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1. Introduction

During the past few decades,many papers [1–16] have studied the inverse eigenvalue
problems (IEPs) of various types. The solution existence of the specific IEPs was generally
considered in [1, 3–8, 10, 11, 13, 14] without explicit formulation of the corresponding
procedure for solution construction, whereas in [2, 9, 12, 15, 16] this has been accomplished.
The main result of [16] is the proof that IEP of symmetric hyperdominant (hd) matrices with
assigned nonnegative spectrum has at least one solution which has also been constructed.
This settled an old IEP opened in [17].Hyperdominant matrices have nonnegative diagonal
and nonpositive off-diagonal entries and nonnegative hd margins of rows (hd margin of a
row is the sum of entries in that row). The tool used in [16] to construct the nth-order hd
matrix with assigned spectrum was the nth-order orthogonal Hessenberg matrix constructed
as a special product of n−1 plane rotations [15]. Hessenberg matrices naturally arise in study
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of symmetric tridiagonal matrices, skew symmetric, and orthogonal matrices [13, 14, 18]. A
matrix is upper (lower) Hessenberg if its entry (k,m) vanishes whenever k > m+1 (m > k+1).

In practical work, it is commonly assumed to be better not to form Hessenberg
matrices explicitly, but to keep them as products of plane rotations. On the other hand, explicit
construction of real symmetric matrices with nonnegative spectrum, which either have hd
sign pattern or are truly hd, is proved to be an inevitable task in considering the synthesis
of driving-point immittance functions of passive, transformerless, common-ground, two
element-kind RLC networks and in generation of their equivalent realizations [17–19]. RLC
networks are comprised solely of resistors (R), inductors (L), and capacitors (C). Driving-
point immittance function of a lumped, time invariant, linear electrical network is either a
driving-point impedance Z(s), or a driving-point admittance Y (s) = Z−1(s) (s = σ + j·ω
is the complex frequency; σ, ω are real numbers; j :=

√
−1). It is well known that a real

rational function in s can be driving-point immittance function of RLC network if and only
if it is positive real function in s; or similarly, a necessary condition for a stable square matrix
W(s) of real rational functions in s to be driving-point immittance matrix of a passive RLC
network is that W(s) be positive real matrix [20, 21]. A few tests for ascertaining positive real
properties of functions and/or matrices can be found in [20, 21]. In [22] it has been pointed
out the role of hd matrices in synthesis of both passive and active, transformerless, common-
ground multiports. Unlike [16], this paper presents explicit construction of entries of real
symmetric matrices with arbitrarily assigned spectrum and the entries of the corresponding
orthogonal modal matrices. It also presents explicit construction of real symmetric matrices
with assigned spectrum and with specific sign patterns (including hd one). Thereof, a
solution to the IEP of symmetric, truly hd matrices with assigned nonnegative spectrum
is produced. Some of the obtained results are then applied in synthesis of driving-point
immitances of transformerless, common-ground, two-element-kind RLC networks and in
generation of their equivalent realizations. The two proposed realization procedures are
illustrated by an example.Throughout the paper ⊕ denotes direct sum, xT denotes transpose
of x, bold capital letters denote matrices and Ik stands for the kth-order unit or identity matrix.

2. Explicit solution to the IEP of real symmetric matrices by
using canonic orthogonal transformations

Let {λ1, λ2, . . . , λn} be assigned spectrum of the sought real symmetric matrices and let G1 :=
diag(λ1, λ2, . . . , λn) be n × n spectral matrix. Consider a set of 2 × 2 orthogonal matrices Pk ∈
{Ak,Bk,Ck,Dk} (k = 1, . . . , n − 1):

Pk :=
[
ak bk
ck dk

]
, Ak :=

[
cos θk −sin θk
sin θk cos θk

]
, Bk :=

[
cos θk sin θk
sin θk −cos θk

]
,

Ck :=
[

cos θk sin θk
−sin θk cos θk

]
, Dk :=

[
−cos θk sin θk
sin θk cos θk

]
, θk ∈

[
0,
π

2

]
,

(2.1)

which are either rotators (Ak and Ck) or reflectors (Bk and Dk). A useful set of n×n orthogonal
matrices is

U1 := P1 ⊕ In−2, Uk := Ik−1 ⊕ Pk ⊕ In−k−1 (k = 2, . . . , n − 2), Un−1 := In−2 ⊕ Pn−1. (2.2)
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From the following two matrix recurrent relations

Gk+1 := UkGkUT
k, Sk+1 := Un−kSkUT

n−k (k = 1, . . . , n − 1), (2.3)

we readily obtain n × n real symmetric matrices Gn and Sn, which are both congruent and
similar to G1

Gn = UG1UT, U := Un−1Un−2 · · ·U1; Sn = VG1VT, V := V1V2 · · ·Vn−1. (2.4)

Columns of the orthogonal modal matrix U (V) correspond to eigenvectors of Gn (Sn). Out of
(n−1)! different possibilities of using (2.3) in generation of Gn and Sn, only the two selected by
(2.4) produce explicit expressions of entries of Gn and Sn in terms of {λ1, λ2, . . . , λn} and the
entries of Pk (k = 1, . . . , n − 1). U (V) from (2.4) will be shown later to take on lower (upper)
Hessenberg form with the entries explicitly expressed too. For the sake of brevity, we will
restrict our consideration only to the first of relations (2.3), bearing on mind the possibility of
treating the second one similarly. For k = 1 and k = 2 we readily obtain G2 and G3, by using
(2.1) and (2.3):

G2 =
(
P1 ⊕ In−2

)
G1

(
PT

1 ⊕ In−2
)

=

⎡
⎢⎣

a1 b1

c1 d1
0 2,n−2

0T
2,n−2 In−2

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0
0 λ2

0 2,n−2

0T
2,n−2

λ3

0
. . .

0
λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

a1 c1

b1 d1
0 2,n−2

0T
2,n−2 In−2

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1a
2
1 + λ2b

2
1

(
λ1 − λ2

)
a1c1(

λ1 − λ2
)
a1c1 λ1c

2
1 + λ2d

2
1

0 2,n−2

0T
2,n−2

λ3

0
. . .

0

λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

More generally, ∀k = 1, . . . , n − 1 it holds

akbk + ckdk = akck + bkdk = 0

a 2
k
+ b 2

k
= c 2

k
+ d 2

k
= a 2

k
+ c 2

k
= b 2

k
+ d 2

k
= 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,



4 Mathematical Problems in Engineering

G3 =
(
1 ⊕ P2 ⊕ In−3

)
G2

(
1 ⊕ PT

2 ⊕ In−3
)

=

⎡
⎢⎢⎢⎣

1 0 0
0 a2 b2

0 c2 d2

03,n−3

0T
3,n−3 In−3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1a
2
1 + λ2b

2
1

(
λ1 − λ2

)
a1c1(

λ1 − λ2
)
a1c1 λ1c

2
1 + λ2d

2
1

0 2,n−2

0T
2,n−2

λ3

0
. . .

0
λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0
0 a2 c2

0 b2 d2

03,n−3

0T
3,n−3 In−3

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1a
2
1 + λ2b

2
1 (λ1 − λ2)a1a2c1 (λ1 − λ2)a1c1c2

(λ1 − λ2)a1a2c1 (λ1c
2
1 + λ2d

2
1 )a

2
2 + λ3b

2
2 (λ1c

2
1 ) + λ2d

2
1 − λ3a2c2

(λ1 − λ2)a1c1c2 (λ1c
2
1 + λ2d

2
1 − λ3)a2c2 (λ1c

2
1 + λ2d

2
1 )c

2
2 + λ3d

2
2

03,n−3

0T
3,n−3

λ4

0
. . .

0
λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.5)

Let λ∗1 := λ1, ε1 := (λ∗1 − λ2)a1, and x2 := c1ε1, and let us firstly introduce in (2.5) the following
notation:
M2 := λ1a

2
1 + λ2b

2
1 , λ∗2 := λ∗1c

2
1 + λ2d

2
1 , D∗2 := diag

(
λ∗2,λ3

)
, D2 := diag

(
λ4, . . . ,λn

)
,

A2 := [ x2 | 0 ]T
, M3 :=

[
λ1a

2
1 + λ2b

2
1

(
λ1 − λ2

)
a1a2c1(

λ1 − λ2
)
a1a2c1

(
λ1c

2
1 + λ2d

2
1

)
a 2

2 + λ3b
2
2

]
,

λ∗3 :=
(
λ1c

2
1 + λ2d

2
1

)
c 2

2 + λ3d
2
2 , D∗3 := diag

(
λ∗3,λ4

)
,

D3 := diag
(
λ5, . . . ,λn

)
, A3 :=

[ (
λ1 − λ2

)
a1c1c2

(
λ1c

2
1 + λ2d

2
1 − λ3

)
a2c2

0 0

]
.

(2.6)

Thereafter, observing the partition of G2 and G3 obtained in (2.5)

G2 =

⎡
⎢⎢⎣

M2 AT
2 01,n−3

A2 D∗2 02,n−3

0T
1,n−3 0T

2,n−3 D2

⎤
⎥⎥⎦ , G3 =

⎡
⎢⎢⎣

M3 AT
3 02,n−4

A3 D∗3 02,n−4

0T
2,n−4 0T

2,n−4 D3

⎤
⎥⎥⎦ , (2.7)

it can readily be anticipated the partition of subsequent matrices Gk (k = 4, . . . , n − 2) as
follows:

Gk =

⎡
⎢⎢⎣

Mk AT
k 0k−1,n−k−1

Ak D∗k 02,n−k−1

0T
k−1,n−k−1 0T

2,n−k−1 Dk

⎤
⎥⎥⎦ , xk :=

[
xk,1 xk,2 · · ·xk,k−1

]
, Ak :=

[
xk

01,k−1

]
,

(2.8)
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where Mk is the symmetric (k − 1)× (k − 1) matrix, xk is 1× (k − 1) row vector, Ak is 2× (k − 1)
matrix, λ∗

k
is modified eigenvalue λk, D∗

k
:= diag(λ∗

k
,λk+1) and Dk := diag(λk+2, . . . , λn). For

k = 2, . . . , n − 3 from (2.1)–(2.3), (2.8) it follows that

Gk+1 =
(
Ik−1 ⊕ Pk ⊕ In−k−1

)
Gk

(
Ik−1 ⊕ PT

k
⊕ In−k−1

)
=

⎡
⎢⎢⎣

Mk AT
kP

T
k 0k−1,n−k−1

PkAk PkD∗kP
T
k

02,n−k−1

0T
k−1,n−k−1 0T

2,n−k−1 Dk

⎤
⎥⎥⎦ ,

PkAk =

[
akxk,1 · · · akxk,k−1

ckxk,1 · · · ckxk,k−1

]
, PkD∗kP

T
k =

⎡
⎣ λ∗

k
a 2
k
+ λk+1b

2
k

(
λ∗
k
− λk+1

)
akck(

λ∗
k
− λk+1

)
akck λ∗

k
c 2
k
+ λk+1d

2
k

⎤
⎦ .

(2.9)

For k = 2, . . . , n−3, let us define: λ∗k+1 := λ∗kc
2
k +λk+1d

2
k , εk := (λ∗k −λk+1)ak, ψkk := λ∗ka

2
k +λk+1b

2
k

and thereafter Dk+1 := diag(λk+3, . . . , λn) and D∗
k+1 := diag(λ∗

k
c 2
k
+ λk+1d

2
k

,λk+2). Then, from
(2.8)-(2.9) it follows the identification

Mk+1 :=

[
Mk akxT

k

akxk ψkk

]
, Ak+1 =

[
xk+1

01,k

]
:=

[
ckxk ckεk
01,k 0

]
=

[
ckxk,1 · · · ckxk,k−1 ckεk

0 · · · 0 0

]
,

(2.10)

which enables the partition of Gk+1 in (2.9) to be like that of Gk in (2.8), and that partition of
xk+1 be rather simple

Gk+1 =

⎡
⎢⎢⎣

Mk+1 AT
k+1 0k,n−k−2

Ak+1 D∗
k+1 02,n−k−2

0T
k,n−k−2 0T

2,n−k−2 Dk+1

⎤
⎥⎥⎦ , xk+1 := ck

[
xk | εk

]
, k = 2, . . . , n − 3. (2.11)

Let ψ11 := M2. Having uncovered the partition pattern of Mk+1 (k = 2, . . . , n − 3), we can
pursue partitioning of Mn−2 backwardly from Mn−2 to M2, by using (2.10). Afterwards, we
can produce Gn−2, by using (2.10)-(2.11). The results are

Mn−2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 a2xT
2

a2x2 ψ22
a3xT

3

a3x3 ψ33

· · ·

...
. . .

an−3xT
n−3

an−3xn−3 ψn−3,n−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Gn−2 =

⎡
⎢⎢⎢⎣

Mn−2 xT
n−2

xn−2 λ∗n−2

0n−2,1

01,n−2 λn−1

0n−1,1

01,n−1 λn

⎤
⎥⎥⎥⎦ .

(2.12)

Since Gn−1 := (In−3 ⊕ Pn−2 ⊕ 1)Gn−2(In−3 ⊕ PT
n−2 ⊕ 1) and

Pn−2

[
λ∗n−2 0

0 λn−1

]
PT
n−2 =

[
λ∗n−2a

2
n−2 + λn−1b

2
n−2

(
λ∗n−2 − λn−1

)
an−2cn−2(

λ∗n−2 − λn−1
)
an−2cn−2 λ∗n−2c

2
n−2 + λn−1d

2
n−2

]
, (2.13)
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then after defining ψn−2,n−2 := λ∗n−2a
2
n−2 + λn−1b

2
n−2, εn−2 := (λ∗n−2 − λn−1)an−2, λ

∗
n−1 := λ∗n−2c

2
n−2 +

λn−1d
2
n−2 and xn−1 := cn−2[ xn−2 | εn−2 ], it follows from (2.12)-(2.13)

Gn−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 a2xT
2

a2x2 ψ22
a3xT

3

a3x3 ψ33

· · ·

...
. . .

an−3xT
n−3

an−3xn−3 ψn−3,n−3

an−2xT
n−2

an−2xn−2 ψn−2,n−2

xT
n−1

xn−1 λ∗n−1

0n−1,1

01,n−1 λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.14)

Since Gn := (In−2 ⊕ Pn−1)Gn−1(In−2 ⊕ PT
n−1) and

Pn−1

[
λ∗n−1 0

0 λn

]
PT
n−1 =

[
λ∗n−1a

2
n−1 + λnb

2
n−1

(
λ∗n−1 − λn

)
an−1cn−1(

λ∗n−1 − λn
)
an−1cn−1 λ∗n−1c

2
n−1 + λnd

2
n−1

]
, (2.15)

then on introducing ψn−1,n−1 := λ∗n−1a
2
n−1 + λnb

2
n−1, εn−1 := (λ∗n−1 − λn)an−1, and λ∗n := λ∗n−1c

2
n−1 +

λnd
2
n−1, we obtain from (2.14)-(2.15) the partition of Gn which is amenable to the production

of its entries in explicit form and is suitable for further discussion about solving some specific
IEPs

Gn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 a2xT
2

a2x2 ψ22
a3xT

3

a3x3 ψ33

· · ·

...
. . .

an−2xT
n−2

an−2xn−2 ψn−2,n−2

an−1xT
n−1 cn−1xT

n−1

an−1xn−1 ψn−1,n−1 cn−1εn−1

cn−1xn−1 cn−1εn−1 λ∗n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.16)

For k = 2, . . . , n, we consecutively obtain from λ∗1 := λ1 and λ∗
k

:= λ∗
k−1c

2
k−1 + λkd

2
k−1 that

generally it holds

λ∗k =
(
c1c2 · · · ck−1

) 2
λ1 +

(
d1c2 · · · ck−1

) 2
λ2 + · · · +

(
dk−2ck−1

) 2
λk−1 + d 2

k−1λk, k = 2, . . . , n.
(2.17)

Since ψ11 = λ1a
2
1 + λ2b

2
1 and ψkk := λ∗

k
a 2
k
+ λk+1b

2
k
(k = 2, . . . , n − 1), then from (2.17) it follows

that

ψkk =
(
c1c2 · · · ck−1ak

) 2
λ1 +

(
d1c2 · · · ck−1ak

) 2
λ2 + · · · +

(
dk−2ck−1ak

) 2
λk−1

+
(
dk−1ak

) 2
λk+b 2

k λk+1, k = 2, . . . , n − 1.
(2.18)

Observe that it is not necessary to calculate “ψ”s from (2.18), but only the modified
eigenvalues from (2.17) since it holds εk = (λ∗

k
− λk+1)ak and ψkk = λ∗

k
a 2
k
+ λk+1b

2
k

=



D. B. Kandić and B. D. Reljin 7

(λ∗k − λk+1)a 2
k + (a 2

k + b 2
k )λk+1 = akεk + λk+1 (k = 1, . . . , n − 1). As it is x2 = c1ε1, then for

k = 2, . . . , n − 2 from (2.10) it follows that

xk+1 = ck
[
xk | εk

]
= ck

[
ck−1

[
xk−1 | εk−1

]
| εk

]
=

[
ckck−1xk−1 | ckck−1εk−1 | ckεk

]
= · · · =

[
ckck−1 · · · c2x2 | ckck−1 · · · c2ε2 | · · · | ckck−1εk−1 | ckεk

]
=

[
ckck−1 · · · c2c1ε1 | ckck−1 · · · c2ε2 | · · · | ckck−1εk−1 | ckεk

]

(2.19)

akxk =
[
akck−1ck−2 · · · c2c1ε1 | akck−1ck−2 · · · c2ε2 | · · · | akck−1ck−2εk−2 | akck−1εk−1

]
,

k = 2, . . . , n − 1.
(2.20)

The real symmetric matrix Gn with assigned spectrum {λ1, λ2, . . . , λn} and the explicitly
expressed entries can be derived from (2.16) and (2.20), bearing on mind that “ψ”s and
“ε”s are calculated by using {λ1, λ2, . . . , λn}, Pk, modified eigenvalues (2.17) and εk = (λ∗

k
−

λk+1)ak (k = 1, . . . , n − 1):

Gn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 a2c1ε1 a3c2c1ε1 a4c3c2c1ε1 · · · P S
a2c1ε1 ψ22 a3c2ε2 a4c3c2ε2 · · · U F

a3c2c1ε1 a3c2ε2
...

... · · ·
...

...

a4c3c2c1ε1 a4c3c2ε2
...

...
...

...
...

...
...

...
...

. . .
...

...
P U · · · · · · · · · ψn−1,n−1 cn−1εn−1

S F · · · · · · · · · cn−1εn−1 λ∗n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.21)

where P denotes an−1cn−2 · · · c2c1ε1, S denotes cn−1cn−2 · · · c2c1ε1, U denotes an−1cn−2 · · · c2ε2,
and F denotes cn−1cn−2 · · · c2ε2. Entries of Gn = GT

n = [gkm]n×n are gkk = ψkk (k = 1, . . . , n − 1),
gnn = λ∗n, gkm = akck−1ck−2 · · · cmεm (k > m; k = 2, . . . , n − 1) and gnm = cn−1cn−2 · · · cmεm (m =
1, . . . , n − 1). They are calculated according to the following steps:

(a) Select arbitrarily the entries {ak, bk, ck, dk} of 2 × 2 orthogonal matrices Pk (k =
1, . . . , n − 1), given by (2.1);

(b) with λ∗1 := λ1, calculate the modified eigenvalues λ∗
k
(k = 2, . . . , n), by using (2.17);

(c) calculate εk = (λ∗k − λk+1)ak and ψkk = akεk + λk+1 (k = 1, . . . , n − 1);

(d) calculate the entries of Gn, by using (2.21).

Matrix U (2.4) is n × n orthogonal modal matrix established from eigenvectors of Gn.
We will now prove that U is not only orthogonal, but also lower Hessenberg with explicitly
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expressed entries. Let us firstly produce UT
1U

T
2 and UT

1U
T
2U

T
3 , whose partition will enable us

to anticipate the partition of UT
1U

T
2U

T
3 · · ·U

T
k
(k = 4, . . . , n − 1)

UT
1U

T
2 =

⎡
⎢⎢⎢⎣

a1 a2c1 c2c1

b1 a2d1 c2d1

0 b2 d2

03,n−3

0T
3,n−3 In−3

⎤
⎥⎥⎥⎦ , UT

1U
T
2U

T
3 =

⎡
⎢⎢⎢⎢⎢⎣

a1 a2c1 a3c2c1 c3c2c1

b1 a2d1 a3c2d1 c3c2d1

0 b2 a3d2 c3d2

0 0 b3 d3

04,n−4

0T
4,n−4 In−4

⎤
⎥⎥⎥⎥⎥⎦
.

(2.22)

If we now suppose that UT
1U

T
2 · · ·U

T
k := Hk+1⊕In−k−1 (k = 2, . . . , n−1), where Hk+1 is orthogonal

(k + 1) × (k + 1) upper Hessenberg matrix

Hk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2c1 a3c2c1 · · · akck−1 · · · c2c1 ckck−1 · · · c2c1

b1 a2d1 a3c2d1 · · · akck−1 · · · c2d1 ckck−1 · · · c2d1

0 b2 a3d2 · · · akck−1 · · · c3d2 ckck−1 · · · c3d2

· · · · · · · · · · · · · · · · · ·
0 · · · 0 bk−1 akdk−1 ckdk−1

0 · · · · · · 0 bk dk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.23)

then since according to (2.2), it holds Uk+1 := Ik ⊕ Pk+1 ⊕ In−k−2, we may write further for
k = 2, . . . , n − 2

UT
1U

T
2 · · ·U

T
kU

T
k+1 =

(
Hk+1 ⊕ In−k−1

)
UT
k+1

=
(
Hk+1 ⊕ 1 ⊕ In−k−2

)(
Ik ⊕ PT

k+1 ⊕ In−k−2
)

=
[(
Hk+1 ⊕ 1

)(
Ik ⊕ PT

k+1

)]
⊕ In−k−2

= Hk+2 ⊕ In−k−2, where Hk+2 :=
(
Hk+1 ⊕ 1

)(
Ik ⊕ PT

k+1

)
.

(2.24)

By using (2.2), (2.23)-(2.24), it follows that

Hk+2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2c1 a3c2c1 · · · akck−1 · · · c2c1 ckck−1 · · · c2c1 0
b1 a2d1 a3c2d1 · · · akck−1 · · · c2d1 ckck−1 · · · c2d1 0
0 b2 a3d2 · · · akck−1 · · · c3d2 ckck−1 · · · c3d2 0
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 bk−1 akdk−1 ckdk−1 0
0 · · · · · · 0 bk dk 0
0 · · · · · · 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ Ik 0k,2

0T
k,2

ak+1 ck+1

bk+1 dk+1

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2c1 a3c2c1 · · · akck−1 · · · c2c1 ak+1ckck−1 · · · c2c1 ck+1ckck−1 · · · c2c1

b1 a2d1 a3c2d1 · · · akck−1 · · · c2d1 ak+1ckck−1 · · · c2d1 ck+1ckck−1 · · · c2d1

0 b2 a3d2 · · · akck−1 · · · c3d2 ak+1ckck−1 · · · c3d2 ck+1ckck−1 · · · c3d2

· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 bk−1 akdk−1 ak+1ckdk−1 ck+1ckdk−1

0 · · · · · · 0 bk ak+1dk ck+1dk
0 · · · · · · 0 0 bk+1 dk+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.25)
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and thereby it is proved our previous assumption that UT
1U

T
2 · · ·U

T
k := Hk+1 ⊕ In−k−1 (k =

2, . . . , n − 1), where Hk+1 (2.23) is the orthogonal upper Hessenberg (k + 1) × (k + 1) matrix
with entries expressed explicitly. And finally, for k = n − 1 from UT

1U
T
2 · · ·U

T
k

:= Hk+1 ⊕ In−k−1

and (2.4), (2.23), we obtain Hn = UT = UT
1U

T
2 · · ·U

T
n−1 and

U=HT
n=Un−1Un−2 · · ·U1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 0 · · · 0 0
a2c1 a2d1 b2 0 · · · 0 0

a3c2c1 a3c2d1 a3d2
... · · ·

...
...

a4c3c2c1 a4c3c2d1 a4c3d2
...

...
...

...
...

...
...

...
. . .

...
...

an−1cn−2 · · · c2c1 an−1cn−2 · · · c2d1 · · · · · · · · · an−1dn−2 bn−1

cn−1cn−2 · · · c2c1 cn−1cn−2 · · · c2d1 · · · · · · · · · cn−1dn−2 dn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.26)

The entries of the orthogonal lower Hessenberg matrix U = [ukm] (k,m = 1, . . . , n) are defined
as follows:

ukm = 0 (m > k + 1; k,m = 1, . . . , n), uk,k+1 = bk (k = 1, . . . , n − 1), u11 = a1,

ukk = akdk−1 (k = 2, . . . , n − 1), uk,1 = akck−1ck−2 · · · c2c1 (k = 2, . . . , n − 1),

un,1 = cn−1cn−2 · · · c1, un,k = cn−1cn−2 · · · ckdk−1 (k = 2, . . . , n − 1),

ukm = akck−1 · · · cmdm−1 (m + 1 ≤ k ≤ n − 1; m = 2, . . . , n − 1).
(2.27)

By using the similar arguments as in derivation of entries of matrix U, the orthogonal matrix
V which is to be produced by using (2.4) can be shown to take on upper Hessenberg form.
Proving of this fact goeswith similar paces that were used for obtaining U and it is left to the
reader.

3. The explicit solution of the IEP of real symmetric matrices with
some specific sign patterns

Let the real eigenvalues from the spectrum {λ1,λ2, . . . ,λn} be arbitrarily enumerated, thereby
establishing the sequence {λk} (k = 1, . . . , n). The nonnegative sequence will be denoted by
{λk} ≥ 0, and the nonpositive one by {λk} ≤ 0 (k = 1, . . . , n). Firstly, we will prove two
lemmas.

Lemma 3.1. If the sequence {λk} ≥ 0 (k = 1, . . . , n) is increasing [decreasing], then in (2.21) λ∗n ≥
0, ψmm ≥ 0, and the sequence {amεm} ≤ 0[{amεm} ≥ 0] (m = 1, . . . , n − 1).

Proof. Since {λk} ≥ 0 (k = 1, . . . , n), then it is trivial to see from (2.17) and (2.18) that all
diagonal entries of Gn are nonnegative, that is, λ∗n ≥ 0 and ψmm ≥ 0 (m = 1, . . . , n − 1) no
matter whether the sequence {λk} ≥ 0 is increasing or decreasing. By virtue of orthogonality
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of Pk, we have c 2
k + d 2

k = 1 (k = 1, . . . , n). If {λk} (k = 1, . . . , n) is increasing sequence, then for
m = 1 we have a1ε1 = (λ∗1 − λ2)a 2

1 = (λ1 − λ2)a 2
1 ≤ 0 and for m = 2, . . . , n − 1 we obtain

d2
m−1λm − λm+1

≤ d2
m−1λm − λm = λm

(
1 − d2

m−1

)
= −c2

m−1λm ≤ −c
2
m−1λm−1,

(
dm−2cm−1

)2
λm−1 + d2

m−1λm − λm+1

≤
(
dm−2cm−1

)2
λm−1 − c2

m−1λm−1 = −
(
cm−2cm−1

)2
λm−1 ≤ −

(
cm−2cm−1

)2
λm−2,

(
dm−3cm−2cm−1

)2
λm−2 +

(
dm−2cm−1

)2
λm−1 + d2

m−1λm − λm+1

≤ −
(
cm−3cm−2cm−1

)2
λm−2 ≤ −

(
cm−3cm−2cm−1

)2
λm−3,

(
d1c2 · · · cm−1

)2
λ2 + · · · +

(
dm−2cm−1

)2
λm−1 + d2

m−1λm − λm+1

≤ −
(
c1 · · · cm−1

)2
λ2 ≤ −

(
c1 · · · cm−1

)2
λ1.

(3.1)

From (2.17) and the last of inequalities (3.1) it follows λ∗m ≤ λm+1 and amεm = (λ∗m −λm+1)a 2
m ≤

0 (m = 2, . . . , n − 1). If {λk} (k = 1, . . . , n) is decreasing sequence, then for m = 1 we have
a1ε1 = (λ∗1 − λ2)a 2

1 = (λ1 − λ2)a 2
1 ≥ 0 and for m = 2, . . . , n − 1 we obtain

d2
m−1λm − λm+1

≥ d2
m−1λm − λm = −λm

(
1 − d2

m−1

)
= −c2

m−1 ≥ −c
2
m−1λm−1,

(
dm−2cm−1

)2
λm−1 + d2

m−1λm − λm+1

≥
(
dm−2cm−1

)2
λm−1 − c2

m−1λm−1 = −
(
cm−2cm−1

)2
λm−1 ≥ −

(
cm−2cm−1

)2
λm−2,

(
dm−3cm−2cm−1

)2
λm−2 +

(
dm−2cm−1

)2
λm−1 + d2

m−1λm − λm+1

≥ −
(
cm−3cm−2cm−1

)2
λm−2 ≥ −

(
cm−3cm−2cm−1

)2
λm−3,

(
d1c2 · · · cm−1

)2
λ2 + · · · +

(
dm−2cm−1

)2
λm−1 + d2

m−1λm − λm+1

≥ −
(
c1 · · · cm−1

)2
λ2 ≥ −

(
c1 · · · cm−1

)2
λ1.

(3.2)

From (2.17) and the last of inequalities (3.2) it follows λ∗m ≥ λm+1 and amεm = (λ∗m −λm+1)a 2
m ≥

0 (m = 2, . . . , n − 1). This completes the proof of lemma. For a nonpositive sequence, an
analogous lemma can be formulated.
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Lemma 3.2. If the sequence {λk} ≤ 0 (k = 1, . . . , n) is increasing [decreasing], then in (2.21) λ∗n ≤
0, ψmm ≤ 0 and the sequence {amεm} ≤ 0[{amεm} ≥ 0] (m = 1, . . . , n − 1).

Proof. It is similar to that of Lemma 3.1, but in this case the diagonal entries of Gn are
nonpositive, that is, λ∗n ≤ 0 and ψmm ≤ 0 (m = 1, . . . , n − 1), no matter whether the sequence
{λk} ≤ 0 is increasing or decreasing (see (2.18)).

Now, we shall formulate a new theorem related to explicit solving of IEP of real
symmetric matrices with some specific sign patterns.

Theorem 3.3. If θk (k = 1, . . . , n − 1) are arbitrarily selected angles from the range [0, π/2], then
the entries of real symmetric matrices Gn with assigned spectrum {λ1,λ2, . . . ,λn}, produced by (2.21),
can attain the following twelve sign patterns (zero entries are permitted), depending on selection of
matrices Pk (k = 1, . . . , n − 1) (see (2.1)).

Case 1.

Pk = Ak =
[

cos θk −sin θk
sin θk cos θk

]
, or Pk = Bk =

[
cos θk sin θk
sin θk −cos θk

]
=⇒

Gn =

⎡
⎢⎢⎢⎢⎢⎢⎣

+
+ +

. . .
+

+

⎤
⎥⎥⎥⎥⎥⎥⎦

,

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

Gn =

⎡
⎢⎢⎢⎢⎢⎢⎣

−
− +

. . .
+

−

⎤
⎥⎥⎥⎥⎥⎥⎦
,

λn ≤ λn−1 ≤ · · · ≤ λ1 ≤ 0

Gn =

⎡
⎢⎢⎢⎢⎢⎢⎣

+
+ −

. . .
−

+

⎤
⎥⎥⎥⎥⎥⎥⎦
,

λn ≥ λn−1 ≥ · · · ≥ λ1 ≥ 0

Gn =

⎡
⎢⎢⎢⎢⎢⎢⎣

−
− −

. . .
−

−

⎤
⎥⎥⎥⎥⎥⎥⎦

λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 0

.

(3.3)

Case 2.

Pk = Ck =
[

cos θk sin θk
−sin θk cos θk

]
=⇒

Gn =

⎡
⎢⎢⎢⎢⎢⎣

+ − + · · · (−1)n−1

− + − · · · (−1)n−2

· · · · · · · · · · · · · · ·
(−1)n−2 · · · · · · + −
(−1)n−1 · · · · · · − +

⎤
⎥⎥⎥⎥⎥⎦

,

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

Gn =

⎡
⎢⎢⎢⎢⎢⎣

− − + · · · (−1)n−1

− − − · · · (−1)n−2

· · · · · · · · · · · · · · ·
(−1)n−2 · · · · · · − −
(−1)n−1 · · · · · · − −

⎤
⎥⎥⎥⎥⎥⎦
,

λn ≤ λn−1 ≤ · · · ≤ λ1 ≤ 0
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Gn =

⎡
⎢⎢⎢⎢⎢⎣

+ + − · · · (−1)n

+ + + · · · (−1)n−1

· · · · · · · · · · · · · · ·
(−1)n−1 · · · · · · + +
(−1)n · · · · · · + +

⎤
⎥⎥⎥⎥⎥⎦
,

λn ≥ λn−1 ≥ · · · ≥ λ1 ≥ 0

Gn =

⎡
⎢⎢⎢⎢⎢⎣

− + − · · · (−1)n

+ − + · · · (−1)n−1

· · · · · · · · · · · · · · ·
(−1)n−1 · · · · · · − +
(−1)n · · · · · · + −

⎤
⎥⎥⎥⎥⎥⎦

λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 0

.

(3.4)

Case 3.

Pk = Dk =
[
−cos θk sin θk
sin θk cos θk

]
=⇒

Gn =

⎡
⎢⎢⎢⎢⎢⎣

+ + + · · · + −
+ + + · · · + −
· · · · · · · · · · · · · · · · · ·
+ + + · · · + −
− − − · · · − +

⎤
⎥⎥⎥⎥⎥⎦

,

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

Gn =

⎡
⎢⎢⎢⎢⎢⎣

− + + · · · + −
+ − + · · · + −
· · · · · · · · · · · · · · · · · ·
+ + · · · · · · − −
− − · · · · · · − −

⎤
⎥⎥⎥⎥⎥⎦
,

λn ≤ λn−1 ≤ · · · ≤ λ1 ≤ 0

Gn =

⎡
⎢⎢⎢⎢⎢⎣

+ − − · · · − +
− + − · · · − +
· · · · · · · · · · · · · · · · · ·
− − · · · · · · + +
+ + · · · · · · + +

⎤
⎥⎥⎥⎥⎥⎦
,

λn ≥ λn−1 ≥ · · · ≥ λ1 ≥ 0

Gn =

⎡
⎢⎢⎢⎢⎢⎣

− − − · · · − +
− − − · · · − +
· · · · · · · · · · · · · · · · · ·
− − · · · · · · − +
+ + · · · · · · + +

⎤
⎥⎥⎥⎥⎥⎦
.

λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 0

(3.5)

Proof. If θk ∈ [0, π/2], then the signs of ak and ck depend solely on selection of canonic
orthogonal matrices Pk (k = 1, . . . , n − 1). For any sign of sequence {λm} (m = 1, . . . , n) and
its monotonicy realized through enumeration of its members, one can readily check the sign
patterns stated above: by using (2.18) to determine signs of the diagonal entries in Gn and by
using Lemma 3.1 or Lemma 3.2 to determine signs of εk (k = 1, . . . , n − 1). Observe that only
in Case 1 when λn ≥ λn−1 ≥ · · · ≥ λ1 ≥ 0, that is, when the sequence {λm} (m = 1, . . . , n) is
nonnegative and increasing (but not strictly), matrix Gn is produced with hd sign pattern,
including the possible presence of zero entries. Gn may attain a sparse structure if, for
example, some eigenvalues are equal. To see that, let us firstly suppose λ1 = · · · = λk = λ.
Then from (2.17)-(2.18) it follows that λ∗1 = · · · = λ∗

k
= λ, ψ11 = · · · = ψk−1, k−1 = λ and ε1 = · · · =

εk−1 = 0, thus obviously making the matrix Gn (2.21) with sparse structure. By using (2.17)-
(2.18), (2.21) and both Lemmas, we can readily infer that if θk ∈ (0, π/2) (k = 1, . . . , n − 1)
and the sequence {λm} (m = 1, . . . , n) is strictly monotone, then matrix Gn (2.21) is produced
with no zero entries in all three considered cases.

Remark 3.4. Let λ1λ2 · · ·λn /= 0. Then, since Gn = UG1UT and U−1 = UT (recall that U is
orthogonal), it follows that G−1

n = (UT)−1G−1
1 U−1 = UG−1

1 UT. Also, when the sequence
{λm} (m = 1, . . . , n) is increasing (decreasing), then the sequence {λ−1

m } (m = 1, . . . , n) is
decreasing (increasing). These facts and Theorem 3.3 offer a possibility of determining the
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sign pattern of G−1
n without really inverting Gn. Furthermore, by using (2.17)-(2.18), (2.21),

G−1
n can be calculated explicitly, also without really inverting Gn.

Theorem 3.5. Let the positive increasing sequence {λm} (m = 1, . . . , n) be the spectrum of Gn

produced by using Case 1 of Theorem 3.3. Then there always exists such a diagonal matrix D :=
diag(d1, d2, . . . , dn) with positive diagonal entries which makes DGnD truly hyperdominant.

Proof. If G1 := diag(λ1, λ2, . . . , λn), then by Case 1 of Theorem 3.3, the nonsingular matrix
Gn = UG1UT will have hd sign pattern and by Remark 3.4G−1

n = UG−1
1 UT will be nonnegative

matrix. Since dm > 0 (m = 1, . . . , n), then the nonsingular symmetric matrix DGnD is
produced with hd sign pattern, but it may not be truly hd, unless hd margin of each of its
rows (or columns) is nonnegative (recall that hd margin of a row or a column is sum of all
entries in that row or column). If Gn = [gkm] (k,m = 1, . . . , n), then hd margin pk of the kth
row (or the kth column) in DGnD is given by

pk =
n∑

m=1

gkmdmdk = dkαk, where αk :=
n∑

m=1

gkmdm, k = 1, . . . , n. (3.6)

Let we arbitrarily select αk > 0 (k = 1, . . . , n) and let a := [α1 α2 · · ·αn
]T
, col(D) :=

[d1 d2 · · ·dn]T and p := [p1 p2 · · · pn]T. Then, from (3.6) it follows that Gn col(D) = a, that is,
col(D) = G−1

n a > 0n,1 and p = Da > 0n,1. This not only means that DGnD has hd sign pattern,
but that it is truly hd furthermore. Obviously, as much as “α”s are assumed greater, the greater
will be row (column) hd margins of DGnD. This completes the proof of theorem.

4. Explicit solution of IEP of hd matrices with uncommitted and
with assigned nonnegative spectrum

Theorem 4.1. Let θk (k = 1, . . . , n − 1) be a set of angles selected from the range [0, π/2] and
let {λ1, λ2, . . . , λn} be uncommitted nonnegative spectrum of the real symmetric matrix Gn =
UG1UT [G1 = diag(λ1, λ2, . . . , λn)] which is to be produced as truly hd. Suppose that through
enumeration of eigenvalues the sequence {λm} ≥ 0 (m = 1, . . . , n) is made increasing. Then, matrix
Gn given by (2.21) will be truly hyperdominant if λ1 is sufficiently great.

Proof. Since by assumption the conditions of Theorem 3.3 (Case 1) are satisfied, then Gn

produced by using (2.21) has hd sign pattern. As it is εk = (λ∗
k
− λk+1)ak (k = 1, . . . , n − 1),

then from (2.17)-(2.18), (2.21) it follows that hd margin pm of the mth row (or column) from
Gn (m = 1, . . . , n) can be in general represented as

pm = α(m)
1 λ1 + α

(m)
2 λ2 + · · · + α(m)

m λm + α(m)
m+1λm+1 (m = 1, . . . , n − 1),

pn = α(n)1 λ1 + α
(n)
2 λ2 + · · · + α(n)n−1λn−1 + α

(n)
n λn,

(4.1)

where “α” coefficients are defined as follows:

α
(1)
1 := a1

(
a1 + a2c1 + a3c2c1 + · · · + an−1cn−2 · · · c2c1 + cn−1cn−2 · · · c2c1

)
, m = 1,

α
(1)
2 := b1

(
b1 + a2d1 + a3c2d1 + · · · + an−1cn−2 · · · c2d1 + cn−1cn−2 · · · c2d1

)
,

α
(m)
1 :=

(
amcm−1 · · · c2c1

)(
a1 + a2c1 + a3c2c1 + · · · + amcm−1 · · · c2c1

+ · · · + an−1cn−2 · · · c2c1 + cn−1cn−2 · · · c2c1
)
,
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α
(m)
2 :=

(
amcm−1 · · · c2d1)(b1 + a2d1 + a3c2c1 + · · · + amcm−1 · · · c2d1 + · · · + an−1cn−2 · · · c2d1

+ cn−1cn−2 · · · c2d1
)
, p = 3, . . . , m,

α
(m)
p :=

(
amcm−1 · · · cpdp−1

)(
bp−1 + apdp−1 + ap+1cpdp−1 + · · · + an−1cn−2 · · · cpdp−1

+ cn−1cn−2 · · · cpdp−1
)
, m = 2, . . . , n − 1, p = 3, . . . , m

α
(m)
m :=

(
amdm−1

)(
bm−1+amdm−1+am+1cmdm−1+· · ·+an−1cn−2 · · · cmdm−1+cn−1cn−2 · · · cmdm−1

)
,

α
(m)
m+1 := bm

(
bm + am+1dm + am+2cm+1dm + · · · + an−1cn−2 · · · cm+1dm + cn−1cn−2 · · · cm+1dm

)
,

m = 2, . . . , n − 2,

α
(n−1)
n := bn−1

(
bn−1 + dn−1

)
,

α
(n)
1 :=

(
cn−1cn−2 · · · c2c1

)(
a1 + a2c1 + a3c2c1 + · · · + an−1cn−2 · · · c2c1 + cn−1cn−2 · · · c2c1

)
,

α
(n)
2 :=

(
cn−1cn−2 · · · c2d1

)(
b1 + a2d1 + a3c2d1 + · · · + an−1cn−2 · · · c2d1 + cn−1cn−2 · · · c2d1

)
α
(n)
p :=

(
cn−1cn−2 · · · cpdp−1

)(
bp−1 + apdp−1 + ap+1cpdp−1 + · · · + an−1cn−2 · · · cpdp−1

+ cn−1cn−2 · · · cpdp−1
)
, p = 3, . . . , n − 1.

α
(n)
n := dn−1

(
bn−1 + dn−1

)
.

(4.2)

According to Case 1 of Theorem 3.3, both ak and ck are nonnegative when θk ∈ [0, π/2] (k =
1, . . . , n − 1). Then, from (4.2) we see that α(m)

1 ≥ 0 (m = 1, . . . , n), whereas other “α”s may
be nonpositive. Since “α”s depend only on selection of “θ”s, then by presuming λ1 = λ2 =
· · · = λn = λ/= 0, we obtain from (2.21) Gn = λIn and pm = λ (m = 1, . . . , n) and from (4.1) we
conclude that in general it holds:

m+1∑
p=1

α
(m)
p ≡ 1 (m = 1, . . . , n − 1),

n∑
q=1

α
(n)
q ≡ 1. (4.3)

Although Gn is produced with hd sign pattern, it will not be truly hd unless each of its row
(column) hd margins is nonnegative, that is, p = [p1 p2 · · · pn]T ≥ 0n,1. The column vector p
with entries (4.1) can be written as

p=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α
(1)
1 α

(1)
2 0 0 · · · 0

α
(2)
1 α

(2)
2 α

(2)
3 0 · · · 0

· · · · · · · · · · · · · · · · · ·
α
(n−1)
1 α

(n−1)
2 α

(n−1)
3 · · · · · · α(n−1)

n

α
(n)
1 α

(n)
2 α

(n)
3 · · · · · · α

(n)
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · · · · · · · 0 0 0
−1 1 0 · · · · · · · · · 0 0 0
0 −1 1 · · · · · · · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · · · · −1 1 0
0 0 0 0 0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2 − λ1

λ3 − λ2

· · ·
λn−1 − λn−2

λn − λn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α
(1)
2 0 0 · · · 0

1
3∑
r=2

α
(2)
r α

(2)
3 0 · · · 0

· · · · · · · · · · · · · · · · · ·

1
n∑
s=2

α
(n−1)
s

n∑
u=3

α
(n−1)
u · · · · · · α(n−1)

n

1
n∑
t=2

α
(n)
t

n∑
w=3

α
(n)
w · · · · · · α

(n)
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2 − λ1

λ3 − λ2

· · ·
λn−1 − λn−2

λn − λn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.4)
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From (4.4) we finally obtain

p1 = λ1 +
(
λ2 − λ1

)
α
(1)
2 , p2 = λ1 +

(
λ2 − λ1

) 3∑
r=2

α
(2)
r +

(
λ3 − λ2

)
α
(2)
3 , . . . ,

pn = λ1 +
(
λ2 − λ1

) n∑
t=2

α
(n)
t +

(
λ3 − λ2

) n∑
w=3

α
(n)
w + · · · +

(
λn − λn−1

)
α
(n)
n .

(4.5)

Since “α”s and “
∑

”s in (4.5) are not certainly nonnegative and since the sequence {λm} (m =
1, . . . , n) is increasing, then firstly by arbitrary selection of differences λ2 − λ1 ≥ 0, λ3 − λ2 ≥
0, . . . , λn−1 −λn−2 ≥ 0 and λn −λn−1 ≥ 0 and thereafter a sufficiently great λ1 ≥ 0, all hd margins
pm (m = 1, . . . , n) can be made nonnegative, that is, the matrix Gn can be always produced as
truly hyperdominant. This completes the proof of this theorem.

Presentation of explicit solution to the IEP of truly hd matrices with assigned
nonnegative spectrum is now in order. It has been proved in [16] that this IEP always
has at least one solution and that infinitely many others can be produced thereof by using
Givens rotations. Solution of that IEP is important in electrical network synthesis of driving-
point immittance functions and matrices of both passive and active, common-ground,
transformerless, two-element-kind RLC networks and in generation of various classes of
canonic and noncanonic equivalent realizations [19, 22]. In [16] we have proved the existence
of solution to the IEP of hd matrices with assigned nonnegative spectrum, but here we shall
present the explicit construction of solution matrix entries by using other arguments. This
represents the explicit solution of the problem opened in [17].

Theorem 4.2. For any set of real nonnegative numbers {λ1, λ2, . . . , λn} there always exists at least
one (and infinitely many) n × n real symmetric hyperdominant matrices having these numbers as
eigenvalues. In other words, IEP of symmetric hd matrices with assigned nonnegative spectrum always
has at least one solution.

Proof. We will take the same assumptions as in Theorem 4.1, except for θk ∈ (0, π/2) (k =
1, . . . , n − 1). Through enumeration of eigenvalues, the nonnegative sequence {λm} (m =
1, . . . , n) is made increasing. Then, according to Theorem 3.3 (Case 1), the symmetric matrix
Gn = UG1UT [G1 = diag(λ1, λ2, . . . , λn)] with spectrum {λ1, λ2, . . . , λn} and the entries
determined by (2.21), is produced with hd sign pattern, no matter what selection of θks (k =
1, . . . , n − 1) has been made. Observe that in Case 1 ak = cos θk and ck = sin θk. To make
Gn = UG1UT truly hd, we will prove the existence of such “θ”s that make all “α”s (and
hence all “p”s) in (4.1) nonnegative. Let we introduce the following positive sequence
{Mm} (m = 1, . . . , n)

M1 := a1 + a2c1 + a3c2c1 + · · · + an−1cn−2 · · · c2c1 + cn−1cn−2 · · · c2c1

M2 := a2 + a3c2 + a4c3c3 + · · · + an−1cn−2 · · · c3c2 + cn−1cn−2 · · · c3c2

M3 := a3 + a4c3 + a5c4c3 + · · · + an−1cn−2 · · · c4c3 + cn−1cn−2 · · · c4c3

Mn−2 := an−2 + an−1cn−2 + cn−1cn−2,

Mn−1 := an−1 + cn−1,

Mn := 1.

(4.6)
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Then, by using (4.2) we obtain a consistent set of inequalities that ensure nonnegativity of all
“α”s in (4.1)

α
(1)
1 = a1M1 ≥ 0, α

(1)
2 = 1 − a1M1 = c1(c1 − a1M2) ≥ 0, (4.7)

α
(k)
1 ≥ 0, α

(k)
p ≥ 0⇐⇒ −cp−1 + ap−1Mp ≥ 0 (p = 2, . . . , k), (4.8)

α
(k)
k+1 ≥ 0⇐⇒ ck − akMk+1 ≥ 0 (k = 2, . . . , n − 1), (4.9)

α
(n)
1 ≥ 0, α

(n)
q ≥ 0⇐⇒ −cq−1 + aq−1Mq ≥ 0 (q = 2, . . . , n − 1), (4.10)

α
(n)
n ≥ 0⇐⇒ −cn−1 + an−1 ≥ 0, (4.11)

α
(n−1)
n = b 2

n−1 + bn−1dn−1 = c 2
n−1 − an−1cn−1 = cn−1

(
cn−1 − an−1

)
≥ 0⇐⇒ cn−1 − an−1 ≥ 0.

(4.12)

For p = 2 from (4.8) we obtain M2 ≥ c1/a1 and from (4.7) M2 ≤ c1/a1. Then, M2 =
c1/a1, α

(1)
2 = 0, α(1)1 = 1 − α(1)2 = 1, M1 = 1/a1 and p1 = λ1. From (4.11)-(4.12) it follows

that an−1 = cn−1 (↔ θn−1 = π/4) and α
(n−1)
n = α

(n)
n = 0 [inequalty (4.12) is the same as (4.9)

if k = n − 1 (Mn = 1)]. For k = 2, . . . , (n − 2), we obtain from (4.9) Mk+1 ≤ ck/ak and for
q = 3, . . . , (n − 1), we obtain from (4.10)Mq ≥ cq−1/aq−1. To summarize, we have proved that:
(a) Mr = cr−1/ar−1, for r = 2, . . . , (n − 1) and (b) {α(k)1 = 1, α(k)s = 0 [s = 2, . . . , (k + 1)]
and pk = λ1}, for k = 1, . . . , (n − 1). And finally, from (4.10) we obtain α

(n)
q = 0 for

q = 2, . . . , n, α(n)1 = 1 and pn = λ1. Since the matrix Gn has hd sign pattern and each of its
row (column) hd margins is equal to λ1 ≥ 0, then Gn is truly hd matrix. This completes the
proof of the theorem.

Remark 4.3. It relates to calculation of entries of Gn. In Theorem 4.2 it is proved that M1 =
1/a1 and Mk = ck−1/ak−1 (k = 2, . . . , n − 1). It is assumed Mn = 1. Since θn−1 = π/4, then
Mn−1 = an−1 + cn−1 = cos θn−1 + sin θn−1 =

√
2. For w = 1, . . . , n − 1 it follows from (4.6)

Mw = aw + cwMw+1 = aw + cw
cw
aw

=
1
aw

=

√
a 2
w + c 2

w

a 2
w

=

√
1 +

(
cw
aw

) 2

=
√

1 +M 2
w+1 =

√
2 +M 2

w+2 = · · · =
√
n −w − 1 +M 2

n−1 =
√
n −w + 1,

aw = cos θw =
1√

n −w + 1
, cw = sin θw =

√
n −w

n −w + 1
.

(4.13)

By using (2.17)-(2.18), (2.21), (4.13) we can easily calculate all entries of the (initial) hd matrix
Gn. Other hd matrices having the same spectrum can be produced thereof by application of
Givens rotations, one at a time.

5. Application of the obtained results in electrical network synthesis

It is well known that synthesis methods of passive, common-ground, transformerless, two-
element-kind RLC networks yield topological configurations which are severely restricted by
the method chosen [19]. By using of the results above, a new class of non-canonic, driving-
point immittance realizations of passive, common-ground, transformerless, two-element-
kind RLC networks with minimum number of both nodes and elements of one kind can
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be generated with possibility of reduction in number of elements of other kind. The network
synthesis is always performed by using normalization of both the complex frequency s and
the impedance Z(s). If Ω is a selected normalization frequency, then the normalized frequency
is sn = s/Ω. Similarly, if R0 is a selected normalization resistance, then the normalized
impedance is Zn(s) = Z(s)/R0. Thereby we achieve [20]: (a) lesser dispersion of coefficients
in normalized functions and (b) dimensionless manipulation of quantities. The normalized
resistance of resistor R is Rn := R/R0. The normalized impedance of an inductor L is
ZLn(s) = Ls/R0 = (LΩ/R0)sn = Lnsn (Ln := LΩ/R0-normalized inductance). The normalized
impedance of a capacitor C is ZCn(s) = 1/(CR0s) = 1/[(R0CΩ)sn] = 1/(Cnsn) (Cn := R0CΩ-
normalized capacitance). To physically realize a network after synthesis, a denormalization
process must be performed. The actual parameter values of RLC elements are calculated as
follows: R = RnR0, L = LnR0/Ω, C = Cn/(R0Ω). From now on it will be assumed that
normalized synthesis is being carried out, but the lower index “n” we be dropped from
component labels for brevity.

It is well known that if a real rational function in s can be realized as RL driving-
point impedance ZRL(s), then it can be also realized as RC driving-point admittance YRC(s)
[20]. And similarly, if it can be realized as RL driving-point admittance YRL(s), then it
can also be realized as RC driving-point impedance ZRC(s). The LC : RC transformation
turns the synthesis of LC driving-point impedance Z�

LC(s) to synthesis of RC driving-point
impedance ZRC(s) = Z�

LC(
√
s)/
√
s [20]. It also turns the synthesis of LC driving-point

admittance Y�
LC(s) to synthesis of RC driving-point admittance YRC(s) =

√
s ·Y�

LC(
√
s). These

RC driving-point imittances are at first realized by prototype RC networks and thereof are
produced the desired LC networks in the following way: capacitors in RC and LC networks
remain the same, but the resistor from RC network turns to inductor in LC network with
the same parameter value. Also, LR : RC transformation turns the synthesis of RL driving-
point impedance Z�

RL(s) to synthesis of RC driving-point impedance ZRC(s) = Z�
RL(s)/s. It

also turns synthesis of RL driving-point admittance Y�
RL(s) to synthesis of RC driving-point

admittance YRC(s) = sY�
RL(s). These RC imittances are realized by prototype RC networks

and the desired RL networks are produced thereof in the following way: the resistor from RC
network turns to inductor in LR network with the same parameter value, and the capacitor
from RC network turns to resistor in LR network with reciprocal parameter value. Bearing all
the aforementioned on mind, we can obviously restrict our consideration only to synthesis of
driving-point impedance functions ZRC(s) of RC networks, which satisfy the following well
known analytic necessary and sufficient conditions [20]: (a) ZRC(s) is real rational function
in s, (b) It has only simple poles on negative real axis, or at the origin. At infinity it cannot
have pole and (c) Residues of these poles are real and positive and A∞ := lims→∞ZRC(s) ≥ 0.

In general, the first canonic Foster’s expansion (form) of ZRC(s) [20] reads

ZRC(s) = A∞ +
n∑

m=0

Am

s + sm
[A∞ > 0; s0 = 0, A0 > 0; sp,Ap > 0 (p = 1, . . . , n)], (5.1)

where Am is residue of the pole sm (m = 0, 1, . . . , n). The network which realizes driving-
point impedance ZRC(s) (5.1) with minimum number of nodes (= n + 1), minimum number
of resistors (= n + 1) and minimum number of capacitors (= n + 1) is depicted in Figure 1.
Observe that neither the resistors, nor the capacitors share common-node and hence the
overall network realization is said to be non common-grounded.

Now, we will present our synthesis procedure. If for a given driving-point impedance
ZRC(s) we found that A0 > 0 and/or A∞ > 0, then in the preamble of the realization



18 Mathematical Problems in Engineering

1/A0

1/A1 1/A2 1/An

A1/s1 A2/s2 An/sn

ZRC(s)

A∞
· · ·

Figure 1: The first canonic Foster’s realization of ZRC(s). Denoted are the normalized “values” of RC
parameters.

procedure A∞ and/or A0/s should be at first extracted from (5.1) and realized by a series
connection of resistor R∞ = A∞ and capacitor C0 = 1/A0, thereby leaving for realization
the driving-point impedance ZRC(s) = ZRC(s) − A∞ − A0/s with solely n poles lying on the
negative real axis. In the sequel we will assume that ZRC(s) has only n such poles.

Let C = diag(C1, C2, . . . , Cn) and G = diag(G1, G2, . . . , Gn) be diagonal n × n matrices
with strictly positive diagonal entries corresponding to the normalized capacitances and
conductances, respectively. If we arbitrarily choose a nonsingular n × n matrix T, then the
reciprocal passive networks which realize Cs + G and Y(s) = T(Cs + G)TT will have the
same natural frequencies. By arbitrary selection of n × n nonsingular diagonal matrices
δ = diag(δ1, δ2, . . . , δn), a broad class of nonsingular n × n matrices T can be generated
with assumption T = VδU, where U and V are n × n orthogonal matrices. Since Y(s) =
T(Cs +G)TT = V[δ(UCUT)δs + δ(UGUT)δ]VT, then

Z(s) = [zmr(s)]n×n = Y−1(s) = [T(Cs +G)TT]
−1

= (Vδ−1UC1/2)(sIn +GC−1)
−1
(Vδ−1UC1/2)

T
.

(5.2)

Various network topologies can be produced by different choices of U and V. But, only by
selecting C = CIn (C > 0) and V = In, the networks with minimum number of common-
ground capacitors are produced; and only by selecting G = GIn (G > 0) and V = In, the
networks with minimum number of common-ground resitors are produced. Let us select
C = CIn (C > 0) and V = In, and let us assume in (5.1): A0 = A∞ = 0 and sn > sn−1 · · · > s1 > 0.
Since U = [umr] (m, r = 1, . . . , n), then from (5.2) it follows that

Y(s) = Cδ 2s + δ(UGUT)δ, zmr(s) =
1

Cδmδr

n∑
p=1

umpurp

s +Gp/C
(m, r = 1, . . . , n). (5.3)

The matrices which are effectively realized by common-ground network with n + 1 nodes
[(n+1)th node is the common-ground] areCδ 2s and δ(UGUT)δ, provided that both are truly
hd. According to (5.1) and (5.3) it holdsGp = Csp (p = 1, . . . , n) andGn > Gn−1 · · · > G1 > 0. By
using Theorem 3.3 [Case 1, Pk = Ak and θk ∈ (0, π/2) (k = 1, . . . , n − 1)] we infer that UGUT

(2.21) is produced with hd sign pattern and no zero entries and with strictly positive inverse.
Matrix U (2.26) is lower Hessenberg with nonnegative entries, except for negative “b”s. The
same conclusions relating to UGUT and U also hold if we apply Case 1 of Theorem 3.3 with
Pk = Bk and θk ∈ (0, π/2) (k = 1, . . . , n − 1), except for “d”s in (2.26) are then negative
and “b”s are positive. To realize ZRC(s) we must select in (5.3) either m = r = n − 1 or
m = r = n, thus obtaining either ZRC(s) = zn−1,n−1(s), or ZRC(s) = znn(s). By assuming
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m = r = n[↔ ZRC(s) = znn(s)], Pk = Ak and θk ∈ (0, π/2) (k = 1, . . . , n − 1), it follows from
(2.26), (5.1), (5.3)

Cδ 2
n =

1∑n
p=1 Ap

, ai−1 = di−1 =

(
Ai∑i
q=1 Aq

)1/2

, ci−1 =

( ∑i−1
r=1Ar∑i
q=1 Aq

)1/2

, (i = 2, . . . , n).

(5.4)

To prove the existence of a physical realization of both Cδ 2s and δ(UGUT)δ we still
have to determine the positive column vector col(δ) = [δ1 δ2 · · · δn]T which, according to
Theorem 3.5, makes δ(UGUT)δ truly hd with possibly zero hd margins of at most n−1 rows.
Let hd margin of the ith row in δ(UGUT)δ be pi (i = 1, . . . , n) and let p := [p1 p2 · · · pn]T.
If u := [1 1 · · · 1]T (n unities), then p = δ(UGUT)δu. Let we introduce a column vector

p∗ := [p∗1 p∗2 · · · p∗n]
T (‖p∗‖E > 0) of arbitrarily assumed real nonegative numbers. Since (UGUT)−1

is strictly positive, then it always can be find a diagonal matrix δ = diag(δ1, δ2, . . . , δn) with
positive diagonal entries, such that p∗ = (UGUT)δu = (UGUT)col(δ). Herefrom, we obtain
col(δ) = (UGUT)−1p∗, that is, that δi > 0 (i = 1, . . . , n). Since p = δ(UGUT)δu = δp∗,
then it follows pi = δip

∗
i ≥ 0 (i = 1, . . . , n), bearing on mind that at most n − 1 “p”s can

be equal to zero. These “p”s indices correspond to indices of those rows (or columns) in
δ(UGUT)δ which have zero hd margins. Then, from the overall network vanish resistors
connecting common-ground to nodes with the same indices as that of rows (columns)
with zero hd margins [22]. For different selections of p∗, different algorithms and different
topologically and parametrically equivalent realizations emerge. For example, if we select
col(δ) = μ[u11 u21 · · ·un1]

T (μ > 0), where it is according to (2.26), (5.4)

u11=
[

A2

A1+A2

]1/2

, up1=

[
A1Ap+1

(
∑n

q=1 Aq)(
∑p+1

r=1Ar)

]1/2

(p=2, . . . , n−1), un1=

[
A1∑n
q=1 Aq

]1/2

,

(5.5)

then the column vector p of row (column) hd margins of matrix δ(UGUT)δ with hd sign
pattern reads

p = δ(UGUT)δu = δ(UGUT)col(δ) = G1col(δ 2) > 0n,1. (5.6)

This means that δ(UGUT)δ is truly hd. We will now present two algorithms for realization
of driving-point impedances ZRC(s) which rely on the results developed above.

Algorithm 1. Realization ofZRC(s) with minimum number of common-ground capacitors and
non-reduced number of resistors

(10) Commencing with Ai (i = 1, . . . , n) calculate the entries of U, by using (2.26)
and (5.4).

(20) Arbitrarily select some μ > 0 and then calculate C = 1/μ2A1 and Gq = Csq (q =
1, . . . , n).

(30) Calculate col(δ) = μ[u11 u21 · · ·un1]
T, by using (5.5) and the entries of hd matrix

δ(UGUT)δ. Calculate p, by using (5.6).
(40) Realize δ(UGUT)δ by common-ground, transformerless, conductance network.

This can be done easily, almost by visual inspection of δ(UGUT)δ [22]. Attach to the ports
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Figure 2: The reactance function of LC network from the example.

of that network, enumerated by 1, p (p = 2, . . . , n − 1) and n, the common-ground capacitors
with normalized capacitances

C1 =
A2

A1(A1 +A2)
, Cp =

Ap+1

(
∑n

q=1 Aq)(
∑p+1

r=1 Ar)
(p = 2, . . . , n − 1), Cn =

1∑n
q=1 Aq

,

(5.7)

respectively. The nth port of the overall network realizes driving-point impedance ZRC(s),
provided that all other ports are left open-circuited.

Algorithm 2. Realization ofZRC(s) with minimum number of common-ground capacitors and
the reduced number of resistors

(10) The same as step (10) of Algorithm 1. Let S = diag(s1, s2, . . . , sn). Recall that sn >
sn−1 · · · > s1 > 0.

(20) Select ε1 > 0 and εi = 0 (i = 2, . . . , n − 1). Thereafter, by using (2.21) and (5.4),
calculate

C = [ε1(s−1
1 − s

−1
2 )cn−1cn−2 · · · c2c1a1]

2
n∑
q=1

Aq, Gi = Csi (i = 1, . . . , n). (5.8)

Calculate col(δ) = ε1C
−1(US−1UT)e1, where e1 = [1 0 · · · 0]T is n-dimensional column vector.

(30) Calculate the entries of δ(UGUT)δ and its hd margin p1 = δ1ε1, where δ1 =
ε1C

−1eT
1TS

−1TTe1. Set for other hd margins pi = 0 (i = 2, . . . , n).
(40) Realize δ(UGUT)δ by common-ground, transformerless, conductance network

and attach to its ith port the common-ground capacitor with normalized capacitanceCδ 2
i (i =

1, . . . , n). The nth port of the overall network realizes driving-point impedance ZRC(s),
provided that all other ports are left open-circuited.
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Figure 3: Driving-point impedance Z�
LC(s) from example synthesized by using the first canonic Foster’s

form.
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Figure 4: Denormalized realization of driving-point impedance Z�
LC(s) from Figure 3.
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Figure 5: Driving-point impedance |Z�
LC| of LC network from Figure 4.
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Figure 6: Driving-point impedance Z�
LC(s) from the example synthesized by a noncanonic LC network.
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Figure 7: Denormalized realization of driving-point impedance Z�
LC(s) from Figure 6.
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Figure 8: Driving-point impedance |Z�
LC| of LC network from Figure 7.

5.1. A numerical example

Consider realization of the real rational function Z�
LC(s) as driving-point impedance of

common-ground transformerless LC network with minimum number of capacitors and the
reduced number of inductors

Z�
LC(s) =

(s 2 + 1)(s 2 + 3)(s 2 + 5)(s 2 + 8)
s(s 2 + 2)(s 2 + 4)(s 2 + 6)

. (5.9)

This function satisfies the necessary and sufficient conditions for driving-point immittances
of LC networks: (a) it is an odd real rational function in s; (b) it has only simple poles located
strictly on imaginary axis; and (c) residues of those poles are real and positive. Therefore,
Z�
LC(s) can be realized both in two Foster’s and in two Cauer’s canonic forms [20]. The partial

fraction expansion of Z�
LC(s) reads

Z�
LC(s) =

(s 2 + 1)(s 2 + 3)(s 2 + 5)(s 2 + 8)
s(s 2 + 2)(s 2 + 4)(s 2 + 6)

= s +
5
2s

+
9s/8
s 2 + 2

+
3s/4
s 2 + 4

+
5s/8
s 2 + 6

. (5.10)

The reactance function corresponding to Z�
LC(s) is X�

LC(ω) := Z�
LC(jω)/j and it is depicted

in Figure 2. The first canonic Foster’s realization of Z�
LC(s) with minimum number of nodes,

noncommon-ground capacitors and inductors is depicted in Figure 3. Thereon are denoted
the normalized values of LC parameters.
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6. Conclusions

In Figure 4, it is depicted the first canonic Foster’s realization of driving-point impedance
Z�
LC(s) from Figure 3 with selected normalization frequency Ω = 106[rad/s] and selected

normalization resistance R0 = 103[kΩ]. The network is excited by a sinusoidal current
generator having constant current amplitude and discretely varying frequency f = ω/(2π)
within the range f ∈ [0.1, 500] kHz. If the complex representative of generator current is Ig
and the complex representative of the voltage across its terminals is Ug , then the complex

driving-point impedance of the overall LC network is Z�
LC = Ug/Ig. The modulus of Z�

LC,

that is, |Z�
LC| (usually called LC impedance) obtained through PSPICE simulation within the

range f ∈ [0.1, 500] kHz is depicted in Figure 5.
Now, we will realize Z�

LC(s) by using the proposed Algorithm 2. After LC : RC

transformation, we firstly produce the function ZRC(s) = Z�
LC(
√
s)/
√
s = 1 + 5/2s + ZRC(s),

where ZRC(s) is driving-point impedance of RC network which should be expanded into
partial fractions as follows:

ZRC(s) =
A1

s + s1
+

A2

s + s2
+

A3

s + s3

∣∣∣∣∣∣∣∣∣∣

A1 =
9
8
, A2 =

3
4
, A3 =

5
8
,

s1 = 2, s2 = 4, s3 = 6,

s3 > s2 > s1 > 0, S := diag(s1,s2,s3).

(6.1)

In step (10) of Algorithm 2 we determine the orthogonal matrix U by using A1, A2, and A3

(see (2.26) and (5.4))

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2
5
−
√

3
5

0

√
3
20

√
1
10
−
√

3
2√

9
20

√
3
10

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.2)

By assuming ε1 = 8
√

5/3 in step (20), we further easily obtain C = 1, G1 = 2, G2 =
4, G3 = 6 and col(δ) = [ δ1 δ2 δ3 ]T = [2.087 0.365 0.632]T. In step (30) we firstly calculate
δ(UGUT)δ and then hd margins of its rows (columns),

δ(UGUT)δ =

⎡
⎣13.937 −0.373 −1.119
−0.373 0.693 −0.320
−1.119 −0.320 1.439

⎤
⎦ , p1 = 12.444, p2 = p3 = 0. (6.3)

In step (40) we calculate the normalized capacitances of common-ground capacitors: C1 =
4.355, C2 = 0.133 and C3 = 0.400. Realization of driving-point impedance ZRC(s) by
transformerless, common-ground RC network with minimum number of nodes (= n + 1),
reduced number of inductors and minimum number of common-ground capacitors (= n),
begins by realization of conductance matrix δ(UGUT)δ which can be accomplished almost
by inspection of that matrix [22]. Then, to the ith port of the realized conductance network, it
should be connected to the capacitorCi = δ 2

i (i = 1, 2, 3). The third port of the overall network
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realizes the RC driving-point impedance ZRC(s), provided that all other ports are left open-
circuited. By embedding in the third port a series connection of resistor and capacitor
with the normalized parameter values 1 and 2/5, respectively, and by applying RC : LC
transformation thereafter, we finally produce noncanonic network which realizesZ�

LC(s) with
minimum number of nodes and capacitors and with reduced number of inductors. That
network is depicted in Figure 6 whereon are denoted the normalized (dimensionless) values
of LC parameters.

In Figure 7, is depicted the noncanonic realization of driving-point impedance
Z�
LC(s) from Figure 6 with selected normalization frequency Ω = 106[rad/s] and selected

normalization resistance R0 = 103[kΩ]. The network is excited by a sinusoidal current
generator with constant current amplitude and with discretely variable frequency f =
ω/(2π) within the range f ∈ [0.1, 500] kHz. If the complex representative of generator
current is Ig and the complex representative of the voltage across its terminals is Ug , then the

complex driving-point impedance of the overall LC network is Z�
LC = Ug/Ig. The modulus

of Z�
LC, that is, |Z�

LC| (usually called LC impedance) obtained through PSPICE simulation
within the range f ∈ [0.1, 500] kHz is depicted in Figure 8. Since LC networks in Figures 4 and
7 are intentionally designed to be equivalent, then their driving-point impedances |Z�

LC|must
have the same variations in frequency, as can be verified from Figures 5 and 8 qualitatively
and more precisely by using numerical results of simulation.

A novel procedure for explicit construction of entries of real symmetric matrices
with assigned spectrum is developed by using a group of four types of canonic, second-
order, orthogonal transformations. It has been also shown that the orthogonal modal
matrices corresponding to the produced real symmetrix matrices, are either lower or
upper Hessenberg with explicitly constructed entries too. Thereafter, the inverse eigenvalue
problems of real symmetric matrices with twelve specific types of sign patterns (including
hyperdominant one) are explicitly solved providing that the signs of eigenvalues are the
same (zeros are permitted) and that they are enumerated such as to establish the increasing or
decreasing sequence. It is proved to arise thereof a possibility of explicit solving the inverse
eigenvalue problem of symmetric hyperdominant matrices having either uncommitted or
assigned nonnegative spectrum. The results obtained are then applied in synthesis of driving-
point immittance functions of transformerless, common-ground, two-element-kind RLC
networks and in generation of their equivalent realizations with minimum number of nodes.
The synthesis procedures proposed herein turn the synthesis problem of any immittance
function of the two-element-kind RLC network to the synthesis problem of impedance
function of a prototype RC network.
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