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We consider one-dimensional, time-invariant sampled-data linear systems with constant feedback
gain, an arbitrary fixed time delay, which is amultiple of the sampling period and a zero-order hold
for reconstructing the sampled signal of the system in the feedback control. We obtain sufficient
conditions on the coefficients of the characteristic polynomial associated with the system. We get
these conditions by finding both lower and upper bounds on the coefficients. These conditions let
us give both an estimation of the maximum value of the sampling period and an interval on the
controller gain that guarantees the stabilization of the system.
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1. Introduction

The sampled-data systems are particular cases of a general type of systems called networked
control systems, that have an important value in applications (see Hespanha et al. [1],
Hespanha et al. [2], Hikichi et al. [3], Meng et al. [4], Naghshtabrizi and Hespanha [5] Ögren
et al. [6], Seiler and Sengupta [7] and Shirmohammadi and Woo [8]). The networked control
systems can be studied either from the approach of control theory or communication theory
(see Hespanha et al. [1]). Among the reported papers in control theory that have researched
about networked control systems it is worth to mention the works by Zhang, Tipsuwan, and
Hespanha (see Zhang et al. [9], Tipsuwan and Chow [10], and Hespanha et al. [1]).

When in networked control systems it is satisfied that the plant outputs and the control
inputs are delivered at the same time, then we obtain a sampled-data system. In this paper,
we focus our attention on sampled-data systems. These systems have widely been studied
due to their importance in engineering applications (see Åström and Wittenmark [11], Chen
and Francis [12], Franklin et al. [13], and Kolmanovskii and Myshkis [14]).
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2 Mathematical Problems in Engineering

A sampled-data linear system with fixed time delay in the feedback is a continuous
plant such that the feedback control of the closed loop system is discrete and has a delay r,
namely,

ẋ = Ax(t) + Buk−r(t), (1.1)

uk−r(t) = Kx

([
t

h

]
h − r

)
, h = tk+1 − tk, (1.2)

where [α] denotes the integer part of α, A is an n × n matrix, B ∈ Rn, r ∈ R, and h is the
interval between the successive sample instants tk and tk+1. If h is a constant, it is called the
sampling period and tk = kh. Recommendable references about time-delay systems are the
books by Hale and Verduyn Lunel [15], and Kolmanovskii and Myshkis [14]. On the other
hand, the theory about n-dimensional sampled-data control systems can be studied in the
books by Åström andWittenmark [11] or Chen and Francis [12]. In relation with the study of
sampled-data systems and the problem of proving the existence of a stabilizing control, it is
worth to mention the work by Fridman et al. [16], which is based on solving a linear matrix
inequality. The application of this approach has been very successful in subsequent works
(see Fridman et al. [17], and Mirkin [18]). Another idea is to propose a control depending on
a parameter ε and then prove that the control stabilizes the system when ε is small enough.
This idea was developed by Yong and Arapostathis [19]. Since the existence has been proved
for these last authors, now we focus on estimating an interval for ε. In order to reduce the
difficulty of the problem, we will restrict our study to the one-dimensional sampled-data
systems. These systems have attracted the attention of several researchers as they can model
interesting phenomena in engineering (see, e.g., Busenberg and Cooke [20] and Cooke and
Wiener [21]). We will consider the one-dimensional case of (1.1), that is, we will study the
differential equation

ẋ = ax(t) + buk−r(t), (1.3)

where a and b are given constants. Our problem is to find the values of the (gain) parameter
K and of the period h so that the discrete control (zero-order hold) with delay r

uk−r = Kx

([
t

h

]
h − r

)
(1.4)

makes the system (1.3) an asymptotically stable one. The time delay is considered an integer
multiple of the sampling period h in the sense that r = Nh,where N is a natural number.

For t ∈ [kh, (k + 1)h), k ∈ Z+, the function x([t/h]h−Nh) is constant and the solution
of the differential equation (1.3) is

x(t) = ea(t−kh)x(kh) +
∫ t−kh

0
eaτ dτbKx

(
(k −N)h

)
. (1.5)

Therefore by continuity

x
(
(k + 1)h

)
= eahx(kh) +

∫h

0
eaτbKx

(
(k −N)h

)
dτ. (1.6)
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We now define

Ad = eah, Bd = b

∫h

0
eaτdτ, ε(k) = x(kh). (1.7)

From (1.6)we obtain the following difference equation:

ε(k + 1) = Adε(k) + BdKε(k −N). (1.8)

By making the change of variable J = k − N, the difference equation (1.8) becomes a
homogeneous difference equation of order N + 1, namely,

ε(J +N + 1) −Adε(J +N) − BdKε(J) = 0. (1.9)

This homogeneous difference equation of orderN+1 can be rewritten as the following system
ofN + 1 difference equations of order one. Indeed let

ε(J) = x1(J)

ε(J + 1) = x1(J + 1) = x2(J)

...

ε(J +N) = xN(J + 1) = xN+1(J)

ε(J +N + 1) = xN+1(J + 1).

(1.10)

Using (1.9), we obtain the following system of difference equations:

x1(J + 1) = x2(J)

x2(J + 1) = x3(J)

...

xN(J + 1) = xN+1(J)

xN+1(J + 1) = AdxN+1(J) + BdKx1(J),

(1.11)

which in matrix form becomes

X(J + 1) = AX(J), (1.12)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 0 0

0 0 · · · 0 0

0 0 · · · 0 0
...

...
...

0 0 · · · 0 1

BdK 0 · · · 0 Ad

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X(J) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(J)

x2(J)

x3(J)
...

xN(J)

xN+1(J)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.13)
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To give stability conditions of the system of difference equations, we first obtain the
characteristic polynomial of the matrix A:

P(λ) = λN+1 −Adλ
N − BdK. (1.14)

Thus the problem of stabilizing system (1.3) is equivalent to giving conditions on the
coefficients of the characteristic polynomial (1.14) so that this polynomial is Schur stable. The
problem of characterizing the stability region of (1.12) [or equivalently (1.14)] is considered
an interesting problem [1] although it is known that it is very difficult [9]. Our objective in
this paper is to find information about the stability region, which is explained below.

System (1.1) has been studied, and necessary and sufficient conditions on [A,B] for
the r-stabilization of the system have been obtained (see Yong and Arapostathis [19]), but
they are not easily verifiable. For the one-dimensional case (1.3), their result is the following.
Suppose −(N + 1)/N < −Ad < −1. Then the polynomial (1.14) is Schur stable if −BdK =
−(−Ad) − 1 + ε for a sufficiently small ε. However in a design problem we need to say how
to find such an ε, or to obtain an estimation of the maximum sampling interval for which the
stability is guaranteed, that is very important (see Hespanha et al. [1]).

In this paper, we find a ˜̃ε0 such that the polynomial

P(λ) = λN+1 −Adλ
N − ( −Ad

) − 1 + ε (1.15)

is Schur stable if 0 < ε < ˜̃ε0. That is, we get an estimation of the largest εmax with the property
that the polynomial (1.15) is Schur stable for 0 < ε < εmax.

Some general results about the stability for retarded differential equations with
piecewise constant delays were obtained by Cooke andWiener [21]. Problems (1.1) and (1.3)
for continuous-time systems were studied by Yong [22, 23]with an analogous approach.

2. Main result

Consider a polynomial P(z) = anz
n + an−1zn−1 + a0 such that −n/(n − 1) < an−1/an < −1. Our

objective is to give values of the coefficient a0 such that P(z) is Schur stable. The result is the
following. Choose a0 = −an−1 + an(ε − 1), then P(z) is Schur stable if ε satisfies the inequality
0 < ε < 3n/(2n − 1) + (3(n − 1)/(2n − 1))(an−1/an).

We begin by establishing the result when the degree of P(z) is two (in fact, we have
here necessary and sufficient conditions).

Theorem 2.1. Let P(z) = a2z
2 + a1z + a0 a polynomial such that −2 < a1/a2 < −1, where a0 =

−a1 + a2(ε − 1). Then P(z) is Schur stable if and only if

0 < ε < 2 +
a1

a2
. (2.1)

Proof. P(z) is Schur stable if and only if its coefficients satisfy [24] the following:
∣∣a2
∣∣ > ∣∣a2(ε − 1) − a1

∣∣,∣∣a1
∣∣ < ∣∣a2 + a2(ε − 1) − a1

∣∣; (2.2)

or equivalently

0 > a2
2ε

2 − (2a2
2 + 2a2a1

)
ε + 2a2a1 + a2

1,

0 < ε
(
a2
2ε − 2a2a1

)
.

(2.3)
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To prove this last part, we define

g
(
ε
)
= a2

2ε
2 − (2a2

2 + 2a2a1
)
ε + 2a2a1 + a2

1. (2.4)

Then

g(ε) = 0 ⇐⇒
(
ε = 2 +

a1

a2
or ε =

a1

a2

)
. (2.5)

Since the coefficient of ε2 is positive, g(ε) < 0 if and only if

a1

a2
< ε < 2 +

a1

a2
. (2.6)

We have, it holds that.
On the other hand, ε(a2

2ε − 2a2a1) > 0 if and only if (ε > 0 and ε > 2(a1/a2)). Now
since a1/a2 < −1, it holds that 2(a1/a2) < −2. Therefore, ε(a2

2ε−2a2a1) > 0 if and only if ε > 0,
so that [g(ε) < 0 and ε(a2

2ε − 2a2a1) > 0] if and only if 0 < ε < 2 + a1/a2.

The arbitrary degree proof depends on the following lemma and several technical
propositions that can be checked in the appendix.

Lemma 2.2. Fix an arbitrary integer n > 2. Given P(z) = an+1z
n+1 + anz

n + a0 with −(n + 1)/n <
an/an+1 < −1 and a0 = −an + an+1(ε − 1), define Q(z) = a0z

n+1 + anz + an+1 and

R(z) =
1
z

[
P(z) − a0

an+1
Q(z)

]
=

1
an+1

[
Anz

n +An−1zn−1 +A0
]
, (2.7)

where An = a2
n+1 − a2

0, An−1 = an+1an and A0 = −a0an. If ε satisfies 0 < ε < 3(n + 1)/(2n + 1) +
(3n/(2n + 1))(an/an+1), then (|an+1| > |a0| and |An| > |A0|).

Proof. We have that |an+1| > |a0| if and only if (Proposition A.1)

0 < ε < 2 +
an

an+1
. (2.8)

Hence to prove the lemma, it is sufficient to show that

3(n + 1)
2n + 1

+
3n

2n + 1
an

an+1
< 2 +

an

an+1
. (2.9)

A straightforward calculation shows that inequality (2.9) holds if and only if ((n − 1)/(2n +
1))(an/an+1) < (n − 1)/(2n + 1), which is true because an/an+1 < −1.

We now show that |An| > |A0|. It can be seen that An = a2
n+1 − a2

0 and A0 = −a0an, from
where ∣∣An

∣∣ > ∣∣A0
∣∣⇐⇒ ∣∣a2

n+1 − a2
0

∣∣ > ∣∣a0an

∣∣
⇐⇒ (a2

n+1 − a2
0
)2

>
(
a0an

)2
⇐⇒ [(a2

n+1 − a2
0
) − a0an

][
a2
n+1 − a2

0 + a0an

]
> 0

⇐⇒ {[(a2
n+1 − a2

0
) − a0an > 0, a2

n+1 − a2
0 + a0an > 0

]
or
[(
a2
n+1 − a2

0
) − a0an < 0, a2

n+1 − a2
0 + a0an < 0

]}
.

(2.10)
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We will split the analysis into the following two cases:

[(
a2
n+1 − a2

0
) − a0an > 0, a2

n+1 − a2
0 + a0an > 0

]
(2.11)

or

[(
a2
n+1 − a2

0
) − a0an < 0, a2

n+1 − a2
0 + a0an < 0

]
. (2.12)

We analyze (2.11). By Proposition A.2, the first inequality in (2.11) is satisfied if and
only if

1 +
1
2

an

an+1
−
√
1 +

1
4

(
an

an+1

)2

< ε < 1 +
1
2

an

an+1
+

2
√
1 +

1
4

(
an

an+1

)2

. (2.13)

Since 1 + (1/2)(an/an+1) > 0, it follows that

1 +
1
2

an

an+1
+

√
1 +

1
4

(
an

an+1

)2

> 0. (2.14)

By straightforward calculations,

1 +
1
2

an

an+1
−
√
1 +

1
4

(
an

an+1

)2

< 0, (2.15)

and since ε > 0, it must satisfy

0 < ε < 1 +
1
2

an

an+1
+

√
1 +

1
4

(
an

an+1

)2

. (2.16)

For the second inequality in (2.11), we use Proposition A.3. So a2
n+1 − a2

0 + a0an > 0 if
and only if

1 +
3an

2an+1
−
√
1 +

1
4

(
an

an+1

)2

< ε < 1 +
3an

2an+1
+

√
1 +

1
4

(
an

an+1

)2

. (2.17)

Since −(n + 1)/n < an/an+1 < −1, we have the following two inequalities:

1 +
3an

2an+1
−
√
1 +

1
4

(
an

an+1

)2

< 0,

1 +
3an

2an+1
+

√
1 +

1
4

(
an

an+1

)2

> 0.

(2.18)

Now, since we are interested in ε > 0, it must satisfy

0 < ε < 1 +
3an

2an+1
+

√
1 +

1
4

(
an

an+1

)2

. (2.19)
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By straightforward calculations, it follows that

1 +
3an

2an+1
+

√
1 +

1
4

(
an

an+1

)2

< 1 +
1
2

an

an+1
+

√
1 +

1
4

(
an

an+1

)2

. (2.20)

Therefore both inequalities in (2.11) are satisfied if and only if

0 < ε < 1 +
3an

2an+1
+

√√√√1 +
1
4

(
an

an+1

)2

. (2.21)

Note that not depending on (2.12), we get that |An| > |A0| if (2.21) is satisfied, so we can omit
the analysis of (2.12).

Now by hypothesis ε < 3(n + 1)/(2n + 1) + (3n/(2n + 1))(an/an+1) and by
Proposition A.4, it holds that

3(n + 1)
2n + 1

+
3n

2n + 1
an

an+1
< 1 +

3an

2an+1
+

√√√√1 +
1
4

(
an

an+1

)2

. (2.22)

It follows that

ε < 1 +
3an

2an+1
+

√√√√1 +
1
4

(
an

an+1

)2

, (2.23)

and consequently |An| > |A0|.
We now prove the main result for an arbitrary degree.

Theorem 2.3 (fix an arbitrary integer n ≥ 2). Let P(z) = anz
n + an−1zn−1 + a0 be a polynomial

such that −n/(n − 1) < an−1/an < −1, where a0 = −an−1 + an(ε − 1). If ε satisfies 0 < ε <
3n/(2n − 1) + (3(n − 1)/(2n − 1))(an−1/an), then we have that |an| > |a0| and P is a polynomial
Schur stable.

Proof. We make induction over n. The case n = 2 is part of Theorem 2.1. Now suppose that
the theorem holds for n ≥ 2, and let P(z) = an+1z

n+1 + anz
n + a0 be a polynomial of degree

n + 1 such that

−n + 1
n

<
an

an+1
< −1, a0 = −an + an+1(ε − 1). (2.24)

If we define the polynomials Q and R as in lemma, then replacing P and Q in the
polynomial R, we obtain

R(z) =

(
a2
n+1 − a2

0

)
zn + an+1anz

n−1 − a0an

an+1
. (2.25)

If |an+1| > |a0|, then an+1R(z) = (a2
n+1 − a2

0)z
n + an+1anz

n−1 − a0an is a Schur stable polynomial
if and only if P is Schur stable [25]. The inequality |an+1| > |a0| was proved in the lemma.
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If we define An = a2
n+1 − a2

0, An−1 = an+1an and A0 = −a0an and since the inequality
|An| > |A0| is satisfied (which was proved in the lemma), then by induction hypothesis the
polynomial an+1R(z) = Anz

n +An−1zn−1 +A0 is Schur stable if A0 = −An−1 +An(ε̃ − 1) and ε̃
satisfies 0 < ε̃ < 3n/(2n − 1) + 3(n − 1)/(2n − 1)(An−1/An). From the equality A0 = −An−1 +
An(ε̃ − 1), it follows that

A0 = −An−1 −An +Anε̃. (2.26)

By (2.24), −a0an = a2
n + anan+1 − anan+1ε or equivalently

−a0an = −anan+1 −
(
a2
n+1 − a2

0

)
+

[(
a2
n+1 − a2

0

)
+ a2

n + 2anan+1 − anan+1ε

a2
n+1 − a2

0

](
a2
n+1 − a2

0

)
. (2.27)

That is

A0 = −An−1 −An +

[(
a2
n+1 − a2

0

)
+ a2

n + 2anan+1 − anan+1ε

a2
n+1 − a2

0

]
An. (2.28)

Comparing this with (2.26), we see that

ε̃ =
a2
n+1 − a2

0 + a2
n + 2anan+1 − anan+1ε

a2
n+1 − a2

0

. (2.29)

Moreover by induction hypothesis ε̃ must satisfy the condition

0 < ε̃ <
3n

2n − 1
+
3(n − 1)
2n − 1

(
An−1
An

)
. (2.30)

Substituting ε̃, An−1 and An into (2.30), we obtain

0 <
a2
n+1 − a2

0 + a2
n + 2anan+1 − anan+1ε

a2
n+1 − a2

0

<
3n

2n − 1
+
3(n − 1)
2n − 1

an+1an

a2
n+1 − a2

0

. (2.31)

The first inequality in (2.31) is equivalent to

0 < a2
n+1 − a2

0 + a2
n + 2anan+1 − anan+1ε. (2.32)

And by Proposition A.5 this holds if and only if

0 < ε < 2 +
an

an+1
. (2.33)

Now we will analyze the second inequality in (2.31) which is equivalent to

a2
n+1 − a2

0 + a2
n + 2anan+1 − anan+1ε <

3n
(
a2
n+1 − a2

0

)
2n − 1

+
3(n − 1)
2n − 1

an+1an. (2.34)
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By Proposition A.6, inequality (2.34) is obtained if and only if

1 +
4n + 1
2(n + 1)

c −
√
Hn(c) < ε < 1 +

4n + 1
2(n + 1)

c +
√
Hn(c), (2.35)

where c = an/an+1 and Hn(c) = 1 + ((n − 2)/(n + 1))c + ((n − 1/2)/(n + 1))2c2.
By Proposition A.7,

1 +
4n + 1
2(n + 1)

c −
√
Hn(c) < 0. (2.36)

So that (2.34) is satisfied if and only if

0 < ε < 1 +
4n + 1
2(n + 1)

c +
√
Hn(c). (2.37)

Moreover by Proposition A.8,

1 +
4n + 1
2(n + 1)

c +
√
Hn(c) ≤ 2 + c ∀n ≥ 1. (2.38)

Thus (2.32) and (2.34) are satisfied if and only if

0 < ε < 1 +
4n + 1
2(n + 1)

c +
√
Hn(c). (2.39)

We now analyze the right-hand side of (2.39). Let

F(c) = 1 +
4n + 1
2(n + 1)

c +
√
Hn(c). (2.40)

By Proposition A.9, it holds that F(c) is increasing and convex, F(−(n+1)/n) = 0 and F ′(−(n+
1)/n) = 3n/(2n + 1).

We now get the equation of the tangent line of the function F at the point c = −(n+1)/n.
To do this, we use fact hat F(−(n + 1)/n) = 0 and F ′(−(n + 1)/n) = 3n/(2n + 1). So that the
equation of the tangent line passing through the point (−(n + 1)/n, 0) is y = 3(n + 1)/(2n +
1) + (3n/(2n + 1))c. Therefore if 0 < ε < 3(n + 1)/(2n + 1) + (3n/(2n + 1))c, then

0 < ε < 1 +
4n + 1
2(n + 1)

c +
√
Hn(c) (2.41)

from which Theorem 2.3 follows.

Remark 2.4. Note that the inequality −(N + 1)/N < −Ad < −1 implies that the number a in
(1.3) must be positive since Ad = eah with h > 0 and then: −eah < −1 is satisfied if and only if
a > 0.
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The next corollary is a consequence of our results.

Corollary 2.5. Suppose that the system (1.3) has a proportional control (1.4) with delay r = Nh and
suppose that a, b > 0. If the sampling period and the gain of the controller satisfy

h <
ln
[
3(N + 1)/3N

]
a

,

−a
b

[
1 − 3N

2N + 1
+

3
(2N + 1)

(
eah − 1

)
]
< K < −a

b
,

(2.42)

then the sampled-data system is stabilizable.

3. Example

We consider the sampled-data system

ẋ = x(t) + uk−r(t),

uk−r(t) = Kx

([
t

h

]
h − 4h

)
,

(3.1)

where the values of the parameters are a = 1, b = 1, N = 4, and r = 4h. The difference
equation (1.8) is ε(k + 1) = ehε(k) + (eh − 1)Kε(k − 4) and the characteristic polynomial
(1.12) associated with the system is P(λ) = λ5 − ehλ4 + eh − 1 + ε which is Schur stable for
0 < ε < (5 − 4eh)/3 by Theorem 2.1. Furthermore by Corollary 2.5 the maximum sampling
period is h < ln(5/4) and the interval for the gain of the controller is

eh − 2
3
(
eh − 1

) < K < −1. (3.2)

Now for h = 0.22, the interval of the gain that guaranties the stabilization of the system is

−1.02 < K < −1. (3.3)

For K = −1.01 the sampled-data system is stable as the characteristic polynomial has roots
with modulus less than one: λ1 = −0.605301, λ2 = −0.0721534 − 0.637776i, λ3 = −0.0721534 +
0.637776i, λ4 = 0.997839 − 0.031305i, and λ5 = 0.997839 + 0.031305i.

Appendix

In what follows we prove several inequalities.

Proposition A.1. If −(n + 1)/n < an/an+1 < −1 and a0 = −an + an+1(ε − 1), then

∣∣an+1
∣∣ > ∣∣a0

∣∣⇐⇒ 0 < ε < 2 +
an

an+1
. (A.1)
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Proof. Replacing the value of a0, we see that

∣∣an+1
∣∣ > ∣∣a0

∣∣⇐⇒ a2
n+1 >

[ − an + an+1(ε − 1)
]2
,

⇐⇒ a2
n+1ε

2 − 2an+1
(
an + an+1

)
ε + an

(
2an+1 + an

)
< 0.

(A.2)

Let h(ε) = a2
n+1ε

2 −2an+1(an +an+1)ε+an(2an+1 +an). The roots of the equation h(ε) = 0
are ε1 = 2 + an/an+1 and ε2 = an/an+1. Since the coefficient of ε2 is positive, then h(ε) < 0 if
and only if an/an+1 < ε < 2+an/an+1. But since an/an+1 < 0, we obtain 0 < ε < 2+an/an+1.

Proposition A.2. If a0 = −an + an+1(ε − 1), then

(
a2
n+1−a2

0

)−a0an>0 ⇐⇒ 1+
1
2

an

an+1
−
√√√√1 +

1
4

(
an

an+1

)2

<ε<1+
1
2

an

an+1
+

√√√√1 +
1
4

(
an

an+1

)2

.

(A.3)

Proof. Substituting a0 into the first inequality, we see that

a2
n+1 −

[ − an + an+1(ε − 1)
]2 − [ − an + an+1(ε − 1)

]
an > 0 (A.4)

if and only if

−a2
n+1ε

2 +
(
2a2

n+1 + anan+1
)
ε − anan+1 > 0. (A.5)

Let g(ε) = −a2
n+1ε

2 + (2a2
n+1 + anan+1)ε − anan+1, then

g(ε) = 0 ⇐⇒ ε = 1 +
1
2

an

an+1
±
√
1 +

1
4

(
an

an+1

)2

. (A.6)

Since the coefficient of ε2 is negative,

g(ε) > 0 ⇐⇒ 1 +
1
2

an

an+1
−
√
1 +

1
4

(
an

an+1

)2

< ε < 1 +
1
2

an

an+1
+

√
1 +

1
4

(
an

an+1

)2

. (A.7)

Proposition A.3. If a0 = −an + an+1(ε − 1), then a2
n+1 − a2

0 + a0an > 0 if and only if

1 +
3an

2an+1
−
√
1 +

1
4

(
an

an+1

)2

< ε < 1 +
3an

2an+1
+

√
1 +

1
4

(
an

an+1

)2

. (A.8)

Proof. Replacing a0 into the inequality a2
n+1 − a2

0 + a0an > 0, we get

a2
n+1 −

[ − an + an+1(ε − 1)
]2 + [ − an + an+1(ε − 1)

]
an > 0. (A.9)

That is,

−a2
n+1ε

2 +
(
2a2

n+1 + 3anan+1
)
ε − (2a2

n + 3anan+1
)
> 0. (A.10)
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Let

h(ε) = −a2
n+1ε

2 +
(
2a2

n+1 + 3anan+1
)
ε − (2a2

n + 3anan+1
)
. (A.11)

Then

h(ε) = 0 ⇐⇒ ε = 1 +
3an

2an+1
±
√
1 +

1
4

(
an

an+1

)2

. (A.12)

Since the coefficient of ε2 is negative, h(ε) > 0 ⇔

1 +
3an

2an+1
−
√
1 +

1
4

(
an

an+1

)2

< ε < 1 +
3an

2an+1
+

√
1 +

1
4

(
an

an+1

)2

. (A.13)

Proposition A.4. If n ≥ 2 and −(n + 1)/n < an/an+1 < −1, then

3(n + 1)
2n + 1

+
3n

2n + 1
an

an+1
< 1 +

3an

2an+1
+

√
1 +

1
4

(
an

an+1

)2

. (A.14)

Proof. If we let c = an/an+1, then the previous inequality becomes 3(n+1)/(2n+1)+(3n/(2n+
1))c < 1 + (3/2)c +

√
1 + (1/4)c2, which is satisfied if and only if

[
(2n + 1)2 − 9

]
c2 + 12(n + 2)c − 4

[
(n + 2)2 − (2n + 1)2

]
> 0. (A.15)

But this is true because the discriminant −4n4 − 4n3 + 15n2 + 16n + 4 of this quadratic function
is negative for n ≥ 3 and the coefficient of c2 is positive.

If n = 2, the assumption for a2/a3 becomes −3/2 < a2/a3 < −1 and since c = a2/a3 we
get that −3/2 < c, that is, 0 < 2c+ 3 then (2c + 3)2 > 0. On the other hand, the left-hand side of
inequality (A.15) becomes 16c2 + 48c + 36 = 4(2c + 3)2 which is positive and the proposition
follows.

Proposition A.5. If −(n + 1)/n < an/an+1 < −1 and a0 = −an + an+1(ε − 1), then 0 < a2
n+1 − a2

0 +
a2
n + 2anan+1 − anan+1ε in and only if 0 < ε < 2 + an/an+1.

Proof. If a0 = −an + an+1(ε − 1) is replaced in the first inequality, we obtain

0 < a2
n+1 −

[ − an + an+1(ε − 1)
]2 + a2

n + 2anan+1 − anan+1ε

⇐⇒ 0 < ε
[ − a2

n+1ε + 2a2
n+1 + anan+1

]

⇐⇒ 0 < ε < 2 +
an

an+1
.

(A.16)

By hypothesis −(n + 1)/n < an/an+1 < −1 or equivalently (n − 1)/n < 2 + an/an+1 < 1. Since
(n − 1)/n > 0 for all n ≥ 2, 2 + an/an+1 > 0. Therefore the first inequality is satisfied if and
only if 0 < ε < 2 + an/an+1.
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Proposition A.6. If a0 = −an + an+1(ε − 1), then

a2
n+1 − a2

0 + a2
n + 2anan+1 − anan+1ε <

3n
(
a2
n+1 − a2

0

)
2n − 1

+
3(n − 1)
2n − 1

an+1an

⇐⇒ 1 +
4n + 1
2(n + 1)

c −
√
Hn(c) < ε < 1 +

4n + 1
2(n + 1)

c +
√
Hn(c),

(A.17)

where c = an/an+1 and Hn(c) = 1 + ((n − 2)/(n + 1))c + ((n − 1/2)/(n + 1))2c2.

Proof. The inequality

a2
n+1 − a2

0 + a2
n + 2anan+1 − anan+1ε <

3n
(
a2
n+1 − a2

0

)
2n − 1

+
3(n − 1)
2n − 1

an+1an (A.18)

is equivalent to

−anan+1ε <
n + 1
2n − 1

(
a2
n+1 − a2

0
)
+
−(n + 1)
2n − 1

an+1an − a2
n. (A.19)

Replacing a0 into the last inequality, we see that this is equivalent to say that 0 < f(ε), where

f(ε) = −(n + 1)a2
n+1ε

2 +
[
2(n + 1)a2

n+1 + (4n + 1)anan+1
]
ε − 3na2

n − 3(n + 1)anan+1. (A.20)

Since

f(ε) = 0 ⇐⇒ ε = 1 +
4n + 1
2(n + 1)

c ±
√
Hn(c), (A.21)

and the coefficient of ε2 is negative, it holds that

f(ε) > 0 ⇐⇒ 1 +
4n + 1
2(n + 1)

c −
√
Hn(c) < ε < 1 +

4n + 1
2(n + 1)

c +
√
Hn(c). (A.22)

Proposition A.7. Fix an arbitrary n ∈ N. If −(n + 1)/n < c < −1, then

1 +
4n + 1
2(n + 1)

c −
√
Hn(c) < 0 ∀n ≥ 1. (A.23)

Proof. We have that −(n + 1)/n < c ≤ −1 if and only if

− (4n + 1)
2n

+ 1 <
4n + 1
2(n + 1)

c + 1 ≤ − 4n + 1
2(n + 1)

+ 1 =
−2n + 1
2(n + 1)

< 0, (A.24)

for all n ≥ 1, and the result follows.

Proposition A.8. If −(n + 1)/n < c < −1, it holds that

1 +
4n + 1
2(n + 1)

c +
√
Hn(c) ≤ 2 + c ∀n ≥ 1. (A.25)
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Proof. We have that

1 +
4n + 1
2(n + 1)

c +
√
Hn(c) ≤ 2 + c (A.26)

if and only if

√
Hn(c) ≤ 1 +

[
1 − 4n + 1

2(n + 1)

]
c. (A.27)

From the definition of Hn(c) this is true if and only if

1 +
(n − 2)
(n + 1)

c +
(
n − 1/2
n + 1

)2

c2 ≤ 1 +
(−2n + 1

n + 1

)
c +

(−2n + 1)2

4(n + 1)2
c2; (A.28)

if and only if ((3n − 3)/(n + 1))c ≤ 0. Since c < 0 and 3n − 3 ≥ 0 ∀n ≥ 1. Then the inequality is
satisfied.

Proposition A.9. Let

F(c) = 1 +
4n + 1
2(n + 1)

c +

√
1 +

(n − 2)
(n + 1)

c +
(
n − 1/2
n + 1

)2

c2, (A.29)

for c > −(n + 1)/n. Then

(a) F ′(c) > 0;

(b) F ′′(c) > 0 (F is convex);

(c) F(−(n + 1)/n) = 0, and F ′(−(n + 1)/n) = 3n/(2n + 1).

Proof. It is elementary.
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[11] K. J. Åström and B. Wittenmark, Computer-Controlled Systems, Prentice-Hall, Englewood Cliffs, NJ,
USA, 3rd edition, 1997.

[12] T. Chen and B. Francis, Optimal Sampled-Data Control Systems, Communications and Control
Engineering Series, Springer, London, UK, 1996.

[13] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, Addison-Wesley,
Reading, Mass, USA, 1990.

[14] V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential
Equations, vol. 463 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1999.

[15] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, vol. 99 of Applied
Mathematical Sciences, Springer, New York, NY, USA, 1993.

[16] E. Fridman, A. Seuret, and J.-P. Richard, “Robust sampled-data stabilization of linear systems: an
input delay approach,” Automatica, vol. 40, no. 8, pp. 1441–1446, 2004.

[17] E. Fridman, U. Shaked, and V. Suplin, “Input/output delay approach to robust sampled-data H∞
control,” Systems & Control Letters, vol. 54, no. 3, pp. 271–282, 2005.

[18] L. Mirkin, “Some remarks on the use of time-varying delay to model sample-and-hold circuits,” IEEE
Transactions on Automatic Control, vol. 52, no. 6, pp. 1109–1112, 2007.

[19] J. M. Yong and A. Arapostathis, “Stabilization of discrete-time linear systems with a time delay in the
feedback loop,” International Journal of Control, vol. 48, no. 4, pp. 1475–1485, 1988.

[20] S. Busenberg and K. L. Cooke, “Models of vertically transmitted diseases with sequential continuous
dynamics,” in Nonlinear Phenomena in Mathematical Sciences, V. Laksmikantam, Ed., pp. 179–187,
Academic Press, New York, NY, USA, 1982.

[21] K. L. Cooke and J. Wiener, “Retarded differential equations with piecewise constant delays,” Journal
of Mathematical Analysis and Applications, vol. 99, no. 1, pp. 265–297, 1984.

[22] J. M. Yong, “Stabilization of linear systems by time-delay feedback controls,” Quarterly of Applied
Mathematics, vol. 45, no. 2, pp. 377–388, 1987.

[23] J. M. Yong, “Stabilization of linear systems by time-delay feedback controls—II,” Quarterly of Applied
Mathematics, vol. 46, no. 4, pp. 593–603, 1988.

[24] E. I. Jury, “A simplified stability criterion for linear discrete systems,” Proceedings of the IRE, vol. 50,
no. 6, pp. 1493–1500, 1962.

[25] S. P. Bhattacharyya, H. Chapellat, and L. H. Keel, Robust Control: The Parametric Approach, Prentice-
Hall, Upper Saddle River, NJ, USA, 1995.


	Introduction
	Main result
	Example
	Appendix
	References

