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The local instability of 2 degrees of freedom (DOF) weakly damped systems is thoroughly dis-
cussed using the Liénard-Chipart stability criterion. The individual and coupling effect of mass and
stiffness distribution on the dynamic asymptotic stability due to mainly infinitesimal damping is
examined. These systems may be as follows: (a) unloaded (free motion) and (b) subjected to a sud-
denly applied load of constant magnitude and direction with infinite duration (forced motion). The
aforementioned parameters combined with the algebraic structure of the damping matrix (being
either positive semidefinite or indefinite) may have under certain conditions a tremendous effect
on the Jacobian eigenvalues and then on the local stability of these autonomous systems. It was
found that such systems when unloaded may exhibit periodic motions or a divergent motion, while
when subjected to the above step load may experience either a degenerate Hopf bifurcation or peri-
odic attractors due to a generic Hopf bifurcation. Conditions for the existence of purely imaginary
eigenvalues leading to global asymptotic stability are fully assessed. The validity of the theoretical
findings presented herein is verified via a nonlinear dynamic analysis.
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1. Introduction

In previous studies of the 3rd author, based on 2-DOF and 3-DOF cantilevered models [1] un-
der partial follower loading (nonconservative systems), it was shown that in a small region
of divergence instability, flutter (dynamic instability) may occur before divergence (static insta-
bility), if very small damping is included [2, 3]. Bolotin et al. [4] using an aeroelastic model
presented a similar result. Paı̈doussis et al. [5] and Paı̈doussis [6] have shown that flutter may
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occur in an inherently conservative system but for large damping. However, the effect of damp-
ing, being of paramount importance in nonconservative autonomous systems, was in general
ignored when these systems are subjected to a step conservative (potential) loading. This is so
because it was widely accepted that dynamic stability in nondissipative conservative systems,
which are stable, does not change by the inclusion of damping [7].

The local dynamic stability of discrete systems under step conservative loading when
small dissipative forces are included is governed by the matrix-vector differential equation
[8–11]:

Mq̈ + Cq̇ + Vq = 0, (1.1)

where the dot denotes a derivative with respect to time t; q(t) is an n-dimensional state vector
with coordinates qi(t)(i = 1, . . . , n); M, C and V are n×n real symmetric matrices. More specif-
ically, matrix M associated with the total kinetic energy of the system is a function of the con-
centrated masses mi(i = 1, . . . , n), being always positive definite; matrix C the elements of which
are the damping coefficients cij(i, j = 1, . . . , n) may be positive definite, positive semidefinite as in
the case of pervasive damping [12, 13], or indefinite [14–16]; V is a generalized stiffness matrix
with coefficients kij(i, j = 1, . . . , n) whose elements Vij are also linear functions of a suddenly ap-
plied external load λ with constant direction and infinite duration [17], that is, Vij = Vij(λ; kij).
Apparently, due to this type of loading, the system under discussion is autonomous. When the
external loading λ is applied statically, one can obtain the static (divergence) instability or buck-
ling loads λcj (j = 1, . . . , n) by vanishing of the determinant of the stiffness matrix V(λ; kij), that
is,

∣
∣V
(

λ; kij
)∣
∣ = 0. (1.2)

Clearly, (1.2) yields an nth degree algebraic equation in λ. Assuming distinct critical states, the
matrix V(λ; kij) is positive definite for λ < λc1, positive semidefinite for λ = λc1, and indefinite for
λ > λc1.

Kounadis in two very recent publications [10, 11] has established the conditions under
which the above autonomous dissipative systems under step (conservative) loading may ex-
hibit dynamic bifurcational modes of instability before divergence (static) instability, that is, for
λ < λc1, when infinitesimal damping is included. These bifurcational modes may occur through
either a degenerate Hopf bifurcation (leading to periodic motion around centers) or a generic
Hopf bifurcation (leading to periodic attractors or to flutter). These unexpected findings (im-
plying failure of Ziegler’s kinetic criterion and other singularity phenomena) may occur for a
certain combination of values of the mass (primarily) and stiffness distribution of the system
in connection with a positive semidefinite or an indefinite damping matrix.

The question which now arises is whether there are combinations of values of the above-
mentioned parameters (mass and stiffness distribution) which in connection with the algebraic
structure of damping matrices may lead to dynamic bifurcational modes of instability when the
system under discussion is unloaded. Such local (due to unforced motion) dynamic instability
will be sought through the set of asymptotic stability criteria of Liénard-Chipart [8, 18] which
are elegant and more readily employed than the well-known Routh-Hurwitz stability criteria.

As another main objective of this work, some new dynamic bifurcations related to the
algebraic structure of the damping matrix when the systems are loaded by the above type of
step conservative load will be also discussed, using the Liénard-Chipart criterion by analyzing
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2-DOF models for which a lot of numerical results are available. Finally, the conditions of a
double purely imaginary root leading to a new dynamic bifurcation, whose response is similar
to that of a generic Hopf bifurcation, are properly established.

2. Basic equations

Solution of (1.1) can be sought in the form

q = reρt, (2.1)

where ρ is in general a complex number and r is a complex vector independent of time t.
Introducing q from (2.1) into (1.1), we get

(

ρ2M + ρC + V
)

r = 0. (2.2)

For given stiffness coefficients kij(i, j = 1, . . . , n), the generalized stiffness matrix V is
a linear function of λ. Thus, if matrices M, C, V are given, solutions of (2.2) are intimately
related to the algebraic properties of the matrix-valued function L(ρ) = ρ2M + ρC + V, and
more specifically to the Jacobian eigenvalues [ρ = ρ(λ)] obtained through the vanishing of the
determinant:

∣
∣ρ2M + ρC + V

∣
∣ = 0, (2.3)

whose expansion gives the characteristic (secular) equation for an N-DOF system:

ρ2n + α1ρ
2n−1 + · · · + α2n−1ρ + α2n = 0, (2.4)

where the real coefficients αi(i = 1, . . . , 2n) are determined by means of Bôcher formula [19].
The eigenvalues (roots) of (2.4) ρj (j = 1, . . . , 2n) are, in general, complex conjugate pairs ρj =
νj ± μji (where νj and μj are real numbers and i =

√
−1) with corresponding complex conjugate

eigenvectors rj and rj(j = 1, . . . , n). Since ρj = ρj(λ), clearly νj = νj(λ), μj = μj(λ), rj = rj(λ),
and rj = rj(λ). Thus, the solutions of (1.1) are of the form

Aeνj tcosμjt, Beνj t sinμjt, (2.5)

where A and B are constants which are determined from the initial conditions. Solutions in
(2.5) are bounded, tending to zero as t→∞, if all eigenvalues of (2.4) have negative real parts,
that is, when νj < 0 for all j. In this case, the algebraic polynomial (2.4) is called a Hurwitz
polynomial (since all its roots have negative real parts) and the origin (q = q̇ = 0) of the system
is asymptotically stable.

2.1. Criteria for asymptotic stability

The necessary and sufficient conditions which assure that all roots of (2.4) have negative real
parts (i.e., vj < 0 for all j) which means that the corresponding polynomial |L(ρ)| is a Hurwitz
polynomial are of great practical importance.
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Consider the more general case of a polynomial in z with real coefficients αi(i = 1, . . . , n):

f(z) = α0z
n + α1z

n−1 + · · · + αn−1z + αn = 0
(

α0 > 0
)

(2.6)

for which we will seek the necessary and sufficient conditions so that all its roots have negative
real parts.

Denoting by zκ(κ = 1, . . . , m) the real roots and by rj ± isj(j = 1, . . . , (n −m)/2); i =
√
−1)

the complex roots of (2.6), we may assure that all these roots in the complex plane lie to the left
of the imaginary axis, that is,

zκ < 0, rj < 0
(

κ = 1, . . . , m; j = 1, . . . ,
n −m

2

)

. (2.7)

Then one can write

f(z) = α0

m∏

κ=1

(

z − zκ
)
n−m∏

j=1

(

z2 − 2rjz + r2
j + s

2
j

)

. (2.8)

Since due to inequality (2.7), each term in the last part of (2.8) has positive coefficients, it
is deduced that all coefficients of (2.6) are also positive. However, this (i.e., αi > 0 for all i with
α0 > 0) is a necessary but by no means sufficient condition for all roots of (2.6) to lie in the left
half-plane (i.e., Re(z) < 0).

According to Routh-Hurwitz criterion [18] of asymptotic stability for all roots of (2.6) to
have negative real parts, the necessary and sufficient conditions are

Δ1 > 0,Δ2 > 0, . . . ,Δn > 0 (2.9)

where

Δ1 = α1,Δ2 =

∣
∣
∣
∣
∣

α1 α3

α0 α2

∣
∣
∣
∣
∣
,Δ3 =

∣
∣
∣
∣
∣
∣
∣

α1 α3 0

α0 α2 α4

0 α1 α3

∣
∣
∣
∣
∣
∣
∣

, . . . ,Δn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

α1 α3 α5 · · · · · · · · · · · ·
α0 α2 α4 · · · · · · · · · · · ·
0 α1 α3 · · · · · · · · · · · ·
0 α0 α2 α4 · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · αi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.10)

(with ακ = 0 for κ > n). Note the last equality Δn = αnΔn−1.
It should be noted that when the above necessary conditions αi > 0 (for all i) hold,

inequalities (2.9) are not independent. For instance, for n = 4, the Routh-Hurwitz conditions
reduce to the single inequality Δ3 > 0; for n = 5, they reduce to Δ2 > 0 and Δ4 > 0; while for
n = 6, they reduce also to two inequalities, Δ3 > 0, Δ5 > 0. This case was discussed by Liénard
and Chipart who established the following elegant criterion for asymptotic stability [8].
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The Liénard-Chipart stability criterion

For a polynomial with real coefficients f(z) = α0z
n + α1z

n−1 + · · · + αn−1z + αn = 0 (α0 > 0) to
have all roots with negative real parts, it is necessary and sufficient that

(1) all coefficients of f (z) be positive, that is,

αi > 0 (i = 1, . . . , n); (2.11a)

(2) the determinant inequalities be also positive, that is,

Δn−1 > 0,Δn−3 > 0, . . . , (2.11b)

where Δκ denotes as before the Hurwitz determinant of κth order.

It can be shown that if the Hurwitz determinants of odd order are positive, then those of
even order are also positive, and vice versa. This holds even when only part of the coefficients αi
of f (z) (with α0 > 0) are positive. According to this, the Liénard-Chipart criterion is defined as
follows.

Necessary and sufficient conditions for all roots of the real polynomial f(z) = α0z
n +

α1z
n−1 + · · · + αn−1z + αn = 0, (α0 > 0) to have negative real parts can be given in any one of

the following forms [18]:

(1)

αn > 0, αn−2 > 0, . . . ; with

⎧

⎨

⎩

eitherΔ1 > 0, Δ3 > 0, . . . ,

orΔ2 > 0, Δ4 > 0, . . . ,
(2.12a)

(2)

αn > 0, αn−1 > 0, αn−3 > 0, . . . ; with

⎧

⎨

⎩

eitherΔ1 > 0, Δ3 > 0, . . . ,

orΔ2 > 0, Δ4 > 0, . . . .
(2.12b)

This stability criterion was rediscovered by Fuller [20].
For instance, for a 2-DOF cantilevered model, the characteristic (secular) (2.4) is

ρ4 + α1ρ
3 + α2ρ

2 + α3ρ + α4 = 0 (α0 = 1). (2.13)

According to the last criterion, all roots of (2.13) have negative real parts provided that
α4 > 0, α2 > 0, Δ1 = α1 > 0 and Δ3 = α3(α1α2 − α3) − α2

1α4 > 0. Clearly, from the last inequality,
it follows that α3 > 0. Hence, the positivity of α1 and α3 was assured via the above conditions
(i.e., α4 > 0, α2 > 0, Δ1 > 0, Δ3 > 0).
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Figure 1: 2-DOF autonomous system under conservative loading.

3. Mathematical analysis

Subsequently, using the spring cantilevered dynamical model of 2-DOF shown in Figure 1,
we will examine in detail the effect of violation of one or more of the conditions of Liénard-
Chipart criterion on its asymptotic stability. The response of this dynamic model carrying two
concentrated masses is studied when it is either unloaded or loaded by a suddenly applied load of
constant magnitude and direction with infinite duration. Such autonomous dissipative systems
with infinitesimal damping (including the case of zero loading) are properly discussed. If at
least one root of the secular equation (2.13) has a positive real part, the corresponding solution
(2.5) will contain an exponentially increasing function and the system will become unstable.

The seeking of an imaginary root of the secular equation (2.13) which represents a bor-
der line between dynamic stability and instability is a first but important step in our dis-
cussion. Clearly, an imaginary root gives rise to an oscillatory motion of the form eiμt, (i =√
−1, μ real number) around the trivial state. However, the existence of at least one multiple

imaginary root of the κth order of multiplicity leads to a solution containing functions of the
form eiμt, teiμt, . . . , tκ−1eiμt which increases with time. Hence, the multiple imaginary root on the
imaginary axis of the complex plane denotes local dynamic instability. The discussion of such a
situation is also another objective of this study.

The nonlinear equations of motion for the 2-DOF model of Figure 1 with rigid links of
equal length � are given by [11]

(1 +m)θ̈1 + θ̈2cos
(

θ1 − θ2
)

+ θ̇2
2 sin

(

θ1 − θ2
)

+ c11θ̇1 + c12θ̇2 + kθ1 − θ2 + θ1 − λ sin θ1 = 0,

θ̈2 + θ̈1cos
(

θ1 − θ2
)

− θ̇2
1 sin

(

θ1 − θ2
)

+ c22θ̇2 + c12θ̇1 − θ1 + θ2 − λ sin θ2 = 0,
(3.1)

where m = m1/m2, k = k1/k2, λ = P�/k2.
Linearization of (3.1) after setting

Θ =

[

θ1

θ2

]

= eρt
[

ϕ1

ϕ2

]

= eρtϕ (3.2)
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gives
(

ρ2M + ρC + V
)

ϕ = 0, (3.3)

where

M =

[

m11 m12

m12 m22

]

=

[

1 +m 1

1 1

]

, C =

[

c11 c12

c12 c22

]

, V =

[

V11 V12

V12 V22

]

=

[

k + 1 − λ −1

−1 1 − λ

]

.

(3.4)

Note that in case of a Rayleigh’s dissipative function the damping coefficients are, c11 =
c1 + c2, c12 = −c2, c21 = −c2, and c22 = c2, where ci(i = 1, 2) is dimensionless coefficient for the ith
rigid link. This case (for which det C = |c| = c1c2) is a specific situation of the damping matrix
C which is not discussed herein.

The static buckling (divergence) equation is given by

λ2 − (2 + k)λ + k = 0, (3.5)

whose lowest root is the first buckling load λc1 equal to

λc1 = 0.5
(

k + 2 −
√

k2 + 4
)

. (3.6)

Clearly, for the entire interval of values of k > 0, (3.6) yields 0 ≤ λc1 < 1.
The characteristic (secular) equation is

ρ4 + α1ρ
3 + α2ρ

2 + α3ρ + α4 = 0 , (3.7)

where

α1 =
1
m

(

m11c22 +m22c11 − 2m12c12
)

,

α2 =
1
m

(

m11V22 +m22V11 − 2V12m12 + |c|
)

,

α3 =
1
m

(

c11V22 + c22V11 − 2V12c12
)

,

α4 =
1
m

(

V11V22 − V 2
12

)

.

(3.8)

Let us first examine the effect of violation of Liénard-Chipartcriterion on the system
stabilityin the case of zero loading (i.e., λ = 0). Then expressions in (3.8) due to relations (3.4)
are written as follows:

α1 =
1
m

[

(1 +m)c22 + c11 − 2c12
]

,

α2 =
1
m

[

k +m + 4 + c11c22 − c2
12

]

,

α3 =
1
m

[

c11 + c22(k + 1) + 2c12
]

,

α4 =
k

m
.

(3.9)
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According to Liénard-Chipart criterion, inequalities (2.12a) imply

α4 > 0, α2 > 0, Δ1,Δ3 > 0, (3.10)

where Δ1 = α1 > 0 and Δ3 = α3(α1α2 −α3)−α2
1α4 > 0. Clearly, from the last inequality, it follows

that α3 > 0.
For cii > 0 (i = 1, 2), k > 0, and m > 0 (implying α4 > 0), it is deduced that this criterion

is violated if either one of α1 orα2 is zero or Δ3 is zero. These three cases will be discussed
separately in connection with the algebraic structure of the damping matrix C = [cij].

Case 1 (α1 = 0 with α2 > 0). If α1 = 0 (yielding Δ3 = −α2
3 < 0), then

(1 +m)c22 + c11 − 2c12 = 0. (3.11)

Equation (3.11), being independent of λ and k, is satisfied only when the damping matrix C is
indefinite, that is,

c11c22 − c2
12 < 0

(

cii > 0 for i, j = 1, 2
)

. (3.12)

Indeed, the last inequality due to relation (3.11) implies

(1 +m)2c2
22 + 2(m − 1)c11c22 + c2

11 > 0 (3.13)

which is always satisfied, regardless of the value of c22/c11, since for m > 0, the discriminant of
(3.13) (equal to −16c2

11m) is always negative.
Thus, we have explored the unexpected finding that an unloaded (stable) system becomes

dynamically unstable at any small disturbance in case of an indefinite damping matrix even when
infinitesimal damping is included.

Since all coefficients of (3.7) are positive from the theory of algebraic equations it follows
that this equation cannot have positive root. Also the case of existence of a pair of pure imag-
inary roots associated with Δ3 = 0 is ruled out, since Δ3 < 0 (due to α1 = 0). Hence, (3.7) has
either two negative roots combined with a pair of complex conjugate roots with positive real part
or two pairs of complex conjugate roots with opposite real parts. Both cases imply local dynamic
instability.

Case 2 (α2 = 0 with α1 > 0). If α2 = 0 (implying also Δ3 < 0), then

|c| = −k −m − 4 < 0 (k,m > 0). (3.14)

Namely, the damping matrix [cij] is indefinite but with large negative determinant (rather un-
realistic case). Since the Liénard-Chipart criterion is violated, the model is again locally dy-
namically unstable.

Since all coefficients of (3.7) are positive, from the theory of algebraic equations, it is deduced
that this equation cannot have positive root. Also the case of existence of a pair of pure imagi-
nary roots associated with Δ3 = 0 is ruled out, since Δ3 < 0 (due to α2 = 0). Hence, (3.7) has
either two negative roots combined with a pair of complex conjugate roots with positive real part
or two pairs of complex conjugate roots with opposite real parts. Both cases imply local dynamic
instability.



Dimitris S. Sophianopoulos et al. 9

Case 3 (Δ3 = 0). In this case, stability conditions in (3.10) are satisfied except for the last one,
since Δ3 = 0 which yields [11]

Δ3 = α3(α1α2 − α3) − α2
1α4 = 0. (3.15)

Note that λ < λc1 implies α4 > 0 (i.e., det V > 0).
This is a necessary condition for the secular (3.7) to have one pair of pure imaginary roots

±μi , (i =
√
−1). Indeed, this can be readily established by inserting ρ = ±μi into (3.7) and then

equating to zero real and imaginary parts.
Consider now the more general case of nonzero loading (i.e., λ/= 0). Using relations in

(3.8), (3.15) can be written as follows:

Aλ2 + Bλ + Γ = 0, (3.16)

where

A =
(

c11 + c22
)

(m + 2)α1 −m
(

c11 + c22
)2 −
[

(1 +m)c22 + c11 − 2c12
]2
, (3.17a)

B = −α1
{

(m + 2)
[

c11 + (k + 1)c22 + 2c12
]

+
(

c11 + c22
)[

k +m + 4 + |c|
]}

+ 2m
[

c11 + (k + 1)c22 + 2c12
](

c11 + c22
)

+ (k + 2)
[

(1 +m)c22 + c11 − 2c12
]2
,

(3.17b)

Γ =
(

k +m + 4 + |c|
)[

c11 + (k + 1)c22 + 2c12
]

α1 −m
[

c11 + (k + 1)c22 + 2c12
]2

− k
[

(1 +m)c22 + c11 − 2c12
]2
,

(3.17c)

where

c11 =
c2

12 + |c|
c22

, α1 = mα1. (3.17d)

For real λ, the discriminant D of (3.16) must be greater than or equal to zero, that is,

D = B2 − 4AΓ ≥ 0. (3.18)

Subsequently, attention is focused on the following: (a) matrix C is positive semidefinite (i.e.,
|c| = 0 with cii > 0, i = 1, 2) and (b) matrix C is indefinite (|c| < 0 with cii > 0, i = 1, 2).

Using the symbolic manipulation of Mathematica [21], one can find that

D = |c|f
(

|c|
)

, (3.19)

where f(|c|) is an algebraic polynomial of 5th degree in |c|.

Case 4 (|c| = 0, f /= 0). For |c| = 0, (3.16) implying D = 0 admits a double root, which due to
(3.17a), (3.17b), (3.17d) is given by

λH1 =
2c2

12 + c12c22(k −m) − c2
22(k +m + 2)

c2
12 − c

2
22 − c12c22m

. (3.20)

Using the Reduce command embedded in Mathematica, one can find the conditions under which
0 < λH1 < λc1, given in the appendix, relation (A.1).
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Case 5 (f = 0, |c|/= 0). Moreover, it was found symbolically that the 5th degree polyno-
mial f(|c|) possesses three real roots (one double and one single), and two pure imaginary
ones. Discussing their nature, one can find that the double root of f(|c|), being equal to
|c| = −(c12 − c22)

2 − c2
22m < 0, yields

c12 =
1
2
[

c11 + (m + 1)c22
]

. (3.21)

Then, the double root of (3.16) becomes

λH2 =
2c11 + c22(k +m + 2)

c11 + c22
(3.22)

which is always greater than λc1 and hence of minor importance for the present analysis.
The third real root of f(|c|), if substituted in (3.16), yields again a double root in λ, always

less than zero, which is rejected. Thus, only the case of a positive semidefinite damping matrix
may lead to an acceptable value of the corresponding load (i.e., 0 < λH < λc1) associated with a
degenerate Hopf bifurcation, as theoretically was shown by Kounadis [10, 11].

Case 6 (λ = 0). If λ = 0, (3.16) implies Γ = 0, which after symbolic manipulation of (3.17c) can
be written in the following form:

Γ =
1
c2

22

(

|c|3 +A2|c|2 +A1|c| +A0
)

= 0, (3.23)

where Ai (i = 0, 1, 2) are given in the appendix, relations (A.2). It is evident that A2 > 0 and
A0 ≥ 0, a fact implying that (3.23) can be satisfied only for |c| ≤ 0 if alsoA1 ≥ 0; otherwise (i.e., if
A1 < 0) the system may be locally stable or unstable. For |c| = 0, one can find the corresponding
values of cii(i = 1, 2), given in (A.3) and (A.4) in the appendix, which are always positive. This
special case, for which the trivial (unloaded) state is associated with a pair of pure imaginary
eigenvalues (necessary condition for a Hopf bifurcation), implies a local dynamic instability.

Conditions for a double imaginary root

For a double imaginary root, the first derivative of the secular equation (3.7) must be also zero,
which yields

4ρ3 + 3α1ρ
2 + 2α2ρ + α3 = 0. (3.24)

Inserting into (3.24) ρ = μi, we obtain μ2 = 0.5α2 = α3/3α1 and thus α3 = 3α1α2/2. Introducing
this expression of α3 into (3.15), it follows that α1 = 0, which also implies that α3 = 0 and hence
(3.24) becomes ρ2 = −0.5α2. If ρ2 = −0.5α2 is inserted into the secular equation ρ4+α2ρ

2+α4 = 0,
for a double imaginary root, it follows that α2

2 − 4α4 = 0 which due to relations (3.8) yields

(

m2 + 4
)

λ2 − 2λ
(

m2 + (2 − k)m + 2k + 8 + (m + 2)|c|
)

|

+ |c|2 + 2(k +m + 4)|c| + (k +m + 4)2 − 4mk = 0.
(3.25)
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For real λ, the discriminant D of (3.25) must satisfy the inequality

D = |c|2 + (4 −mk)|c| − (m + k)2 ≥ 0 (3.26)

which yields

either |c| < 0.5
(

mk − 4 −
√

m2(k2 + 4) + 4k2 + 16
)

,

or |c| > 0.5
(

mk − 4 +
√

m2(k2 + 4) + 4k2 + 16
)

.
(3.27)

Using the conditions found above

α1 = α3 = 0, (3.28)

relations (3.9) yield

(1 +m)c22 + c11 − 2c12 = 0,

c11(1 − λ) + c22(k + 1 − λ) + 2c12 = 0.
(3.29)

Adding the last two equations, we obtain

(2 − λ)c11 + (k +m + 2 − λ)c22 = 0. (3.30)

Since k,m > 0, and λ < λc1 < 1, it follows that both coefficients of c11 and c22 in (3.30) are positive.
Hence, c11 and c22 are of opposite sign (i.e., c11/c22 < 0) and consequently |c| = c11c22 − c2

12 < 0;
thus the 2nd of inequalities (3.27) is excluded.

Solving simultaneously the system of equations α2
2 − 4α4 = 0, α1 = α3 = 0 in k, m, λ,

two ternaries of values for k, m, and λ are obtained, given in the appendix, expressions (A.5).
For all these values to be greater than zero, the Reduce command embedded in Mathematica
[21] yields two sets of conditions, given also in the appendix, relations (A.6). Further symbolic
computations are needed for establishing the conditions for a double pure imaginary root for
loading values less than λc1. Nevertheless, suitable combinations of values of cij , k, and m may
be found. This will be demonstrated in Section 4. The corresponding dynamic response, since
the system is associated with a codimension-2 local bifurcation, is anticipated to be related
to isolated periodic orbits which will be established via a straightforward complete nonlinear
dynamic analysis.

4. Numerical results

In this section, numerical results corresponding to all the above cases of violation of the
Liénard-Chipart stability criterion are given below in tabular and graphical forms.

Case 1 (α1 = 0). (a) λ = 0. For an unloaded system with k = m = 1, choosing c11 = 0.015
and c22 = 0.002, (3.11) yields c12 = 0.0095 and as expected the damping matrix is indef-
inite with determinant |c| = −0.0006025. The two pairs of corresponding eigenvalues are
ρ1,2 = −0.00332577 ± 0.41421i and ρ3,4 = 0.00335877 ± 0.41421i (i =

√
−1), implying local dy-

namic instability. Solving numerically the system of nonlinear equations (3.1), we find that the
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dynamic response of the system is associated with a divergent motion, as depicted in Figure 2,
with the aid of the time series

[τ, θ1(τ)], time velocities [τ, θ̇1(τ)] and phase-plane portraits [θ1(τ), θ̇1(τ)].
(b) λ/= 0. For a system with k = 5 , m = 4, and λ = 0.5 < λc1 = 0.807418 and for c11 =

0.01, c22 = 0.002, (2.13) yields c12 = −0.0175 implying |c| = −2.5625 × 10−4. The trivial state is
locally dynamically unstable, since ρ1,2 = −0.00397748 ± 0.4351i and ρ3,4 = 0.00397748 ± 0.4351i.
The corresponding dynamic response is again related to a divergent (unbounded) motion, as
shown in the phase-plane portraits of Figures 3(a) and 3(b).

Case 2 (α2 = 0). (a) λ = 0: If k = m = 1 relation (3.14) is satisfied, for example, for the damping
coefficients c11 = 0.50, c22 = 2.00, yielding c12 =

√
7 and |c| = −6. For this, rather unrealis-

tic, subcase, the corresponding eigenvalues are equal to ρ1 = −1.86617, ρ2 = −0.102227, and
ρ3,4 = 1.37995 ± 1.8269i (local instability). Hence, the response of the system is also related to a
divergent (unbounded) motion, presented graphically in the phase-plane curves of Figures 4(a)
and 4(b).

(b) λ/= 0. Similarly, for a system with k = 0.10, m = 0.20 (for which λc1 = 0.0487508) in
order that α2 = 0, we must choose an indefinite damping matrix with |c| = −4.25. Setting, for
example, c11 = 2.375, c12 = 3.00, c22 = 2.00, and λ = 0.227273 < λc1, the trivial state is locally
dynamically unstable with ρ1 = −2.46657, ρ2 = −0.00503929, and ρ3,4 = 4.2983 ± 1.6612i. The
system exhibits a divergent (unbounded) motion, as shown in Figures 5(a) and 5(b).

Case 3 (Δ3 = 0 withα1α2 /= 0). (a) Positive semidefinite damping matrix (|c| = 0). Choosing c11 =
0.01, c22 = 0.0004 (and thus c12 = 0.002), the 1st requirement of the 2nd set of conditions
given in the appendix, relation (A.1), is satisfied (i.e., c12 > c22). The 2nd requirement, that
is, m > 2(c12 − c22)/c22, yields m > 8, and hence one can choose m = 10. The 3rd requirement in
(A.1) implies that 0.8333 < k < 3 and thus one can take k = 1. Solving numerically (3.15) with
respect to λ, we obtain the value of λH = 0.307692256 < λc1 = 0.381966, associated with a pair of
pure imaginary eigenvalues, while the other pair has negative real parts. The evolution of both
pairs of eigenvalues in the complex plane as λ varies is presented in Figure 6 for λ < λc1. For
λ = λH , a degenerate Hopf bifurcation occurs and the system exhibits a periodic motion, whose
amplitude depends on the initial conditions. Relevant results in graphical form can be found
in recent publications of the 3rd author [10, 11].

(b) Indefinite damping matrix (|c| < 0). It has been proven by Kounadis [10, 11] that in this
subcase (for λ < λc1) all the necessary and sufficient conditions for a generic Hopf bifurcation are
fulfilled and hence the system experiences a periodic attractor response (stable limit cycles)
with constant final amplitudes regardless of the initial conditions. Numerical results are given
in the aforementioned papers by Kounadis.

(c) Δ3 = 0 and λ = 0. If at the same time |c| = 0, one can find the values of cii(i = 1, 2)
through (A.3) and (A.4) in the appendix, which are always positive. A further investigation of
this case as well as of the case |c| < 0 for the global stability of the system can be performed
through a nonlinear dynamic analysis.

(d) Double pure imaginary eigenvalues. For this special case, three combinations of damp-
ing matrix coefficients cij are examined. These, along with the corresponding critical values
of k, λ and m, satisfying relations (A.5) of the appendix, are given in Table 1. Note that Cases
3(d)1 and 3(d)2 are the outcome of the 1st set from relations (A.5), while Case 3(d)3 is the
outcome from the 2nd set. Clearly, in all cases, λ < λc1.
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Figure 2: (a) Time series [τ, θ1(τ)], (b) time velocities [τ, θ̇1(τ)], and (c) phase-plane portraits [θ1(τ), θ̇1(τ)],
for the system of Case 1(a), exhibiting a divergent motion.
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Figure 3: Phase-plane portraits [θi(τ), θ̇i(τ)] (i = 1, 2) for the system of Case 1(b), associated with a diver-
gent motion.
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Table 1: Values of damping coefficients (cij) and critical system parameters (k, λcr, m) for three subcases
with double pure imaginary eigenvalues.

Case no. c11 c12 c22 k λcr m λc1|c|

3(d)1 3.45 1.00 −1.40 2.65201108 0.164480292 0.035714286 0.665195
−5.83

3(d)2 3.60 1.00 −1.20 3.178585026 0.244040821 0.333333333 0.711568
−5.32

3(d)3 3.40 1.00 −1.20 2.346316274 0.629282032 0.166666666 0.631633
−5.08

In the three above subcases, the evolution of both pairs of λ-dependent eigenvalues in
the complex plane is depicted in Figures 7, 8, 9(a), and 9(b), from which it is evident that for all
λ < λc1, except for λ < λcr (where a codimension-2 bifurcation occurs), the pairs of eigenvalues
remain always in opposite planes of the Im axis, but symmetric with respect to the Re axis. This
symmetry is always present for the pair with negative real parts, while for the other pair (with
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Figure 10: Phase-plane portraits [θi(τ), θ̇i(τ)] (i = 1, 2) for the system of Case 3(d)1, associated with an
isolated periodic orbit.

positive real parts), this feature remains until their imaginary part vanishes simultaneously at
a certain value of the loading λ less than λc1.

The dynamic response of the system for all these subcases is associated with isolated
periodic orbits (whose final amplitude is constant and independent of the initial conditions),
as shown in the phase-plane trajectories of Figures 10, 11, and 12.

The corresponding dynamic bifurcations related to the above double pure imaginary eigen-
values behave like a generic Hopf bifurcation, whose basic feature is the intersection of the λ-
dependent path of one eigenvalue with the imaginary axis. On the other hand, in all the above
subcases, the branches of two consecutive λ-dependent eigenvalues meet the imaginary axis at
the same point with λ = λcr. Namely, the transversality condition is satisfied through two inter-
sected lines at the same point of the imaginary axis, but whose branches in the left (negative)
and right (positive) half planes belong to the 1st and 2nd pairs of eigenvalues, respectively.

Finally, Figure 13 verifies the unexpected phenomenon (Kounadis [11]) of discontinuity
in the dynamic loading λH associated with either a degenerate or a generic Hopf bifurcation.
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Figure 11: Phase-plane portraits [θi(τ), θ̇i(τ)] (i = 1, 2) for the system of Case 4c2, associated with an iso-
lated periodic orbit.

5. Concluding remarks

This study discusses in detail the coupling effect of (infinitesimal mainly) damping with the
mass and stiffness distribution in a 2-DOF cantilevered model under step potential loading.
Such an autonomous system may be associated either with a positive semidefinite or indefinite
damping matrix (with positive or negative diagonal elements). Attention is focused on the
violation of the Liénard-Chipart stability criterion when this system is either unloaded or loaded
by a suddenly applied load of constant magnitude and direction with infinite duration (step
potential loading). The most important findings of this study are the following.

(1) Usage of Liénard-Chipart, simple and readily employed, stability criterion compared
to that of Routh-Hurwitz brought into light a variety of new types of dynamic bifurcations
reported below.
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Figure 12: Phase-plane portraits [θi(τ), θ̇i(τ)] (i = 1, 2) for the system of Case 3(a), associated with an
isolated periodic orbit.

(2) The mass and stiffness distribution combined either with a positive semidefinite or
an indefinite damping matrix may have a considerable effect on the asymptotic stability, prior to
divergence instability, even in case of infinitesimal damping.

(3) The cantilevered model when unloaded (being statically stable), strangely enough,
under certain conditions becomes dynamically unstable to any small disturbance leading to a
divergent (unbounded) motion.

(4) The above model when loaded under analogous of the previous conditions exhibits
also a divergent motion at a certain value of the external load.

It is worth noting that both the above cases of divergent motion may occur for negligibly
small negative determinant of the damping (indefinite) matrix when α1 = 0, while for α2 = 0
(regardless of whether

λ = 0 or λ/= 0), the determinant of the damping matrix is negative but finite.
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Figure 13: Plots m versus λH for a system with k = 1 exhibiting a discontinuity for the case of (a) degenerate
and (b) generic Hopf bifurcation.

(5) When Δ3 = 0 and α1α2 /= 0, four distinct responses may occur as follows.

(a) If |c| = 0 (positive semidefinite damping matrix), the system exhibits a periodic mo-
tion associated with a degenerate Hopf bifurcation. Then, the final amplitude of motion
depends on the initial conditions.

(b) When the damping matrix is indefinite (even with infinitesimal but negative determi-
nant, |c| < 0), the system may exhibit a periodic attractor response associated with a
generic Hopf bifurcation. It is of paramount practical importance the case where such
an unexpected dynamic instability occurs at a load λH less than the 1st buckling load.

In both the above cases, it was confirmed the recently reported unexpected finding
[11] of discontinuity of the dynamic loading λH (associated with either a degenerate
or a generic Hopf bifurcation) occurring at a certain value of the mass distribution.
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(c) When at the same time λ = 0, we have a local dynamic instability for |c| ≤ 0, whose
global stability can be established through a nonlinear dynamic analysis.

(d) The case of a double pure imaginary eigenvalue may occur for an indefinite damping ma-
trix with finite determinant and negative ratio of the corresponding diagonal elements.
In this special case, there are two pairs of eigenvalues in the complex plane which
touch the imaginary axis at the same point for a certain value λ = λcr. This situation
yields local instability leading to a motion with final constant amplitude regardless of
the initial conditions. Namely, such a dynamic bifurcation behaves in a way similar
to that of a generic Hopf bifurcation. This new type of dynamic bifurcation was also
verified via a nonlinear dynamic analysis.

Appendix

Results of symbolic computations

(i) Conditions for 0 < λH1 < λc1 from (3.20), with cii > 0 (i = 1, 2), k > 0, m > 0 are
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(ii) Expressions of coefficients Ai(i = 0, 1, 2) of (3.23) are

A2 = (k +m + 2)c2
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]

⎫

⎬

⎭
,

A0 =
[

− 2c2
12 + c12c22(m − k) + c2

22(k +m + 2)
]2 ≥ 0,

(A.2)

and corresponding values of c11, c22 for |c| = 0 (⇔ A0 = 0) are

c22 =
c12

k +m + 2

[

k −m +
√

k2 − 2k(m − 4) + (m + 4)2
]

> 0 ∀c12 /= 0, k > 0, m > 0, (A.3)

c11 =
2c2

12

c22
> 0 ∀c12 /= 0, k > 0, m > 0. (A.4)
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(iii) Values of λ, k, and m for which the secular equation (3.7) has a double pure imagi-
nary pair of roots (eigenvalues) are

k1,2 =
1

2c22

⎛

⎝
c22c

2
11 +
(

c2
22 − c12c22 ∓

√

c22(c11 − 2c12 + c22)(c11c22 + 4) + 2
)

c11

−4c12 + 2c22 − c22

(

c12c22 +
√

c22(c11 − 2c12 + c22)(c11c22 + 4)
)

⎞

⎠ ,

λ1,2 =
1
2

(

c22(c11 − c12) ∓
√

c22(c11 − 2c12 + c22)(c11c22 + 4) + 4
)

,

m = −c11 − 2c12 + c22

c22

(A.5)

and the corresponding conditions for the above two sets of values to be positive are as follows.
For the 1st set (k1, λ1, m),

(

− 2 < c22 < 0
)

∧

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝−

√
√
√
√
c11c

3
22 + 4c2

22 − 4c11c22 − 16

c2
22

< c12 <
c11 + c22

2

⎞

⎠

∨
(

− 4
c22

< c11 <
c2

22

8

)

∧

⎛

⎝

√
√
√
√
c11c

3
22 + 4c2

22 − 4c11c22 − 16

c2
22

< c12 <
c11 + c22

2

⎞

⎠

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∨

(

0 < c22 < 2
)

∧
(
c2

22 − 8
c22

< c11 ≤ −
4
c22

)

∧

⎛

⎝
c11 + c22

2
< c12 < −

√
√
√
√
c11c

3
22 + 4c2

22 − 4c11c22 − 16

c2
22

⎞

⎠ .

(A.6)

For the 2nd set (k2, λ2, m),

(

− 2 < c22 < 0
)

∧

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(

− 4
c22
≤ c11 ≤

c2
22 − 8
c22

)

∧Q

∨
(

c11 >
c2

22 − 8
c22

)

∧ X

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∨

(

0 < c22 < 2
)

∧

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(

c11 <
c2

22 − 8
c22

)

∧ Y

∨
(
c2

22 − 8
c22

≤ c11 < −
4
c22

)

∧W

∨
(

c11 = − 4
c22

)

∧ Z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(A.7)
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where

Q =

⎛

⎝−

√
√
√
√
c11c

3
22 + 4c2

22 − 4c11c22 − 16

c2
22

< c12 <
c11 + c22

2

⎞

⎠ ,

X =

⎛

⎝−

√
√
√
√
c11c

3
22 + 4c2

22 − 4c11c22 − 16

c2
22

< c12 <

√
√
√
√
c11c

3
22 + 4c2

22 − 4c11c22 − 16

c2
22

⎞

⎠ ,

Y =

⎛

⎝−

√
√
√
√
c11c

3
22 + 4c2

22 − 4c11c22 − 16

c2
22

< c12 <

√
√
√
√
c11c

3
22 + 4c2

22 − 4c11c22 − 16

c2
22

⎞

⎠ ,

W =

⎛

⎝
c11 + c22

2
< c12 <

√
√
√
√
c11c

3
22 + 4c2

22 − 4c11c22 − 16

c2
22

⎞

⎠ ,

Z =

⎛

⎝
c11 + c22

2
< c12 < −

√
√
√
√
c11c

3
22 + 4c2

22 − 4c11c22 − 16

c2
22

⎞

⎠ .

(A.8)
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