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When engineers model the magnetostatic fields applied to recording heads of computer hard drives
due to a magnetic recording medium, the solution of Laplace’s equation must be found. A popu-
lar solution method is based on Fourier analysis. However, due to the geometry of the read head
model, an interesting mathematical problem arises. The coefficients for the Fourier series solution
of the desired magnetic potential satisfy an infinite system of linear equations. In practice, the infi-
nite system is truncated to a finite system with little consideration for the effect this truncation has
on the solution. The paper will provide a proper understanding of the underlying problem and a
formal analysis of the effect of truncation.
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1. Introduction

Engineering models of magnetic recording seek to simulate the magnetic potential that a
shielded magnetoresistive head will experience as it passes over a magnetized recording
medium. Finding the magnetic potential requires the solution of the Laplace equation. Often,
a simple rectangular-type geometry is employed which naturally leads to the use of Fourier-
based solutions. The desired potential can be found formally by some fairly straightforward
calculations. However, in spite of the apparent simplicity, there is an important mathematical
issue which arises in these calculations. Since the models involve a transition from an empty
half-space to slot with a finite width, the Fourier coefficients of the solution satisfy an infinite
system of linear equations. In order to compute a solution, the infinite system must be trun-
cated to a finite system. From a mathematical and numerical analysis point of view, the effect
of this truncation is not well understood or adequately explained. The main goal of this paper
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Figure 1: Diagram of solution S domain for the variational problem.

is to provide the proper mathematical context under which the effect of the truncation can be
characterized.

1.1. Problem description

Consider Laplace’s equation Δφ = 0 in a two-dimensional setting. The solution φ represents
a magnetic scalar potential. Further, assume that the xy-plane is divided into two half-spaces.
In the lower half-space (y < 0), there is an empty space containing a charge which will induce
a potential. In the upper half-space (y > 0), assume that there is a perfect magnetic conductor
with a gap of empty space from x = 0 to x = G. The empty space in region I will be referred
to as “the gap,” while the conducting material in region I will be called “the shields.” Note
that the shields are assumed to extend to infinity in both the x- and y-directions. The geometry
indicates that the potential is only nonzero in the lower half-space and in the gap between the
shields in the upper half-space (see Figure 1). Also, note that the solution will satisfy a Dirichlet
boundary condition (φ = 0) at any interface with the shields.

A special boundary condition will be provided at the interface between region I and
region II (y = 0). The boundary condition will ensure continuity of the potential and its normal
derivative across the interface and also will properly reflect the influence of the charge in region
II on the potential in region I. In addition, an artificial boundary will be placed in the gap at
some positive value y = b inside the gap in region I. The artificial boundary will create a finite
rectangular domain which will be used later in the paper for the analysis of the variational
form of the problem. The region within the gap, above the interface and below the artificial
boundary, will be denoted as S = [0, G] × [0, b]. The boundary of the region S is denoted as Γ.
In particular, the portion of the boundary at y = b is denoted as Γ1, while the portion of the
boundary at y = 0 is denoted as Γ2.

The geometry described here has been used as a simplified model of the read process
in magnetic recording [1–4]. A very similar situation using the Helmholtz equation is used
to describe the scattering of plane waves from a groove in a perfect electric conductor [5, 6].
Another similar situation occurs when dealing with waveguide junctions [7, 8]. An approach of
basic separation of variables allows us to find the form of the solutions in the lower and upper
half-spaces in terms of their Fourier components. The aim is to find the solution of the Laplace



John L. Fleming 3

equation in the gap (region I) of the upper half-space due to a charge which exists outside
the gap in the lower half-space. However, to completely describe the solution in the gap of the
upper half-space, it is necessary to study closely what occurs at the interface between the lower
half-space and the gap (y = 0).

1.2. Focus of the paper

The paper will show how to produce the Fourier solution of the potential φ in the gap region
described above. We will see that the solution method produces an infinite linear system of
equations whose solution represents the Fourier coefficients of the potential in region I. The
solution to the infinite system is approximated by solving a finite truncated version of the
linear system. From a mathematical point of view, the truncation needs to be validated. In
principle, there is no guarantee that the finite version even has a unique solution. Also, given
the existence of the solution, it must be confirmed that the finite problem converges to the
actual solution as the size of the finite system increases. Finally, if the problem does converge,
we would like to characterize the rate at which the finite Fourier series converges to the actual
series solution.

As we will see below, the nature of the infinite system is not easily conducive to math-
ematical or numerical analysis. As a novel approach, the paper will consider the variational
solution of the problem which will provide an alternative avenue for analysis. It will be shown
that in the proper context, the variational formulation is equivalent to the truncated finite ver-
sion of the Fourier approach. Once this equivalence is established, the power of functional
analysis will allow for a fairly straightforward analysis of the Fourier-based solution in the
context of the variational solution.

The intent of the paper is not only to analyze the convergence of the finite approxima-
tions of the infinite linear system, but also to provide a perspective on the problem which is
accessible to those familiar with functional analysis. The same theory which describes the con-
vergence of finite element approximations will ultimately be applied to the finite Fourier-based
approximations. Another benefit of this unique perspective is that it will allow for the descrip-
tion of the convergence properties without any need for direct analysis of the infinite linear
system itself. One will simply need to determine how well the finite Fourier expansions are
able to approximate the functions which are in the solution space of the variational problem.

2. Fourier solution

The Fourier-based solution method for the geometry in Figure 1 was offered in [2, 3]. The
method presented, or very similar methods, has been used within several models [1, 5, 6].
These papers offer a pragmatic method for finding the solution with Fourier theory, but they
offer no mathematical justification of some important details of the method. In particular, as
will be shown below, the solution of the Fourier methods satisfies an infinite linear system of
equations. Approximate solutions are found by truncating these systems, but the mathematical
analysis of this approach is lacking. Some analysis of a similar problem involving transitions
in waveguides has been done where the infinite system is analyzed directly [8]. Some analysis
of infinite matrices arising from solutions to Poisson’s equation has been done[9, 10]. Also,
analysis of infinite matrices using a matric operator technique for scattering problems has been
done [11]. None of the mentioned works considers the alternative approach for the analysis
using the variational form of the problem.
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The Fourier solution is found by studying what happens at the transition from region I
to region II. In region I, the solution will have the following form:

φI =
∞∑

n=1

An sin
(
nπx

G

)
e−(nπ/G)y. (2.1)

Since the support of the potential in the x-direction is the interval from 0 to G, a Fourier sine
series can be used. On the other hand, in region II the solution has the form

φII =
∫+∞

−∞

(
B
(
kx

)
e−κy + C

(
kx

)
eκy

)
e2πikxxdkx, (2.2)

where κ = |2πkx|. Since the support in the x-direction is (−∞,∞) in region II, a Fourier trans-
form must be used. The interesting part of the problem comes from coupling the two forms of
the solution together at the gap interface.

Recall that the main problem is to compute the potential in region I given a charge dis-
tribution ρ in region II. In terms of the Fourier approach, we must compute the Fourier coeffi-
cients An in (2.1).

2.1. Finite Fourier approximate solution method

The finite Fourier method to compute the Fourier coefficients has been presented in multiple
papers [2, 3]. The solution comes from an examination of what happens at the interface be-
tween the gap in region I and the lower half-plane of region II. The two forms of the solution
will satisfy some standard continuity conditions.

First, the potential is continuous at the gap interface. This fact gives the following equa-
tion:

φI

∣∣
y=0 = φII

∣∣
y=0. (2.3)

Second, the normal derivative (∂/∂y) is continuous across the gap interface. Hence, we have

∂φI

∂y

∣∣∣∣
y=0

=
∂φII

∂y

∣∣∣∣
y=0

. (2.4)

The An’s are computed by applying the continuity conditions to the two forms of the solution
(2.1) and (2.2).

The first continuity equation gives the following:

∞∑

n=1

An sin
(
nπx

G

)
=
∫+∞

−∞
(B + C)e2πikxxdkx (2.5)

or

∞∑

n=1

An sin
(
nπx

G

)
= F−1

x (B + C). (2.6)
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Taking the Fourier transform in the x-direction of both sides gives

∞∑

n=1

AnFx

(
sin

(
nπx

G

))
= (B + C) (2.7)

or

Fx(φI) = B + C. (2.8)

Note that both the An’s and C are unknown. The B can be computed directly using a Green
function and the known charge distribution ρ in region II. Hence, it is necessary to eliminate C
which allows for the determination of the An’s in terms of the known quantity B. The second
continuity condition allows for the elimination of C from the problem.

The second continuity condition gives the following:

∞∑

n=1

(−nπ
G

)
An sin

(
nπx

G

)
=
∫+∞

−∞

( − κB + κC
)
e2πikxxdkx (2.9)

or
∞∑

n=1

(−nπ
G

)
An sin

(
nπx

G

)
= F−1

x

( − κB + κC
)
. (2.10)

Multiplying both sides of the previous equation by sin(mπx/G) and integrating them from 0
to G give the following:

−
(

2
G

)(
mπ

G

)
Am =

∫G

0
F−1

x

( − κB + κC
)

sin
(
mπx

G

)
dx. (2.11)

Solve for C in (2.8) and substitute it into (2.11) to arrive at the following:

−2mπ

G2
Am =

∫G

0
F−1

x

[
− 2κB +

∞∑

n=1

AnFx

(
sin

(
nπx

G

))]
sin

(
mπx

G

)
dx. (2.12)

By Parseval’s formula, we have

−2mπ

G2
Am = −Bm +

∞∑

n=1

KmnAn, (2.13)

where

Bm =
∫+∞

−∞
2BF−1

x

(
sin

(
mπx

G

))
dkx,

Knm =
∫+∞

−∞
κFx

(
sin

(
nπx

G

))
F−1

x

(
sin

(
mπx

G

))
dkx.

(2.14)

Thus, we have a formulation of the Fourier coefficients in terms of the Fourier trans-
form B. However, we see that the Fourier coefficients of φI satisfy an infinite system of linear
equations given by (2.13). Denote the infinite system as

K̃
{
A
}
=
{
B
}
, (2.15)

where K̃nm = Knm + (−2mπ/G2)δnm.



6 Mathematical Problems in Engineering

2.2. The issue of truncation

For purposes of computation, such an infinite system does little good. An obvious response to
deal with the situation is to solve a truncated version of the infinite matrix

K̃N

{
AN

}
=
{
BN

}
. (2.16)

Even though this seems to be the logical approach to the infinite matrix issue from a computa-
tional perspective, the truncation leads to some important mathematical questions.

(1) Is the truncated matrix invertible?

(2) If the truncated matrix is invertible, does the finite version converge to the actual solution?

(3) If the finite version of the matrix converges to the actual solution, what is the convergence
rate?

These very important questions must be answered to have some reasonable level of trust
in the solution method. The problem is how to answer such questions about the truncation of
the infinite matrix. Direct analysis of the infinite system is one approach, but an alternative
provided below is to study the variational form of the problem and compare it to the Fourier
method.

3. Variational formulation

The variational approach not only provides a basis for mathematical proofs of existence and
uniqueness, but also provides a basis for robust numerical methods including the finite element
method. First, the variational form of the problem will be derived. Second, the variational form
will be shown to have a unique solution. Finally, it will be shown that if the variational form is
applied to a particular space of functions, then the result is equivalent to the truncated Fourier
method. Once this equivalence is established, the analysis of the truncated Fourier method can
be performed by analyzing the equivalent variational form.

3.1. Derivation of the variational form

For the variational formulation, we will use the finite solution domain. Look for a solution of
∇u = 0 in the rectangular region S = [0, G] × [0, b]. We will use u to represent the solution of
the variational problem. Ultimately, the solution will be equivalent to the potential φI found
by the Fourier approach. Recall that Γ will denote the boundary of S. To enforce the boundary
conditions u(0, y) = u(G, y) = 0, we will look for a solution in the space of functions

H̃1
0(S) =

{
w ∈ H1(S) | w(0, y) = w(G, y) = 0

}
. (3.1)

The weak form of the problem is constructed as follows.
(1) Multiply both sides of the equation ∇u by a function w in H̃1

0(S) and integrate them
over S:

∫

S

ΔuwdS = 0. (3.2)



John L. Fleming 7

(2) Apply integration by parts:

−
∫

S

∇u · ∇wdS +
∫

Γ

∂u

∂n
wdΓ = 0. (3.3)

Here, we have the weak form or the variational form of the problem. We must examine the
boundary integral term of the weak form of the equation. The boundary conditions must be
constructed for the interface between region I and region II as well as for truncating region I
domain to be finite.

We know that w(0, y) = w(G, y) = 0, but we must also specify boundary conditions on
Γ1(y = b) and Γ2(y = 0). First, on Γ1 we know that the solution will be of the form

u =
∞∑

n=1

An sin
(
nπx

G

)
e−(nπ/G)y. (3.4)

Therefore, on Γ1 we have

∂u

∂n
=

∂u

∂y
=

∞∑

n=1

(−nπ
G

)
An sin

(
nπx

G

)
e−(nπ/G)b. (3.5)

Hence, a Dirichlet to Neumann map T1(u) can be defined on Γ1 by

∂u

∂n
= T1(u) =

∞∑

n=1

(−nπ
G

)
An sin

(
nπx

G

)
e−(nπ/G)b. (3.6)

On the boundary Γ2, we must refer back to the second matching condition:

∂u

∂y
= F−1

x

( − κB + κC
)
. (3.7)

Again, solve (2.7) for C and substitute it into the previous equation to get

∂u

∂y
= F−1

x

( − 2κB + κFx(u)
)

(3.8)

or

∂u

∂y
= F−1

x

(
κFx(u)

)
+ g, (3.9)

where g = −2F−1
x (κB).

Hence, a Dirichlet to Neumann map T2(u) can be defined on Γ2 as follows:

∂u

∂n
= T2(u) + g = −F−1

x

(
κFx(u)

) − g. (3.10)

Now, put the maps T1(u) and T2(u) into the weak form of (3.3):

−
∫

S

∇u · ∇wdS +
∫

Γ1

T1(u)wdΓ +
∫

Γ2

T2(u)wdΓ =
∫

Γ1

gwdΓ. (3.11)

The weak form of the equation defines a bilinear form

a(u,w) = −
∫

S

∇u · ∇wdS +
∫

Γ1

T1(u)wdΓ +
∫

Γ2

T2(u)wdΓ (3.12)
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and a bounded linear functional

〈g,w〉 =
∫

Γ1

gwdΓ. (3.13)

The solution of the variational form of the problem is a function u ∈ H̃1
0(S) such that

a(u,w) = 〈g,w〉 (3.14)

for all w ∈ H̃1
0(S).

3.2. Existence and uniqueness

The weak or variational formulation is very useful for proving existence and uniqueness of the
problem at hand. The established theory for elliptic differential equations can be used here as
in the following theorem.

Theorem 3.1. The variational problem (3.14) has a unique solution in H̃1
0(S).

The existence/uniqueness proof can be found in [12]. The proof establishes the continu-
ity and coercivity of the variational form in order to apply the Lax-Milgram theorem to verify
existence and uniqueness.

The unique solution u of the variational problem represents the potential φI in region I.
The finite Fourier approach produces an approximation of φI. At this point, the formal varia-
tional solution result can be used to analyze the approximate Fourier solution.

4. The finite Fourier method versus the variational form

4.1. Existence of the finite Fourier solution

The connection between the finite Fourier series method and the variational formulation can
be found by considering subspaces of H̃1

0(S). If a space VN is a subspace of H̃1
0(S), then there is

a unique solution to the variational problem over the subspace as well, because continuity and
coercivity apply on the subspace in the same way as on the entire space [13]. Using this idea
and Theorem 3.1, we want to compare the Fourier solution method and the variational form.
The first conclusion which can be drawn from the comparison is that the truncated matrix
from the Fourier method is invertible. We will see that this fact is just a simple corollary of the
uniqueness result for the variational problem.

Define a finite subspace of H̃1
0(S):

VN =
{
uN ∈ H̃1

0(S) | uN =
N∑

n=1

An sin
(
nπx

G

)
e(−nπ/G)y

}
. (4.1)

There is a unique solution uN to the variational problem in this space which satisfies

a(uN, v) = 〈g, v〉 (4.2)
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for all functions v in the space VN . If we examine the variational form of the problem when
the functions come from the subspace VN , the connection can be made to the finite Fourier
solution.

Solve the variational form of the problem in VN using the Galerkin method. Let vm =
sin(mπx/G)e(−mπ/G)y and carry out the following calculations:

−
∫

S

∇uN · ∇vm dS =
∫b

0

2
G

(
mπ

G

)
Ame(−mπ/G)y dy

=
[(

mπ

G

)(
2
G

)
Ame(−2mπ/G)b −

(
mπ

G

)(
2
G

)
Am

]
,

∫

Γ1

T1(uN)vm dΓ =
∫G

0

[
N∑

n=1

−
(
nπ

G

)
An sin

(
nπx

G

)
· e(−nπ/G)b

]
sin

(
mπx

G

)
e(−mπ/G)b dx

= −
(
mπ

G

)(
2
G

)
Ame(−2mπ/G)b,

∫

Γ2

T2
(
uN

)
vm dΓ = −

∫G

0
F−1

x

(
κFx

(
uN

))
sin

(
mπx

G

)
dx

=
∫∞

−∞
κFx

(
uN

)F−1
x

(
sin

(
mπx

G

))
dkx.

(4.3)

Continuing with the last integral,

∫∞

−∞
Fx

(
uN

)F−1
x

(
sin

(
mπx

G

))
dkx

=
N∑

n=1

∫∞

−∞
AnFx

(
sin

(
nπx

G

))
F−1

x

(
sin

(
mπx

G

))
dkx.

(4.4)

Notice that this last expression is exactly

−
N∑

n=1

KnmAn. (4.5)

Putting all the integrations together, we get

a
(
uN, vm

)
= −

(
mπ

G

)(
2
G

)
Am −

N∑

n=1

KnmAn. (4.6)

Also, note that

〈
g, vm

〉
= −

∫∞

−∞
2BF−1

x

(
sin

(
mπx

G

))
dkx (4.7)



10 Mathematical Problems in Engineering

which is exactly −Bm from the Fourier method. Therefore, we see now that by solving the
variational problem with the Galerkin method,

a
(
uN, vm

)
=
〈
g, vm

〉
(4.8)

produces the exact same matrix as the truncated matrix from the Fourier method.

K̃N

{
AN

}
=
{
BN

}
. (4.9)

Therefore, we have the desired equivalence between the finite Fourier method and the varia-
tional form of the problem on the subspace VN . In particular, the solution AN of (4.9) is the
coefficients of uN . Hence, we can answer the first question about the Fourier method. The
truncated matrix is invertible. Since the variational form has a unique solution in VN , we must
conclude that the finite system representing the solution must be nonsingular.

4.2. Convergence of Fourier method solution

We can use analysis of the variational formulation on the subspace VN to determine the con-
vergence properties of the Fourier series method.

Theorem 4.1. The finite Fourier method converges to the true solution of the problem in H̃1
0(S).

Proof. Cea’s lemma [13] states that the solution uN of the variational problem in VN is the best
possible approximation of the true solution u in H̃1

0(S):

∥∥u − uN

∥∥ ≤ C

(
inf
ũ∈VN

∥∥u − ũ
∥∥
)
. (4.10)

By letting N→∞, we see that the finite Fourier method will converge to the actual solution.

Also, Cea’s lemma allows us to answer the third question about the Fourier method
regarding the convergence rate. Cea’s lemma indicates that the solution uN from the subspace
VN is the best possible approximation of the true solution u in H̃1

0(S). Therefore, we need to
determine how “close” functions in VN can be to functions in H̃1

0(S) with respect to their norm.
It can be shown that the approximations uN will converge to the actual series solution

u =
∞∑

n=1

An sin
(
nπx

G

)
e(−nπ/G)y (4.11)

with error of order N−1 in H̃1
0(S). The key to verifying this is to show that the trace of the first

derivatives of u is actually integrable on the boundary Γ2. This can be done since the solution of
the variational form of the problem can be shown to exist in the space H3/2(S) [14]. Therefore,
the solution has enough regularity to conclude that ‖u − un‖ ≤ C/N [15].
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5. Conclusion

At transitions of rectangular regions, Fourier-based solutions of differential equations will pro-
duce an infinite system of linear equations. In this paper, the Fourier-based computation of a
Laplace equation inside a gap between two parallel perfect conductors is considered. In par-
ticular, the Fourier coefficients of the solution satisfy an infinite system of linear equations.
Approximation techniques truncate this system without mathematical justification. The paper
offered a method of analysis of the Fourier method using the variational form of the prob-
lem. We have seen that this approach proves that the truncation of the infinite linear system
will always have a solution and the truncation will converge as the number of unknowns is
increased.
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