to name a few. Since the infinite-
dimensional nature of the PDE models for fluid flow processes can be considered as an obstacle
for the synthesis of practically implementable output feedback controllers, researchers have
been motivated to develop model reduction techniques for the derivation of low-dimensional
ordinary differential equation (ODE) models that mimic the dynamics of the PDE models [20–
23].

In this paper, we present a distributed control scheme for GKdVB equation with periodic
boundary conditions and the following initial condition:

u0(x) = f(x) = e−10(0.4x−1)2
, (1.2)

using a reduction technique known by the Karhunen-Loéve (K-L) Gelerkin procedure. Our
approach which is based on the K-L procedure is different from the one carried by Rosier and
Zhang [15]. We derive a system of ODEs that mimics the dynamics of the GKdVB equation,
and show that the system of ODEs has the same qualitative structure to that of the GKdVB
equation. Then, we apply state feedback controllers on the ODE system to force the dynamics
of the GKdVB equation to follow a certain behavior.

The paper is organized as follows. In Section 2, numerical simulations of the GKdVB
equation are obtained using pseudospectral Fourier Galerkin method. Then, Karhunen-Loève
decomposition is used on the numerical simulation data to extract the coherent structures for
α = 1 and α = 2. Section 3 presents the K-L Galerkin projection method used on the GKdVB
equation to extract a system of ODEs that mimics the dynamics of the GKdVB equation.
Section 4 introduces three feedback linearization control schemes used on the obtained system
of ODEs to enhance the convergence rate to the steady-states. Numerical results are shown
in each section to illustrate the presented theory, and some concluding remarks are given in
Section 5.

2. The Karhunen-Loève decomposition

The Karhunen-Loève (K-L) decomposition is a very useful and powerful statistical technique
that is used in many applications. In the literature, the K-L decomposition is known by
different names such as the principal component analysis (PCA) [24] , the empirical orthogonal
functions [25], the quasiharmonic modes [26], the singular value decomposition (SVD) or
the proper orthogonal decomposition (POD) [27], and the Hoteling transform [28]. The
method was mainly used for data compression and feature identification. Among the many
applications that utilized the Karhunen-Loève (K-L) decomposition, the K-L decomposition
was used in fluid dynamics [27, 29], in the analysis of two-dimensional Navier-Stokes (N-S)
equation [22, 30–32], and in the study of flames [33].

In this section, we use the K-L decomposition on the numerical simulation data of the
GKdVB equation in order to extract the most energetic eigenfunctions or coherent structures
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that span the data set in an optimal way. Since K-L decomposition is heavily used in this
section, we briefly describe the steps involved in this decomposition.

First, we collect the data which represents a numerical solution of the GKdVB equation
at different time steps. That is, we have the following data {Xi}Mi=1, with Xi = [x1

i x
2
i · · ·x

N
i ]T at

the ith time step, where M is the number of vectors and N is the number of entries in a vector.
Next, the mean X of the data is computed such that

X =
1
M

M∑

i=1

Xi. (2.1)

The mean is then subtracted from each Xi, i = 1, . . . ,M. The resulting vectors

X̂i = Xi −X, i = 1, . . . ,M, (2.2)

are called the caricature vectors which have zero mean.
Based on the snapshot method [29], the covariance matrix, which is a way to measure

how the data is spread out, is computed. The (i, j) element of the covariance matrix C is given
by

cij =
1
M

〈
X̂i, X̂j

〉
, i, j = 1, . . . ,M, (2.3)

where 〈·, ·〉 denotes the usual Euclidean inner product.
The eigenfunctions are computed as follows:

ψk =
M∑

i=1

φ
[k]
i X̂i, k = 1, . . . ,M, (2.4)

where φ[k]
i is the ith component of the kth eigenvector. These eigenfunctions form an optimal

basis for the decomposition of the data set

X̂(x, t) =
M∑

i=1

ai(t)ψi(x), (2.5)

where ai(t) are the coefficients calculated from the projections of the sample vector onto an
eigenfunction and are calculated as

ai =

〈
X̂·ψi

〉
〈
ψi·ψi

〉 , i = 1, . . . ,M. (2.6)

The energy of the data is defined as follows:

E =
M∑

i=1

λi, (2.7)
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where {λi, i = 1, . . . ,M} is the set of eigenvalues that corresponds to the set of eigenfunctions
{ψi, i = 1, . . . ,M}. To each eigenfunction, an energy percentage Ek is assigned based on the
eigenfunction’s associated eigenvalue:

Ek =
λk
E
. (2.8)

Finally, the data can be regenerated from the optimal basis by the following representation:

X(x, t) ≈ X +
M∑

i=1

ai(t)ψi(x). (2.9)

In this section, the K-L decomposition is used to analyze the solution of the GKdVB
equation (1.1) subject to periodic boundary conditions and the initial condition given by (1.2).
The numerical solution u(x, t) of the GKdVB equation is obtained by a pseudospectral Fourier
Galerkin procedure. Then, u(x, t) is expanded in terms of the K-L eigenfunctions ψn as follows:

u(x, t) =
M∑

n=1

an(t)ψn(x), (2.10)

where

ψn(x) =
H∑

k=−H
ck,ne

ikx (2.11)

are the K-L eigenfunctions and where H depends on the spatial discretization of ψ.

2.1. The K-L decomposition for the case α = 1

Figure 1(a) shows the solution u(x, t) of the GKdVB equation (1.1) with α = 1 as it evolves to
the steady-state solution for the initial condition given by (1.2); the time t was chosen to be 35
seconds; dt = 0.001 second; ν = 0.5; and μ = 0.01

The K-L decomposition was applied on the numerical solution mentioned above. Two
eigenfunctions capturing 99.6% of the energy were obtained (see Figure 1(b)). The first
eigenfunction captures 95.4% of the energy and the second one captures 4.2% of the energy.
Figure 1(c) presents the data coefficients that are obtained using (2.6). Figure 1(d) depicts the
approximated solution of the GKdVB equation using two eigenfunctions.

Comparing Figures 1(a) and 1(d), one can conclude that two eigenfunctions are
sufficient to capture the dynamics of the GKdVB equation when α = 1.

2.2. The K-L decomposition for the case α = 2

Numerical experiments show that when the degree of nonlinearity of the GKdVB equation
increases by increasing the parameter α, the solution of the GKdVB equation evolves faster to
the steady-state solution, and this is due to the small size of the initial condition used.

Figure 2(a) shows the solution u(x, t) of the GKdVB equation (1.1) with α = 2 as it
evolves to the steady-state solution for the initial condition given by (1.2), and when ν = 0.5,
and μ = 0.01.
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Figure 1: (a) A 3D landscape plot of the simulated solution of the GKdVB equation when α = 1, ν = 0.5,
μ = 0.01, and f(x) = e−10(0.4x−1)2

. (b) The most energetic eigenfunctions of the solution of the GKdVB
equation in (a). (c) The data coefficients associated with the eigenfunctions in (b). (d) A 3D landscape plot
of the approximated solution using (3.2).

Applying the K-L decomposition on the numerical solution mentioned above, two
eigenfunctions capturing 99.7% of the energy were obtained (see Figure 2(b)). The first
eigenfunction captures 95.4% of the energy and the second one captures 4.3% of the energy.
Figure 2(c) presents the corresponding data coefficients obtained, and Figure 2(d) depicts the
approximated solution of the GKdVB equation using the above eigenfunctions.

When comparing Figures 2(a) and 2(d), one can conclude that the K-L decomposition
was able to capture the large-scale dynamics of the GKdVB equation with only two
eigenfunctions.

3. The K-L Galerkin projection

In order to extract a system of ODEs that mimics the dynamics of the original GKdVB equation
(1.1), we first write the original PDE as follows:

∂u

∂t
= D(u), (3.1)
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Figure 2: (a) A 3D landscape plot of the simulated solution of the GKdVB equation when α = 2, ν = 0.5,
μ = 0.01, and f(x) = e−10(0.4x−1)2

. (b) The most energetic eigenfunctions of the solution of the GKdVB
equation in (a). (c) The data coefficients associated with the eigenfunctions in (b). (d) A 3D landscape plot
of the approximated solution using (3.2).

with given initial and boundary conditions, where “D” is a differential operator, and u(x, t) is
an approximation solution that can be written in the following form:

u(x, t) =
K∑

i=1

ai(t)ψi(x). (3.2)

In (3.2), ai(t) is the ith solution of the system of ODEs and can be computed in a way
that minimize the residual error produced by the approximate solution above, ψi(x) is the
ith eigenfunction from the K-L decomposition, and K is the number of the most energetic
eigenfunctions.

The system of ODEs can be derived by projecting the normalized eigenfunctions onto
the PDE as follows:

ȧi(t) =

〈
D

(
K∑

i=1

ai(t)ψi(x)

)
, ψi(x)

〉
, i = 1, . . . , K (3.3)
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with initial condition

ai(0) =
〈
u(x, 0), ψi(x)

〉
, i = 1, . . . , K, (3.4)

where u(x, 0) is known from the original PDE.

3.1. The K-L Galerkin projection for the case α = 1

Using (3.2) on the GKdVB equation (1.1) with α = 1,

ut = νuxx − μuxxx − uux, (3.5)

and choosing the numbers of eigenfunctions K = 2, we obtain the following:

2∑

i=1

ȧi(t)ψi(x) = ν
2∑

i=1

ai(t)ψ ′′i (x) − μ
2∑

i=1

ai(t)ψ ′′′i (x) −
(

2∑

i=1

ai(t)ψi(x)

)(
2∑

j=1

aj(t)ψ ′j(x)

)
, (3.6)

where ȧi(t) is the derivative with respect to time and ψ ′i(x) is the first derivative with respect to
x. Now, taking the Euclidean inner product of the above equation with ψk, k = 1, 2 and using
the orthogonality property of ψi’s:

〈
ψi, ψj

〉
=
∫2π

0
ψi(x)ψj(x)dx =

{
0, if i /= j,

1, if i = j,
(3.7)

we obtain the following system of ODEs:

ȧk(t) = ν
2∑

i=1

ai(t)
〈
ψk, ψ

′′
i

〉
− μ

2∑

i=1

ai(t)
〈
ψk, ψ

′′′
i

〉
−

2∑

i=1

2∑

j=1

ai(t)aj(t)
〈
ψk, ψiψ

′
j

〉
, k = 1, 2. (3.8)

Substituting the eigenfunctions obtained for the case α = 1 in (3.8), we get

ȧ1 = −0.0054188768νa1 − 0.0175592926a1a2 + 0.0806774017νa2

+ 0.0208940165μa2 + 0.0047853181a2
2,

ȧ2 = 0.0806774017νa1 − 0.0208940165μa1 + 0.0175592854a2
1

− 0.0047853181a1a2 − 1.3396124415νa2.

(3.9)

The solution of the above system can be obtained numerically using any ODE solver. Using
MATLAB ODE solver, a solution of the system was found for the initial conditions a1(0) = 0.006
and a2(0) = −0.1 (see Figure 3).

Using (3.2) with the data coefficients computed above and the normalized eigenfunc-
tions obtained from the K-L decomposition, we obtain an approximate solution of the GKdVB
equation. Figure 4 shows the approximated solution of the GKdVB equation when α = 1.

Comparing Figure 1(d) with Figure 4, one can conclude that the Galerkin projection
method gives a reasonable approximation of the solution of the GKdVB equation when α = 1.
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Figure 3: Generated solutions of a1 and a2 from the K-L Galerkin ODE system when α = 1 with the initial
conditions a1(0) = 0.006 and a2(0) = −0.1.
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Figure 4: Approximated solution of the GKDVB equation generated by the K-L Galerkin ODE system when
α = 1 with the initial conditions a1(0) = 0.006 and a2(0) = −0.1.
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3.2. The K-L Galerkin projection for the case α = 2

Using the procedure illustrated in Section 3.1 above, a system of ODEs is obtained for the case
α = 2:

ȧk(t) = ν
2∑

i=1

ai(t)
〈
ψk, ψ

′′
i

〉
− μ

2∑

i=1

ai(t)
〈
ψk, ψ

′′′
i

〉

−
2∑

i=1

2∑

j=1

a2
i (t)aj(t)

〈
ψk, ψ

2
i ψ
′
j

〉
− 2

2∑

i/=j=1

ai(t)a2
j (t)
〈
ψk, ψiψjψ

′
j

〉
.

(3.10)

Substituting the eigenfunctions obtained for the case α = 2 in (3.10), we get

ȧ1 = −0.00613709a2
1a2 + 0.00428373a1a

2
2 − 0.00374423a3

2

+ 0.00830501μa2 − 0.0066366916νa1 + 0.0918063477νa2,

ȧ2 = 0.00613709a3
1 − 0.00428373a2

1a2 + 0.00374423a1a
2
2

− 0.00830501μa1 + 0.0918063477νa1 − 1.3533719227νa2.

(3.11)

Figure 5 shows the general behavior of the solution of system (3.11) computed by the MATLAB
ODE solver with the initial conditions a1(0) = 35 and a2(0) = −30, and Figure 6 presents an
approximation of the solution of the GKdVB equation when α = 2. Comparing Figure 2(d)
with Figure 6, one can deduce that the system of ODEs computed by the Galerkin projection
method mimics the dynamics of the GKdVB equation when α = 2.

4. Feedback linearization control scheme for the GKdVB equation

In this section, we analyze the GKdVB equation using distributed control. The idea of using
distributed control on PDEs was investigated in [20, 34–38]. Three schemes are introduced in
this section.

4.1. A feedback linearization control scheme for the GKdVB equation

The GKdVB equation with distributed control can be written as

∂u

∂t
= ν

∂2u

∂x2
− μ∂

3u

∂x3
− uα ∂u

∂x
+

na∑

i=1

bivi(t), (4.1)

where bi(x) is the actuator distribution function, vi(t) is the ith input, and na is the number of
actuators which will be chosen to be 2.

As mentioned before in (3.2), the solution of the GKdVB equation can be expressed in
terms of the K-L eigenfunctions ψi, i = 1, 2. Hence, (4.1) becomes

2∑

i=1

ȧi(t)ψi(x)=ν
2∑

i=1

ai(t)ψ ′′i (x)−μ
2∑

i=1

ai(t)ψ ′′′i (x)−
(

2∑

i=1

ai(t)ψi(x)

)α( 2∑

i=1

ai(t)ψ ′i(x)

)
+

na∑

i=1

bivi(t).

(4.2)
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Using the Galerkin projection method, the GKdVB equation is transformed into the
following system of ODEs:

ȧk(t) = ν
2∑

i=1

ai(t)
〈
ψk, ψ

′′
i

〉
− μ

2∑

i=1

ai(t)
〈
ψk, ψ

′′′
i

〉
− g(t) +

2∑

i=1

βki vi(t), (4.3)

where

g(t) =

〈(
2∑

i=1

ai(t)ψi(x)

)α( 2∑

i=1

ai(t)ψ ′i(x)

)
, ψk

〉
, k = 1, 2,

βki =
∫2π

0
ψkbidx.

(4.4)

Define

ηk(t) = ν
2∑

i=1

ai(t)
〈
ψk, ψ

′′
i

〉
− μ

2∑

i=1

ai(t)
〈
ψk, ψ

′′′
i

〉
− g(t), (4.5)

wk(t) =
2∑

i=1

βki vi(t), k = 1, 2, (4.6)

then the system of ODEs (4.3) becomes

ȧk = ηk(t) +wk(t), k = 1, 2. (4.7)

Proposition 4.1. Let ξ1 and ξ2 be two positive real numbers, then the following feedback linearization
control scheme:

wk(t) = −ηk(t) − ξkak(t), k = 1, 2, (4.8)

renders the system of ODEs in (4.7) exponentially stable.

Proof. Substituting (4.8) in (4.7), we get

ȧk(t) = −ξkak(t), k = 1, 2, (4.9)

or

ak(t) = ak(0)e−ξkt, k = 1, 2, (4.10)

since ξ1, ξ2 > 0, then ak(t) will converge exponentially to zero as t→∞. Therefore, the system of
ODEs (4.7) with the controller given in (4.8) is exponentially stable.

Remark 4.2. We can force the solution of the system to converge to any desired fixed point. This
can be achieved by making the following change of variables:

ãk(t) = ak(t) + ck, k = 1, 2, (4.11)

where (c1, c2) correspond to the coordinates of the desired fixed point.
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Figure 7: The solutions of the controlled system of ODEs compared to the solutions of the uncontrolled
ODE system when α = 1, a1(0) = 0.006, a2(0) = −0.1 with the initial condition given by (1.2).

Now, from (4.6), we have the following:

(
w1(t)

w2(t)

)
=

(
β1

1 β1
2

β2
1 β2

2

)
·
(
v1(t)

v2(t)

)
. (4.12)

Using the result of the above proposition, system (4.12) can be written by

(
−η1(t) − ξ1a1(t)

−η2(t) − ξ2a2(t)

)
=

(
β1

1 β1
2

β2
1 β2

2

)
·
(
v1(t)

v2(t)

)
. (4.13)
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Figure 8: A 3D landscape of the approximated controlled solution of the GKdVB equation when α = 1,
ξ1 = ξ2 = 5, with the initial condition given by (1.2).

Provided that the coefficients βji , for (i, j = 1, 2), are well chosen (i.e., β1
1 β

2
2 − β

2
1 β

1
2 /= 0), then the

controllers v1(t) and v2(t) in (4.1) are determined by
(
v1(t)

v2(t)

)
=

(
β1

1 β1
2

β2
1 β2

2

)−1

·
(
−η1(t) − ξ1a1(t)

−η2(t) − ξ2a2(t)

)
. (4.14)

The solution of the controlled system of ODEs given by (4.7) can be calculated easily by
any ODE solver. The above controller was tested numerically using the MATLAB ODE solver
on the GKdVB equation for α = 1 and α = 2 with the initial condition given by (1.2). Figure 7
shows the plots of the solutions’ (a1(t) and a2(t)) profiles of the above controller for different
values of ξ’s; these profiles are also compared to the solution of the ODE system produced by
the Galerkin projection when α = 1. It should be noted that, when the value of ξ increases,
the solution evolves faster to the fixed point, and a better control is obtained. We present in
Figure 8 a 3D landscape of the approximated solution of the GKdVB equation when α = 1 with
ξ1 and ξ2 being chosen to be 5.

The solutions of the controller given by (4.7) for different values of ξ’s were compared
numerically to the solution of the ODE system produced by the Galerkin projection when
α = 2 (see Figure 9). Figure 10 depicts a 3D landscape approximation solution of the GKdVB
equation when α = 2 with ξ1 and ξ2 being chosen to be 0.2.

4.2. Another control scheme for the GKdVB equation

In the control scheme given by (4.8), all the terms of ηk, k = 1, 2, were canceled, whereas some
of the elements of ηk, k = 1, 2, have a stabilizing effect on the dynamics and hence there is no
need to cancel them. In this section, we design another version of the feedback controller given
by (4.8).

As mentioned before, the solution of the GKdVB equation can be expressed in terms of
the K-L eigenfunctions ψi, i = 1, 2, as follows:

u(x, t) =
2∑

n=1

h∑

l=−h
an(t)cl,neilx, (4.15)
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and h is an integer which depends on the spatial discretization of ψn’s. Using the above
representation of the K-L eigenfunctions in (4.3), we get the following system of ODEs:

ȧk(t) = ν
2∑

i=1

h∑

l=−h
− l2cl,icl,kai(t) + μ

2∑

i=1

h∑

l=−h
il3cl,icl,kai(t) − g(t) +

2∑

i=1

βki vi(t). (4.16)

Let

A0 =

⎛
⎜⎜⎜⎜⎝

h∑

l=−h
l2c2

l,1

h∑

l=−h
l2cl,1cl,2

h∑

l=−h
l2cl,2cl,1

h∑

l=−h
l2c2

l,2

⎞
⎟⎟⎟⎟⎠
,

a(t) =

(
a1(t)

a2(t)

)
, f̃(t) =

⎛

⎝f̃1(t)

f̃2(t)

⎞

⎠ , w(t) =

(
w1(t)

w2(t)

)
,

(4.17)

where f̃k(t) is

f̃k(t) = μ
2∑

i=1

h∑

l=−h
il3cl,icl,kai(t) − g(t), (4.18)

where k = 1, 2. Then, the system of ODEs can be written as

ȧ(t) = −νA0a(t) + f̃(t) +w(t). (4.19)

The matrix A0 can be easily computed, and it is easy to check that the matrix A0 is positive
definite.

Proposition 4.3. The controller

w(t) = −f̃(t) (4.20)

renders the system of ODEs exponentially stable.

Proof. Substituting (4.20) in (4.19), we obtain the following:

ȧ(t) = −νA0ak(t) (4.21)

or

a(t) = a(0)e−νA0t, (4.22)

since the matrix “−A0” is negative definite, then a(t) converges exponentially to zero as t→∞.
Therefore, the system of ODEs (4.19) with the controller given by (4.20) is exponentially
stable.
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Figure 9: The solutions of the controlled system of ODEs compared to the solutions of the uncontrolled
ODE system when α = 2, a1(0) = 35, a2(0) = −30, with the initial condition given by (1.2).

Using the result of the above proposition, then the system

(
w1(t)

w2(t)

)
=

(
β1

1 β1
2

β2
1 β2

2

)
·
(
v1(t)

v2(t)

)
(4.23)

can be presented as

(
−f̃1(t)

−f̃2(t)

)
=

(
β1

1 β1
2

β2
1 β2

2

)
·
(
v1(t)

v2(t)

)
. (4.24)
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Figure 10: A 3D landscape of the approximated controlled solution of the GKdVB equation when α = 2,
ξ1 = ξ2 = 0.2, with the initial condition given by (1.2).

Provided that the coefficients βji , for (i, j = 1, 2), are well chosen (i.e., β1
1 β

2
2 − β

2
1 β

1
2 /= 0), then the

controllers v1(t) and v2(t) in (4.1) are determined as follows:

(
v1(t)

v2(t)

)
=

(
β1

1 β1
2

β2
1 β2

2

)−1

·
(
−f̃1(t)

−f̃2(t)

)
. (4.25)

4.3. A control scheme for the GKdVB equation using a single actuator

Sections 4.2 and 4.3 addressed the control problem of the GKdVD equation when the system
uses two actuators (i.e., two control inputs). This section discusses the control of the GKdVB
equation when only one actuator is used.

The GKdVB equation with one actuator can be written as

∂u

∂t
= ν

∂2u

∂x2
− μ∂

3u

∂x3
− uα ∂u

∂x
+ b(x)v(t), 0 ≤ x ≤ 2π, (4.26)

where v(t) is the control input and b(x) acts to distribute the control throughout the spatial
domain [0, 2π].

The derivation of the system of ordinary differential equations (ODEs) based on K-L
Galerkin projection results in

ȧk(t)=ν
2∑

i=1

ai(t)
〈
ψk, ψ

′′
i

〉
−μ

2∑

i=1

ai(t)
〈
ψk, ψ

′′′
i

〉
−
〈(

2∑

i=1

ai(t)ψi(x)

)α( 2∑

i=1

ai(t)ψ ′i(x)

)
, ψk

〉
+βkv(t),

(4.27)

where

βk =
∫2π

0
ψk(x)b(x)dx, k = 1, 2. (4.28)
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Hence, the behavior of the GKdVB equation for the case α = 2 in (4.26) can be approximated
by the following system of ODEs:

ȧ1(t) = −0.00613709a2
1a2 + 0.00428373a1a

2
2 − 0.00374423a3

2 + 0.00830501μa2

− 0.0066366916νa1 + 0.0918063477νa2 + β1v(t),

ȧ2(t) = 0.00613709a3
1 − 0.00428373a2

1a2 + 0.00374423a1a
2
2 − 0.00830501μa1

+ 0.0918063477νa1 − 1.3533719227νa2 + β2v(t).

(4.29)

Proposition 4.4. The state feedback controller

v(t) = −k1a1(t) − k2a2(t) (4.30)

with the design parameters k1 & k2 such that k1β1 > 0, k2β2 > 0, and k1β2 = k2β1 renders the ODE
system in (4.29) asymptotically stable.

Proof . Consider the following Lyapunov function candidate:

V (t) =
1
2
(
a2

1(t) + a
2
2(t)
)
. (4.31)

Note that V (t) > 0 if (a1(t), a2(t))/= (0, 0) and V (t) = 0 if (a1(t), a2(t)) = (0, 0). Taking the
derivative of V (t) with respect to time and using (4.29) and (4.30), it follows that

V̇ = ȧ1a1 + ȧ2a2

=
(
− 0.00613709a2

1a2 + 0.00428373a1a
2
2 − 0.00374423a3

2 + 0.00830501μa2

− 0.0066366916νa1 + 0.0918063477νa2 + β1v(t)
)
a1

+
(
0.00613709a3

1 − 0.00428373a2
1a2 + 0.00374423a1a

2
2 − 0.00830501μa1

+ 0.0918063477νa1 − 1.3533719227νa2 + β2v(t)
)
a2

≤ −
(
β1a1 + β2a2

)(
k1a1 + k2a2

)

≤ −β2k2

(
a2 +

β2k1 + β1k2

2β2k2
a1

)2

≤ 0.

(4.32)

Note that V̇ is negative definite. Hence, by Lyapunov theory, the controller scheme given by
(4.30) guarantees the asymptotic stability of the GKdVB equation.

5. Concluding remarks

In this paper, we have analyzed the control problem of the GKdVB equation subject to periodic
boundary conditions by applying a distributed control strategy. The Karhunen-Loève Galerkin
method was used to produce systems of ODEs which mimic the dynamics of the GKdVB
equation for α = 1 and α = 2. Then, we used three state feedback linearization control schemes
on the system of the ODEs that render it exponentially stable. Simulation results are presented
to show the effectiveness of the developed control schemes.
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For future work, we will look into the development of adaptive and optimal control
schemes for the GKdVB equation, and the design of boundary controllers for different values
of α.
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