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1. Introduction

The importance of the study of mixtures was recognized long ago when the basic concepts
of the theory have been established and the possible applications of the mathematical
models have been identified. The origin of modern formulations of continuum thermo-
mechanical theories of mixtures goes back to articles of Truesdell and Toupin [1], Kelly
[2], Eringen and Ingram [3, 4], Green and Naghdi [5, 6], Green and Laws [7], Müller [8],
and Bowen and Wiese [9]. The theoretical progress in the field is discussed in detail in
review articles by Bowen [10], Atkin and Craine [11, 12], Bedford and Drumheller [13],
and in the books of Samohýl [14] and Rajagopal and Tao [15].

In general, the theories of mixtures describe the interaction between fluids and gases,
and the Eulerian description is used. Thus, the motion of a mixture of two continua is
described by two equations, x = x(X, t) and y = y(Y, t), and the particles X and Y are
assumed to occupy the same position at current time t, so that x = y. In contrast to mix-
tures of fluids, the theory on mixtures of solids is developed naturally in the Lagrangian
description and it leads to different results. In this case, the motion of a binary mix-
ture is described by the equations x = x(X, t) and y = y(Y, t), where the particles under
consideration occupy the same position in the reference configuration, so that X = Y.
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The Lagrangian description has been used for the first time by Bedford and Stern [16, 17]
in order to derive a mixture theory of binary elastic solids. In this theory, the indepen-
dent constitutive variables are displacement gradients and the relative displacement. The
Lagrangian description was used by Pop and Bowen [18] to establish a theory of mixtures
with long-range spatial interaction, by Tiersten and Jahanmir [19] to derive a theory of
composites, by Ieşan [20] to elaborate on a binary mixture theory of thermoelastic solids,
and by Ieşan [21] to develop a theory of nonsimple elastic solids.

A special attention has been paid to include some terms in the basic formulation of
the theory of mixtures in order to reflect the microstructure of the constituents. In this
sense, we mention that the Eulerian approach has been used in the papers by Allen and
Kline [22], Twiss and Eringen [23, 24], Dunwoody [25], Passman [26], and Eringen [27,
28]. On the other hand, Ieşan [29–31] studied the mixtures of granular materials, the
porous viscoelastic mixtures, and the interacting micromorphic materials in Lagrangian
description.

In this work, we consider a mixture consisting of two micropolar thermoelastic solids.
By using the nonlinear theory of micropolar media [32–34] and the results established in
[5, 16, 17, 20, 30, 31], we derive the basic equations of a nonlinear theory in Lagrangian
description. According to [32–34], each material point of such materials can indepen-
dently translate and rotate, so that it has 6 degrees of freedom. The rotation is described
by a proper orthogonal tensor.

We recall that in [23], the authors have derived the micromorphic and micropolar
equations and entropy production inequalities for a mixture of any number of con-
stituents in Eulerian description. The theory of mixtures for micromorphic materials is
more general than the micropolar mixture theory, in that it also considers deformation
of material points, requiring 12 degrees of freedom. The results have been used in [24]
to construct the general form of the nonlinear, anisotropic, elastic, constitutive equa-
tions for micromorphic, and micropolar mixtures; as an illustration of a special case, the
specific linear equations for an isotropic two-constituent micropolar mixture have been
presented.

Concerning the mixtures of solids, it is important to have an alternative form of the
theory. It is well known that for a fluid, every configuration of the body can be taken as
reference configuration. So, the present configuration is taken as reference configuration
and the Eulerian description is used to formulate the basic concepts. In the case of a solid,
a configuration of the body is supposed to be known and this configuration is taken as
reference configuration. The Lagrangian description is usually used, although the Euler-
ian description leads to the same theory. The situation changes in the case of mixtures;
the Lagrangian description and the Eulerian description lead to different theories. For
mixtures of solids, it is important to have a theory in which the motion is to be referred
to the known configuration of the body in order to measure the forces and the stresses
and to prescribe the boundary conditions. In this sense, Ieşan [31] pointed out that“when
the continuum has a reference configuration B through which it passes at time t0 it is con-
venient to have an alternative form of the theory in which the generalized forces and stresses
are measured with respect to this configuration. In the nonlinear theory this fact is important
for specification of the boundary conditions, since the boundary of current configuration is,
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in general, unknown.” In [31], Ieşan presented the basic equations of the nonlinear theory
for binary mixtures of micromorphic elastic solids in Lagrangian description. Then, the
initial boundary value problems were formulated and some uniqueness and continuous-
dependence results were established.

In this paper, we continue the research line initiated in [31] concerning the theory
of micromorphic mixtures developed in Lagrangian description. We focus our atten-
tion to the micropolar elastic mixtures, but we consider in addition the thermal effects.
The intended applications of these kind of theories (see [24]) are to granular compos-
ites, to polycrystalline mixtures, or to polyatomic or polymolecular crystal latices. The
next section is devoted to a kinematical study of the motion in which we present the
measures of deformation and their rates. Then, the balance laws for mass, microinertia,
energy, and production of entropy are constructed. The balance equations are derived
by using an idea of Green and Naghdi [5]. We assume that the two constituents have a
common temperature and every thermodynamical process that takes place in mixture
satisfies the Clausius-Duhem inequality. We consider the following constitutive variables:
the displacement fields, displacement gradients, micromotion fields, micromotion gradi-
ents, temperature, and temperature gradient. By using the constitutive axioms, we express
the dependent constitutive variables in an invariant form and then we use the Clausius-
Duhem inequality to develop constitutive equations. Initial boundary value problems for
the nonlinear theory are formulated. In the second part of the paper, the theory is lin-
earized and a uniqueness result is established.

2. Kinematics

We consider a mixture of two interacting continua s1 and s2. The mixture is viewed as
a superposition of two continua each following its own motion and at any time each
place in the mixture is occupied simultaneously by different particles, one from each
constituent.

We assume that at time t0 the body occupies the region B of Euclidean three-
dimensional space and is bounded by piecewise smooth surface ∂B. The configuration
of the body at time t0 is taken as the reference configuration. We refer the motion of the
body to the reference configuration and a fixed system of rectangular Cartesian axes. We
use vector and Cartesian tensor notation with Latin indices having the values 1, 2, and 3.
Greek indices are understood to range over integers (1,2) and summation convention is
not used for these indices.

The position of typical particles of s1 and s2 at time t are x and y, where

x = x(X, t), y = y(Y, t), X, Y∈ B, t ∈ I. (2.1)

Here X and Y are reference positions of the particles and I = [t0, t1), where t1 is some
instant that may be infinity.

In this paper, we derive a theory for binary mixture of micropolar elastic solids where
the particles under consideration occupy the same position in the reference configura-
tion, so that X= Y. The translations of the body are described by

x = x(X, t), y = y(X, t), X∈ B, t ∈ I. (2.2)
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We stress that in the continuum theory of mixtures, the constituents are not physically
separated and in consequence a great care must be exercised to preserve the generality
that the constitutive relations for a given constituent depend upon the state variables of
the other. This is not the case for multiphase materials or immiscible mixtures where
the constituents remain physically separate on a scale which is large in comparison with
molecular dimensions and in some local sense each constituent will obey the constitutive
relations for that constituent alone.

We imagine that each particle of the mixture can also independently rotate. Just as the
functions xi(X, t) and yi(X, t) specify the translation of each material particle of the mix-
ture from the reference configuration, following [32, 33], we introduce proper orthogonal
tensors that specify the rotation of each material particle from reference configuration.
Let a particle of the constituent sα occupy the position X in the reference configuration

and let Ξ(α)
K be an arbitrary vector at X associated with this material particle. In the con-

text of micropolar continua, the above vector can rigidly rotate with the particle to the

vector ξ(α)
k . Then we may write ξ(α)

k = χ(α)
kKΞ

(α)
K , where χ(α) is proper orthogonal, that is,

χ(α)
iK χ

(α)
iL = δKL, χ(α)

iK χ
(α)
jK = δi j , εLMNχ

(α)
lL χ

(α)
mMχ

(α)
nN = εlmn (2.3)

and completely describes the rotation. In the above relations, δi j and δKL are Kronecker

deltas and εLMN and εlmn are alternating symbols. The tensor χ(α)
iK (X, t) is usually called

micromotion (see [33]). Thus, the motion of a micropolar mixture is described by

xi = xi(X, t), yi = yi(X, t), χ(α)
iK = χ(α)

iK (X, t), X∈ B, t ∈ I , α= 1,2. (2.4)

We suppose that the above functions are sufficiently smooth for the ensuing analysis to
be valid.

The velocity and acceleration fields associated with constituents s1 and s2 are

v(1)
i = ẋi(X, t), a(1)

i = ẍi(X, t), (2.5)

v(2)
i = ẏi(X, t), a(2)

i = ÿi(X, t), (2.6)

respectively, where ḟ denotes differentiation of f with respect to t holding XK fixed.
In view of the relation (2.3), we introduce the skew-symmetric tensor

ν(α)
i j (X, t)= χ̇(α)

iK χ
(α)
jK , ν(α)

i j =−ν(α)
ji . (2.7)

The corresponding angular velocity is given by

ν(α)
i =−1

2
εi jkν

(α)
jk . (2.8)

From (2.7) and (2.8), we deduce

ν(α)
i =−1

2
εi jkχ̇

(α)
jL χ

(α)
kL , (2.9)

χ̇(α)
iK = εi jkν(α)

j χ(α)
kK . (2.10)
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We note that a rigid motion of the mixture is described by the relations

xi(X, t)=QiK (t)XK + c̃i(t), yi(X, t)=QiK (t)XK + c̃i(t),

χ(1)
iK (X, t)=QiK (t), χ(2)

iK (X, t)=QiK (t),
(2.11)

where Q is proper orthogonal. For rigid motions, from (2.10) and (2.11), we obtain

v(1)
i = εi jkbjxk + ci, v(2)

i = εi jkbj yk + ci, ν(1)
i = ν(2)

i = bi, (2.12)

where bi is the axial vector of the skew-symmetric tensor Q̇iKQjK and ci = c̃i− Q̇iKQjK c̃ j .
Later in this work, we shall need the concept of change of frame. We say that two mo-

tions of the mixture described by the functions xi(X, t), yi(X, t), χ(α)
iK (X, t), and x̃i(X, t′),

ỹi(X, t′), χ̃(α)
iK (X, t′), respectively, are equivalent if

x̃i(X, t′)=Qij(t)xj(X, t) + ci(t), χ̃(1)
iK (X, t′)=Qij(t)χ

(1)
jK (X, t),

ỹi(X, t′)=Qij(t)yj(X, t) + ci(t), χ̃(2)
iK (X, t′)=Qij(t)χ

(2)
jK (X, t), t′ = t− a,

(2.13)

where a is a constant, ci represent a translation, and Q is an orthogonal tensor. In fact,
the motions are equivalent if they differ by the reference frame and by the reference time.

Let us introduce the following measures of deformation:

EKL = xi,Kχ(1)
iL − δKL, GKL = yi,Kχ

(1)
iL − δKL, DK = χ(1)

iK

(

xi− yj
)

,

2Γ(1)
KL = εLMNχ

(1)
iN χ

(1)
iM,K , 2Γ(2)

KL = εLMNχ
(2)
iN χ

(2)
iM,K , ΔKL = χ(1)

iK χ
(2)
iL − δKL.

(2.14)

In the case of a single micropolar medium, the strain measures are E and Γ(1) and their
rates as well as their geometrical significance are examined in detail in [32, 33]. E and
Γ(1) are called the Cosserat deformation tensor and wryness tensor, respectively. In the
context of the theory of micropolar mixtures, we introduce further the measures D and
Δ which describe relative motions of constituents (translations and rotations). Moreover,
for reasons that will be obvious in the next section we use the tensor GKL for the second
constituent instead of the Cosserat deformation tensor E(2)

KL = yi,Kχ
(2)
iL − δKL. As regards

the kinematics, this is unimportant since E(2)
KL can be written in terms of GKL and ΔKL in

the form

E(2)
KL = yi,Kδi jχ

(2)
jL − δKL = yi,Kχ

(1)
iMχ

(1)
jMχ

(2)
jL − δKL =GKMΔML +GKL +ΔKL. (2.15)

It is easy to see that two motions described by the functions xi(X, t), yi(X, t), χ(α)
iK (X, t), and

x̃i(X, t′), ỹi(X, t′), χ̃(α)
iK (X, t′), respectively, and related to (2.13), produce equal measures

of deformations.
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The time rates of E, G, Γ(α), D, and Δ computed from (2.3), (2.5), (2.9), (2.10), and
(2.14) are

ĖKL = χ(1)
iL

(

v(1)
i,K + εi jkx j,Kν(1)

k

)

, ĠKL = χ(1)
iL

(

v(2)
i,K + εi jk y j,Kν(1)

k

)

,

Γ̇
(1)
KL = χ(1)

iL ν(1)
i,K , Γ̇

(2)
KL = χ(2)

iL ν(2)
i,K ,

ḊK = χ(1)
iK

(

v(1)
i − v(2)

i + εi jk
(

xj − yj
)

ν(1)
k

)

, Δ̇KL = εi jmχ(1)
mKχ

(2)
iL

(

ν(1)
j − ν(2)

j

)

.

(2.16)

If these rates are zero, then the differential equations can be integrated. Following [32],
we deduce that the solution is a rigid motion of the form (2.11).

By using the relation (2.3) and the properties of the alternating symbol, from (2.16)
we obtain

v(1)
i,K + εi jkx j,Kν(1)

k = χ(1)
iL ĖKL, v(2)

i,K + εi jk y j,Kν(1)
k = χ(1)

iL ĠKL,

ν(1)
i,K = χ(1)

iL Γ̇
(1)
KL, ν(2)

i,K = χ(2)
iL Γ̇

(2)
KL,

v(1)
i − v(2)

i + εi jk
(

xj − yj
)

ν(1)
k = χ(1)

iK ḊK , ν(1)
i − ν(2)

i = εi jmχ(1)
jK χ

(2)
mLΔ̇KL.

(2.17)

3. Basic laws

In this section, we postulate the balance laws of micropolar mixtures and then we derive
the local balance equations. We consider the following balance laws: conservation of mass
for each constituent, conservation of microinertia for each constituent, conservation of
energy for the mixture as a whole, and law of entropy. We suppose that the mixture is
chemical inert so that we do not consider the axiom of balance of mass (or microinertia)
for the mixture. The balance of momentum and balance of moment of momentum for
each constituent are derived following an idea by Green and Naghdi [5]. As regards the
entropy production inequality, we suppose that the constituents have a common temper-
ature, so that the axiom involves only the statement concerning the mixture as a whole.

We consider an arbitrary material region Pα of constituent sα at time t bounded by the
surface ∂Pα, and we suppose that P0 is the corresponding region at time t0 bounded by
the surface ∂P0. The equation of balance of mass for the constituent sα is

d

dt

∫

Pα
ραdv =

∫

Pα
mαdv, (3.1)

where ρα is the mass density of the constituent sα; and mα is the rate at which mass is
supplied to sα per unit volume from the other constituent. In this paper, we assume that
mass elements of each constituent are conserved so that m1 = 0 and m2 = 0. The relation
(3.1) can be written in the form

d

dt

∫

P0

J(α)ραdV = 0, (3.2)
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where

J(1) = det
(

∂xi
∂XA

)

, J(2) = det
(

∂yi
∂XA

)

. (3.3)

With the usual assumptions, from (3.2) we deduce

J(1)ρ1 = ρ0
1, J(2)ρ2 = ρ0

2, (3.4)

where ρ0
α is the mass density of the constituent sα at time t0.

Since each material particle of the micropolar mixture is envisioned as a rigid particle,
we ascribe to the particle of constituent sα that occupy the position X in the reference
configuration a material inertia tensor IKL(X), which is symmetric and positive definite.

At time t, the inertia tensor of the particle in consideration is denoted by i(1)
kl (x, t) (if

the material particle belongs to constituent s1) or i(2)
kl (y, t), otherwise. Conservation of

microinertia is stated as [32, 33]

d

dt

∫

Pα
ραi

(α)
kl χ

(α)
kK χ

(α)
lL dv = 0, (3.5)

If we proceed as above, from (3.4) and (3.5), we deduce

I(α)
KL = i(α)

kl χ
(α)
kK χ

(α)
lL . (3.6)

In view of (2.10) and symmetry of i(α)
i j , the above relation leads to

di(α)
i j

dt
=
(

εimni
(α)
n j + ε jmni

(α)
ni

)

ν(α)
m . (3.7)

Following [7, 30], we postulate an energy balance at time t in the form

d

dt

2
∑

α=1

∫

Pα
ρα

(

e+
1
2
v(α)
i v(α)

i +
1
2
i(α)
i j ν(α)

i ν(α)
j

)

dv

=
2
∑

α=1

[∫

Pα
ρα
(

F(α)
i v(α)

i +G(α)
i ν(α)

i + r
)

dv+
∫

∂Pα

(

t(α)
i v(α)

i +m(α)
i ν(α)

i + q(α))da
]

,

(3.8)

where e is the internal energy of the mixture per unit mass; F(α) is the body force per unit
mass acting on the constituent sα; G(α) is the body couple per unit mass; r is the external
volume supply per unit mass per unit time; t(α) is the partial stress vector; m(α) is the
partial couple stress vector; and q(α) is the heat flux per unit area per unit time associated
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with the constituent sα. By using (3.4), we may write (3.8) in the form

d

dt

2
∑

α=1

∫

P0

ρ0
α

(

e+
1
2
v(α)
i v(α)

i +
1
2
i(α)
i j ν(α)

i ν(α)
j

)

dV

=
2
∑

α=1

[∫

P0

ρ0
α

(

F(α)
i v(α)

i +G(α)
i ν(α)

i + r
)

dV +
∫

∂P0

(

T(α)
i v(α)

i +M(α)
i ν(α)

i +Q(α))dA
]

,

(3.9)

where T(α), M(α), Q(α) are the partial stress, the partial couple stress, and the heat flux,
respectively, associated with the surface ∂Pα but measured per unit area of ∂P0. From
(3.9), we deduce

2
∑

α=1

∫

P0

ρ0
α

(

ė+ v(α)
i a(α)

i + i(α)
i j ν(α)

i ν̇(α)
j

)

dV

=
2
∑

α=1

[∫

P0

ρ0
α

(

F(α)
i v(α)

i +G(α)
i ν(α)

i + r
)

dV +
∫

∂P0

(

T(α)
i v(α)

i +M(α)
i ν(α)

i +Q(α))dA
]

.

(3.10)

In (3.10), we used (3.7) to obtain (1/2)(di(α)
i j /dt)ν(α)

i ν(α)
j = εimnν(α)

m ν(α)
i ν(α)

j i(α)
n j = 0.

Let us now require that the expression given by (3.10) is invariant with respect to the
rigid motion of the body (see (2.11) and (2.12)). Consider first motions of the mixture
that differ from those given by (2.4) only by superposed uniform rigid body translational
velocities, the continuum occupying the same position at time t. We assume that this

motion does not lead to any changes of the quantities ρ0
α, e, i(α)

i j , F(α)
i , G(α)

i , r, T(α)
i , M(α)

i ,

and Q(α). Thus the relation (3.10) is also true when v(α) is replaced by v(α) + c, so that by
substraction, we have

ci

2
∑

α=1

[∫

P0

ρ0
α

(

a(α)
i −F(α)

i

)

dV −
∫

∂P0

T(α)
i dA

]

= 0, (3.11)

for all arbitrary constants ci. We deduce

2
∑

α=1

[∫

P0

ρ0
α

(

a(α)
i −F(α)

i

)

dV −
∫

∂P0

T(α)
i dA

]

= 0, (3.12)

for arbitrary region P0 ⊂ B. From (3.12), by usual procedures, we obtain

T(1)
i +T(2)

i = (T(1)
Ki +T(2)

Ki

)

NK , (3.13)

where T(α)
Ki is the first Piola-Kirchhoff partial stress associated with constituent sα; andNK

are the components of the unit outward normal vector to the surface ∂P0. It follows from
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(3.12) and (3.13) that

2
∑

α=1

[

T(α)
Ki,K + ρ0

α

(

F(α)
i − a(α)

i

)]= 0. (3.14)

If we write the term T(1)
i v(1)

i +T(2)
i v(2)

i in the form

T(1)
i v(1)

i +T(2)
i v(2)

i = 1
2

(

T(1)
i +T(2)

i

)(

v(1)
i + v(2)

i

)

+
1
2

(

T(1)
i −T(2)

i

)(

v(1)
i − v(2)

i

)

, (3.15)

and use (3.13) and (3.14), then (3.10) reduces to

∫

P0

[

ρ0ė+
1
2

(

ρ0
1a

(1)
i − ρ0

2a
(2)
i

)(

v(1)
i − v(2)

i

)− 1
2

(

ρ0
1F

(1)
i − ρ0

2F
(2)
i

)(

v(1)
i − v(2)

i

)

− 1
2

(

T(1)
Ki +T(2)

Ki

)(

v(1)
i,K + v(2)

i,K

)

]

dV +
2
∑

α=1

∫

P0

ρ0
α

(

i(α)
i j ν(α)

i ν̇(α)
j −G(α)

i ν(α)
i − r)dV

=
∫

∂P0

[

1
2

(

T(1)
i −T(2)

i

)(

v(1)
i − v(2)

i

)

+M(1)
i ν(1)

i +M(2)
i ν(2)

i +Q
]

dA,

(3.16)

where

ρ0 = ρ0
1 + ρ0

2,

Q =Q(1) +Q(2).
(3.17)

By using an argument similar to that used in obtaining the relation (3.13) from (3.16),
we deduce

1
2

[

T(1)
i −T(2)

i − (T(1)
Ki −T(2)

Ki

)

NK
](

v(1)
i − v(2)

i

)

+
(

M(1)
i −M(1)

Ki NK
)

ν(1)
i

+
(

M(2)
i −M(2)

Ki NK
)

ν(2)
i +Q−QKNK = 0,

(3.18)

where M(α)
Ki is the partial couple stress tensor associated with the constituent sα; and QK

is the heat flux vector. Using (3.18) in (3.16) and applying the resulting equation to an
arbitrary region P0, we obtain

ρ0ė =
2
∑

α=1

(

T(α)
Ki v

(α)
i,K +M(α)

Ki ν(α)
i,K +R(α)

i ν(α)
i

)

+Pi
(

v(1)
i − v(2)

i

)

+QK ,K + ρ0r, (3.19)

where

Pi = 1
2

[

T(1)
Ki,K + ρ0

1F
(1)
i − ρ0

1a
(1)
i −T(2)

Ki,K − ρ0
2F

(2)
i + ρ0

2a
(2)
i

]

,

R(α)
i =M(α)

Ki,K + ρ0
αG

(α)
i − ρ0

αi
(α)
i j ν̇(α)

j .

(3.20)
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Assume now that the expression (3.19) is invariant with respect to a rotation of the body
with a constant angular velocity b. Thus, by using (2.12), we suppose that

∂v(1)
i

∂xj
−→ ∂v(1)

i

∂xj
+ ε jisbs,

∂v(2)
i

∂y j
−→ ∂v(2)

i

∂y j
+ ε jisbs,

ν(1)
i −→ ν(1)

i + bi, ν(2)
i −→ ν(2)

i + bi, v(1)
i − v(2)

i −→ v(1)
i − v(2)

i + ε jisbs
(

xj − yj
)

.
(3.21)

Introducing the above into (3.19) and assuming that the quantities ρ0, e, T(α)
Ki , M(α)

Ki , Pi,

R(α)
i , r, and QK ,K remain invariant, by substraction, we obtain

R(1)
s +R(2)

s + εs ji
[

T(1)
Ki xj,K +T(2)

Ki y j,K +Pi
(

xj − yj
)]= 0. (3.22)

By using the relation (3.22), we have

R(1)
s ν(1)

s +R(2)
s ν(2)

s = (R(1)
s +R(2)

s

)

ν(1)
s −R(2)

s

(

ν(1)
s − ν(2)

s

)

= εsi j
[

T(1)
Ki xj,K +T(2)

Ki y j,K +Pi
(

xj − yj
)]

ν(1)
s −R(2)

s

(

ν(1)
s − ν(2)

s

)

.
(3.23)

From (3.23), we can write the energy equation (3.19) in the form

ρ0ė = T(1)
Ki

(

v(1)
i,K + εi jkx j,Kν(1)

k

)

+T(2)
Ki

(

v(2)
i,K + εi jk y j,Kν(1)

k

)

+M(1)
Ki ν(1)

i,K +M(2)
Ki ν(2)

i,K

+Pi
[

v(1)
i − v(2)

i + εi jk
(

xj − yj
)

ν(1)
k

]−R(2)
i

(

ν(1)
i − ν(2)

i

)

+QK ,K + ρ0r.
(3.24)

Moreover it follows from (3.14), (3.20), and (3.22) that the equations of motion are

T(1)
Ki,K −Pi + ρ0

1F
(1)
i = ρ0

1a
(1)
i ,

T(2)
Ki,K +Pi + ρ0

2F
(2)
i = ρ0

2a
(2)
i ,

M(1)
Ki,K + εi js

[

T(1)
Ks xj,K +T(2)

Ks y j,K +Ps
(

xj − yj
)]

+R(2)
i + ρ0

1G
(1)
i = ρ0

1i
(1)
i j ν̇(1)

j ,

M(2)
Ki,K −R(2)

i + ρ0
2G

(2)
i = ρ0

2i
(2)
i j ν̇(2)

j .

(3.25)

We assume that the constituents have a common temperature and we adopt the fol-
lowing entropy production inequality(see [30, 35]):

2
∑

α=1

[

d

dt

∫

Pα
ραηdv−

∫

Pα

ραr

θ
dv−

∫

∂Pα

q(α)

θ
da
]

≥ 0, (3.26)
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where η is the entropy per unit mass of the mixture and θ is the absolute temperature.
The relations (3.4) and (3.26) yield

∫

P0

ρ0η̇dV −
∫

P0

ρ0r

θ
dV −

∫

∂P0

Q

θ
dA≥ 0. (3.27)

From (3.18), we deduce

Q =QKNK , (3.28)

and the inequality (3.27) reduces to

ρ0θη̇− ρ0r−QK ,K +
1
θ
QKθ,K ≥ 0. (3.29)

The relation (2.16) and the second Piola-Kirchhoff quantities, defined by

T(1)
Ki = T(1)

KLχ
(1)
iL , T(2)

Ki = T(2)
KLχ

(1)
iL , M(1)

Ki =M(1)
KLχ

(1)
iL , M(2)

Ki =M(2)
KLχ

(2)
iL ,

Pi =�Kχ
(1)
iK , R(2)

j =−εi jmχ(1)
mKχ

(2)
iL �KL,

(3.30)

may be used to write the equation of energy (3.24) in the following material form:

ρ0ė = T(1)
KLĖKL +T(2)

KLĠKL +M(1)
KLΓ̇

(1)
KL +M(2)

KLΓ̇
(2)
KL

+ �KḊK + �KLΔ̇KL +QK ,K + ρ0r.
(3.31)

Let us introduce the Helmholtz free energy Υ = e − ηθ. Then the energy equation
(3.31) may be written in the form

ρ0

(

Υ̇+ θ̇η+ θη̇
)= T(1)

KLĖKL +T(2)
KLĠKL +M(1)

KLΓ̇
(1)
KL +M(2)

KLΓ̇
(2)
KL

+ �KḊK + �KLΔ̇KL +QK ,K + ρ0r.
(3.32)

With the help of (3.32), the inequality (3.29) becomes

T(1)
KLĖKL +T(2)

KLĠKL +M(1)
KLΓ̇

(1)
KL +M(2)

KLΓ̇
(2)
KL + �KḊK + �KLΔ̇KL− ρ0Υ̇− ρ0θ̇η+

1
θ
QKθ,K ≥ 0.

(3.33)

The quantities T(α)
KL , M(α)

KL , �K , �KL, Υ, η, and QK must be prescribed by constitutive
equations.

4. Constitutive equations

In this section, we will state the constitutive equations that serve to classify the particular
types of mixtures to be studied throughout the remainder of the paper. To be concrete,
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we assume that the mixture is consisting of two simple thermoelastic solids. According to
basic postulates, the independent constitutive variables are

�= (xi,xi,K , yi, yi,K ,χ(1)
iK ,χ(1)

iK ,L,χ(2)
iK ,χ(2)

iK ,L,θ,θ,K ;XK
)

. (4.1)

So that, the constitutive equations are

T(α)
KL = T(α)

KL (�), M(α)
KL =M(α)

KL(�), �K =�K (�), �KL =�KL(�),

Υ= Υ(�), η = η(�), QK =QK (�),
(4.2)

where the constitutive functionals are assumed to be sufficiently smooth. For homoge-
neous continua, the response functionals do not depend on XK explicitly.

Let us now consider the restrictions imposed by the axiom of material frame-indif-
ference. Following this principle, the constitutive functionals are form-invariant under
the rigid body motions of the spatial frame of reference (see (2.13)). So that, by con-
sidering a translational motion of the frame of reference described by the vector ci(t) =
yi(XK , t), then we conclude that the constitutive functionals depend on xi and yi only
through the relative displacement xi− yi. Moreover, if we consider a rotation of the form

Q = [χ(1)]T , where [χ(1)]
T

denotes the transpose of χ(1), and take into account the fact
that

χ(1)
iMχ

(2)
iK ,L = χ(1)

iMδi jχ
(2)
jK ,L = χ(1)

iMχ
(2)
iN χ

(2)
jNχ

(2)
jK ,L = f

(

ΔKL,Γ(2)
KL

)

, (4.3)

then, in view of (2.14), it follows that T(α)
KL , M(α)

KL , �K , �KL, Υ, η, and QK must be express-
ible in the following invariant form:

T(α)
KL = T(α)

KL

(

EMN ,GMN ,Γ(1)
MN ,Γ(2)

MN ,DM ,ΔMN ,θ,θ,M , ;XM
)

,

M(α)
KL =M(α)

KL

(

EMN ,GMN ,Γ(1)
MN ,Γ(2)

MN ,DM ,ΔMN ,θ,θ,M , ;XM
)

,

�(α)
K =�(α)

K

(

EMN ,GMN ,Γ(1)
MN ,Γ(2)

MN ,DM ,ΔMN ,θ,θ,M , ;XM
)

,

�(α)
KL =�(α)

KL

(

EMN ,GMN ,Γ(1)
MN ,Γ(2)

MN ,DM ,ΔMN ,θ,θ,M , ;XM
)

,

Υ= Υ
(

EMN ,GMN ,Γ(1)
MN ,Γ(2)

MN ,DM ,ΔMN ,θ,θ,M , ;XM
)

,

η = η(EMN ,GMN ,Γ(1)
MN ,Γ(2)

MN ,DM ,ΔMN ,θ,θ,M , ;XM
)

,

QK =QK
(

EMN ,GMN ,Γ(1)
MN ,Γ(2)

MN ,DM ,ΔMN ,θ,θ,M , ;XM
)

.

(4.4)



C. Galeş 13

With the help of (4.4), inequality (3.33) becomes

(

T(1)
KL −

∂σ

∂EKL

)

ĖKL +
(

T(2)
KL −

∂σ

∂GKL

)

ĠKL +
(

M(1)
KL−

∂σ

∂Γ(1)
KL

)

Γ̇
(1)
KL

+
(

M(2)
KL−

∂σ

∂Γ(2)
KL

)

Γ̇
(2)
KL +

(

�K − ∂σ

∂DK

)

ḊK +
(

�KL− ∂σ

∂ΔKL

)

Δ̇KL

−
(

ρ0η+
∂σ

∂θ

)

θ̇− ∂σ

∂θ,K
θ̇,K +

1
θ
QKθ,K ≥ 0,

(4.5)

where σ = ρ0Υ.
From (4.5), we deduce

σ = σ(EMN ,GMN ,Γ(1)
MN ,Γ(2)

MN ,DM ,ΔMN ,θ;XM
)

, (4.6)

T(1)
KL =

∂σ

∂EKL
, T(2)

KL =
∂σ

∂GKL
, M(α)

KL =
∂σ

∂Γ(α)
KL

,

�K = ∂σ

∂DK
, �KL = ∂σ

∂ΔKL
, ρ0η =−

∂σ

∂θ
,

(4.7)

QKθ,K ≥ 0. (4.8)

The inequality (4.8) implies

QK
(

EMN ,GMN ,Γ(1)
MN ,Γ(2)

MN ,DM ,ΔMN ,θ,0, ;XM
)= 0. (4.9)

From (3.30) and (4.7), we obtain

T(1)
Ki = χ(1)

iL
∂σ

∂EKL
, T(2)

Ki = χ(1)
iL

∂σ

∂GKL
, M(1)

Ki = χ(1)
iL

∂σ

∂Γ(1)
KL

, M(2)
Ki = χ(2)

iL
∂σ

∂Γ(2)
KL

,

Pi = χ(1)
iK

∂σ

∂DK
, R(2)

j =−εi jmχ(1)
mKχ

(2)
iL

∂σ

∂ΔKL
, ρ0η =−

∂σ

∂θ
.

(4.10)

In conclusion, the constitutive equations are (4.6), (4.10), and the equation

QK =QK
(

EMN ,GMN ,Γ(1)
MN ,Γ(2)

MN ,DM ,ΔMN ,θ,θ,M , ;XM
)

. (4.11)

We note that by using the relations (4.6) and (4.7), the energy balance (3.32) reduces
to

ρ0θη̇ =QK ,K + ρ0r. (4.12)

The complete system of field equations of nonlinear theory consist of the equations of
conservation of microinertia (3.6), equations of motion (3.25), energy equation (4.12),
constitutive equations (4.6), (4.10), (4.11), and the geometric equations (2.14). To these
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equations, we adjoin boundary conditions and initial conditions. In the case of first
boundary value problem, the boundary conditions are

xi = x̃i, yi = ỹi, χ(1)
iK = χ̃(1)

iK , χ(2)
iK = χ̃(2)

iK , θ = ˜θ, on ∂B× I , (4.13)

where x̃i, ỹi, χ̃
(1)
iK , χ̃(2)

iK , and ˜θ are prescribed functions. In the second boundary value prob-
lem, the boundary conditions are

(

T(1)
Ki +T(2)

Ki

)

NK = ˜Ti, xi− yi = ˜di,
(

M(1)
Ki +M(2)

Ki

)

NK = ˜Mi,

χ(1)
iK χ

(2)
iL = ˜ΔKL, QKNK = ˜Q, on ∂B× I ,

(4.14)

where ˜Ti, ˜di, ˜Mi, ˜ΔKL, and ˜Q are given and ˜ΔKL is proper orthogonal.
The initial conditions are

xi(X,0)= x0
i (X), yi(X,0)= y0

i (X), χ(α)
iK (X,0)= χ(α)0

iK (X),

ẋi(X,0)= v(1)0
i (X), ẏi(X,0)= v(2)0

i (X), ν(α)
i (X,0)= ν(α)0

i (X),

η(X,0)= η0(X), X ∈ B,

(4.15)

where x0
i , y0

i , χ(α)0
iK , v(α)0

i , ν(α)0
i , η0 are prescribed functions.

5. The linear theory

In the following, we linearize the above equations. We use the notations

Xi = δiKXK , χ(α)
i j = δ jKχ(α)

iK ,
∂ f

∂Xi
= f,i, (5.1)

where δiK is the Kronecker delta. We have

xi = Xi +ui, yi = Xi +wi, (5.2)

where ui and wi are the displacements vectors associated with s1 and s2, respectively. We
denote

T = θ−T0, (5.3)

where T0 is the constant absolute temperature of the mixture in the reference configura-
tion. Being concerned with first-order approximations, following [33] (see (1.2.19) and
(1.6.6)), we take

χ(α)
i j � δi j − εi jsϕ(α)

s , (5.4)

where ϕ(α) is the microrotation vector associated with the constituent sα. We suppose that

ui = εũi, wi = εw̃i, T = ε ˜T , ϕ(α)
i = εϕ̃(α)

i , α= 1,2, (5.5)
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where ε is a constant small enough for squares and higher powers to be neglected and ũi,

w̃i, ˜T , and ϕ̃(α)
i are independent of ε. It follows from (2.10), (5.4), and (5.5) that

ϕ̇(α)
i = ν(α)

i . (5.6)

Moreover, the strain measures EKL, GKL, DK , Γ(α)
KL, ΔKL defined by (2.14) reduce to

eji = ui, j + εsi jϕ(1)
s , gji =wi, j + εsi jϕ(1)

s , di = ui−wi,

γ(α)
i j = ϕ(α)

j,i , Δi j = εi js
(

ϕ(1)
s −ϕ(2)

s

)

,
(5.7)

and the microinertia tensor i(α)
i j is given by

i(α)
i j = I(α)

i j . (5.8)

If we introduce the notations

t ji = δ jKT(1)
Ki , s ji = δ jKT(2)

Ki , m(α)
ji = δ jKM(α)

Ki ,

pi = Pi, �i =−R(2)
i , qi = δiKQK ,

(5.9)

then the equations of motion (3.25) and the energy equation (4.12) can be written in the
form

t ji, j − pi + ρ0
1F

(1)
i = ρ0

1üi,

s ji, j + pi + ρ0
2F

(2)
i = ρ0

2ẅi,
(5.10)

m(1)
ji, j + εi jk

[

t jk + s jk
]−�i + ρ0

1G
(1)
i = ρ0

1I
(1)
i j ϕ̈

(1)
j ,

m(2)
ji, j + �i + ρ0

2G
(2)
i = ρ0

2I
(2)
i j ϕ̈

(2)
j ,

(5.11)

ρ0T0η̇ = qi,i + ρ0r. (5.12)

Since Δi j is skew-symmetric, we may consider that σ depends on the following variables:

σ = σ(ei j ,gi j ,γ(1)
i j ,γ(2)

i j ,di,πi,T ;Xi
)

, (5.13)

where

πi = ϕ(1)
i −ϕ(2)

i . (5.14)

Collecting (4.10), (5.4), (5.5), (5.7), (5.9), (5.13), and (5.14), we deduce

ti j = ∂σ

∂ei j
, si j = ∂σ

∂gi j
, m(α)

i j =
∂σ

∂γ(α)
i j

,

pi = ∂σ

∂di
, ρ0η =−

∂σ

∂θ
, �i = εi jk ∂σ

∂πs

∂πs
Δ jk

= ∂σ

∂πi
.

(5.15)
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Assuming that the initial body is free from stress and couple stress, in the context of
linear theory, we have

σ = 1
2
Aijrsei jers +Bijrsei jgrs +

1
2
Cijrsgi jgrs

+
2
∑

α=1

(

1
2
D(α)
i jrsγ

(α)
i j γ

(α)
rs +F(α)

i jrsei jγ
(α)
rs +H(α)

i jrsgi jγ
(α)
rs

)

+D(3)
i jrsγ

(1)
i j γ

(2)
rs +

1
2
ai jdidj +

1
2
bi jπiπ j + ci jdiπ j + ai jkei jdk

+ bi jkei jπk + ci jkgi jdk +di jkgi jπk +α(1)
i jkγ

(1)
i j dk +β(1)

i jkγ
(1)
i j πk +α(2)

i jkγ
(2)
i j dk

+β(2)
i jkγ

(2)
i j πk −

1
2
a∗T2− (α∗i j ei j +β∗i j gi j + ν∗i jγ

(1)
i j +μ∗i jγ

(1)
i j + τ∗i di + σ

∗
i πi
)

T ,

qi = ki jT, j ,

(5.16)

where the constitutive coefficients have the following symmetries:

Aijrs =Arsi j , Cijrs = Crsi j , D(α)
i jrs =D(α)

rsi j ,

ai j = aji, bi j = bji.
(5.17)

From (5.13), (5.15), and (5.16), we obtain the following constitutive equations:

ti j =Aijrsers +Bijrsgrs +F(1)
i jrsγ

(1)
rs +F(2)

i jrsγ
(2)
rs + ai jkdk + bi jkπk −α∗i jT ,

si j = Brsi jers +Cijrsgrs +H(1)
i jrsγ

(1)
rs +H(2)

i jrsγ
(2)
rs + ci jkdk +di jkπk −β∗i jT ,

m(1)
i j = F(1)

rsi j ers +H(1)
rsi jgrs +D(1)

i jrsγ
(1)
rs +D(3)

i jrsγ
(2)
rs +α(1)

i jkdk +β(1)
i jkπk − ν∗i jT ,

m(2)
i j = F(2)

rsi j ers +H(2)
rsi jgrs +D(3)

rsi jγ
(1)
rs +D(2)

i jrsγ
(2)
rs +α(2)

i jkdk +β(2)
i jkπk −μ∗i jT ,

pi = ai jdj + ci jπ j + ajkie jk + cjkig jk +α(1)
jkiγ

(1)
jk +α(2)

jkiγ
(2)
jk − τ∗i T ,

�i = cjidj + bi jπ j + bjkie jk +djkig jk +β(1)
jkiγ

(1)
jk +β(2)

jkiγ
(2)
jk − σ∗i T ,

ρ0η = a∗T +α∗i j ei j +β∗i jgi j + ν∗i jγ
(1)
i j +μ∗i jγ

(2)
i j + τ∗i di + σ

∗
i πi,

qi = ki jT, j .

(5.18)

For isotropic solids, odd-order constitutive tensors vanish and even-order tensors can
be constituted by the products of δi j . We also note that ei j , gi j , di, θ, ti j , si j , pi and η are

polar tensors, while γ(α)
i j , πi, m

(α)
i j , and Ri are axial tensors. By examining (5.18), we find
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that the only surviving isotropic material constants are

Aijrs=λ1δi jδrs+
(

μ1 +κ1
)

δirδ js+μ1δisδ jr , Cijrs=λ2δi jδrs+
(

μ2 +κ2
)

δirδ js+μ2δisδ jr ,

D(1)
i jrs = α1δi jδrs + γ1δirδ js +β1δisδ jr , D(2)

i jrs = α2δi jδrs + γ2δirδ js +β2δisδ jr ,

Bijrs = νδi jδrs + ξδirδ js + ζδisδ jr , D(3)
i jrs = α3δi jδrs + γ3δirδ js +β3δisδ jr ,

ai j = aδi j , bi j = bδi j , bi jk = b0εi jk, di jk = d0εi jk,

α(1)
i jk = α0εi jk, α(2)

i jk = β0εi jk, α∗i j = α∗δi j , β∗ = β∗δi j .
(5.19)

Hence

σ = 1
2
λ1eiie j j +

1
2

(

μ1 + κ1
)

ei jei j +
1
2
μ1ei je ji + νeiig j j + ξei jgi j + ζei jg ji

+
1
2
λ2giig j j +

1
2

(

μ2 + κ2
)

gi jgi j +
1
2
μ2gi jg ji

+
1
2
α1γ

(1)
ii γ

(1)
j j +

1
2
γ1γ

(1)
i j γ

(1)
i j +

1
2
β1γ

(1)
i j γ

(1)
ji +α3γ

(1)
ii γ

(2)
j j

+ γ3γ
(1)
i j γ

(2)
i j +β3γ

(1)
i j γ

(2)
ji +

1
2
α2γ

(2)
ii γ

(2)
j j +

1
2
γ2γ

(2)
i j γ

(2)
i j +

1
2
β2γ

(2)
i j γ

(2)
ji

+
1
2
adidi +

1
2
bπiπi + b0εi jkei jπk +d0εi jkgi jπk

+α0εi jkγ
(1)
i j dk +β0εi jkγ

(2)
i j dk −

1
2
a∗T2− (α∗eii +β∗gii

)

T.

(5.20)

The constitutive equations reduce to

ti j = λ1errδi j +
(

μ1 + κ1
)

ei j +μ1eji + νgrrδi j + ξgi j + ζgji + b0εi jkπk −α∗Tδi j ,

si j = νerrδi j + ξei j + ζeji + λ2grrδi j +
(

μ2 + κ2
)

gi j +μ2gji +d
0εi jkπk −β∗Tδi j ,

m(1)
i j = α1γ

(1)
rr δi j + γ1γ

(1)
i j +β1γ

(1)
ji +α3γ

(2)
rr δi j + γ3γ

(2)
i j +β3γ

(2)
ji +α0εi jkdk,

m(2)
i j = α3γ

(1)
rr δi j + γ3γ

(1)
i j +β3γ

(1)
ji +α2γ

(2)
rr δi j + γ2γ

(2)
i j +β2γ

(2)
ji +β0εi jkdk,

pi = adi +α0ε jkiγ
(1)
jk +β0ε jkiγ

(2)
jk ,

�i = bπi + b0ε jkie jk +d0ε jkig jk,

ρ0η = a∗T +α∗eii +β
∗gii,

qi = kT,i.

(5.21)
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From (4.8), we deduce

k ≥ 0. (5.22)

Thus, the basic equations in the linear theory are the equations of motions (5.10) and
(5.11), the energy equation (5.12), the constitutive equations (5.18), and the geometric
equations (5.7) and (5.14). In the case of first boundary value problem, the boundary
conditions are

ui = ũi, wi = w̃i, ϕi = ϕ̃(α)
i , T = ˜T , on ∂B× I , (5.23)

where ũi, w̃i, ϕ̃
(α)
i , and ˜T are prescribed functions. In the second boundary value problem,

the boundary conditions are

(

t ji + s ji
)

nj = ˜ti,
(

m(α)
ji +m(α)

ji

)

nj = m̃i,

di = ˜di, πi = π̃i, qini = q̃, on ∂B× I ,
(5.24)

where ˜ti, m̃i, ˜di, π̃i and q̃ are given. The initial conditions are

ui(X,0)= âi(X), wi(X,0)= ̂bi(X), u̇i(X,0)= ĉi(X), ẇi(X,0)= ̂fi(X),

ϕ(α)
i (X,0)= ψ̂(α)

i (X), ϕ̇(α)
i (X,0)= ω̂(α)

i (X), T(X,0)= ̂T(X), X∈ B,
(5.25)

where the functions âi, ̂bi, ĉi, ̂fi, ψ̂
(α)
i , ω̂(α)

i , and ̂T are prescribed.

6. Uniqueness theorem

In this section, we will establish a uniqueness result in the linear theory. It is indifferent
which instant t0 is selected as the initial one and hence we choose t0 = 0. Let us introduce
the following notations:

U = 1
2
Aijrsei jers +Bijrsei jgrs +

1
2
Cijrsgi jgrs

+
2
∑

α=1

(

1
2
D(α)
i jrsγ

(α)
i j γ

(α)
rs +F(α)

i jrsei jγ
(α)
rs +H(α)

i jrsgi jγ
(α)
rs

)

+D(3)
i jrsγ

(1)
i j γ

(2)
rs

+
1
2
ai jdidj +

1
2
bi jπiπ j + ci jdiπ j + ai jkei jdk + bi jkei jπk + ci jkgi jdk

+di jkgi jπk +α(1)
i jkγ

(1)
i j dk +β(1)

i jkγ
(1)
i j πk +α(2)

i jkγ
(2)
i j dk +β(2)

i jkγ
(2)
i j πk,

(6.1)

E = 1
2

∫

B

(

ρ0
1u̇iu̇i + ρ

0
2ẇiẇi + ρ0

1I
(1)
i j ϕ̇

(1)
i ϕ̇(1)

j + ρ0
2I

(2)
i j ϕ̇

(2)
i ϕ̇(2)

j + a∗T2 + 2U
)

dv. (6.2)

Theorem 6.1. Assume the following:

(i) ρ0
α and a∗ are strictly positive and I(α)

i j is positive definite;
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(ii) the constitutive coefficients satisfy symmetry relations (5.17) and the inequality

ki jT,iT, j ≥ 0; (6.3)

(iii) U is a positive semidefinite form.
Then the initial boundary value problem defined by the equations of motion (5.10) and

(5.11), the energy equation (5.12), the constitutive equations (5.18), the geometrical equa-
tions (5.7) and (5.14), the boundary conditions (5.23) (or (5.24)), and the initial conditions
(5.25) has at most one solution.

Proof. In view of the (5.17), (5.18), and (6.1) we deduce

ti j ėi j + si j ġi j +m(1)
i j γ̇

(1)
i j +m(2)

i j γ̇
(2)
i j + piḋi + �iπi + ρ0η̇T =

∂

∂t

(

1
2
a∗T2 +U

)

. (6.4)

On the other hand, in view of (5.10), (5.11), (5.12), (5.7), and (5.14), we obtain

ti j ėi j + si j ġi j +m(1)
i j γ̇

(1)
i j +m(2)

i j γ̇
(2)
i j + piḋi + �iπi + ρ0η̇T

= (t jiu̇i + s jiẇi +m
(1)
ji ϕ̇

(1)
i +m(2)

ji ϕ̇
(2)
i +

1
T0
qjT

)

, j + ρ0
1F

(1)
i u̇i + ρ0

2F
(2)
i ẇi + ρ0

1G
(1)
i ϕ̇(1)

i

+ ρ0
2G

(2)
i ϕ̇(2)

i +
1
T0
ρ0rT −

1
2
∂

∂t

(

ρ0
1u̇iu̇i + ρ

0
2ẇiẇi + ρ0

1I
(1)
i j ϕ̇

(1)
i ϕ̇(1)

j + ρ0
2I

(2)
i j ϕ̇

(2)
i ϕ̇(2)

j

)

− 1
T0
ki jT,iT, j .

(6.5)

Then (6.4) and (6.5) imply

1
2
∂

∂t

(

ρ0
1u̇iu̇i + ρ

0
2ẇiẇi + ρ0

1I
(1)
i j ϕ̇

(1)
i ϕ̇(1)

j + ρ0
2I

(2)
i j ϕ̇

(2)
i ϕ̇(2)

j + a∗T2 + 2U
)

+
1
T0
ki jT,iT, j = ρ0

1F
(1)
i u̇i + ρ0

2F
(2)
i ẇi + ρ0

1G
(1)
i ϕ̇(1)

i + ρ0
2G

(2)
i ϕ̇(2)

i +
1
T0
ρ0rT

+
1
2

[

(

t ji + s ji
)(

u̇i + ẇi
)

+
(

t ji− s ji
)(

u̇i− ẇi
)

+
(

m(1)
ji +m(2)

ji

)(

ϕ̇(1)
i + ϕ̇(1)

i

)

+
(

m(1)
ji −m(2)

ji

)(

ϕ̇(1)
i − ϕ̇(2)

i

)

+
2
T0
qjT

]

, j
.

(6.6)

By an integration of the above relation over B and by using the divergence theorem and
(6.2), we obtain

Ė+
∫

B

1
T0
ki jT,iT, jdV =

∫

B

(

ρ0
1F

(1)
i u̇i+ρ0

2F
(2)
i ẇi + ρ0

1G
(1)
i ϕ̇(1)

i +ρ0
2G

(2)
i ϕ̇(2)

i +
1
T0
ρ0rT

)

dV

+
1
2

∫

∂B

[

(

t ji + s ji
)(

u̇i + ẇi
)

+
(

t ji− s ji
)

ḋi +
(

m(1)
ji +m(2)

ji

)

× (ϕ̇(1)
i + ϕ̇(1)

i

)

+
(

m(1)
ji −m(2)

ji

)

π̇i +
2
T0
qjT

]

njdA.

(6.7)
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Let us suppose that there are two solutions {1ui,1wi,1ϕ
(1)
i , 1ϕ

(2)
i ,1T} and {2ui,2wi,

2ϕ
(1)
i ,2ϕ(2)

i ,2T}. Because of the linearity of the considered initial boundary value prob-

lem, their difference �= {ui,wi,ϕ
(1)
i ,ϕ(2)

i ,T} corresponds to the null data. It follows from
(5.23), (5.24), and (6.7) that

Ė+
∫

B

1
T0
ki jT ,iT , jdV = 0, (6.8)

where E is the function defined by (6.2) associated with the process �. In view of the

inequality (6.3), we deduce Ė ≤ 0 on [0, t1), so that E(t)≤ E(0), t ∈ [0, t1). From the initial
conditions, we find E(t) = 0 and therefore E(0) = 0, t ∈ [0, t1). The hypotheses (i) and

(iii) imply u̇ = 0, ẇ = 0, ϕ̇
(1) = 0, ϕ̇

(2) = 0, T = 0 on B × [0, t1). Since u, w, ϕ(1), ϕ(2)

vanish initially, we conclude that u= 0, w = 0, ϕ(1) = 0, ϕ(2) = 0, T = 0 on B× [0, t1) and
the proof is complete. �
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Email address: cgales@uaic.ro

mailto:cgales@uaic.ro

	1. Introduction
	2. Kinematics
	3. Basic laws
	4. Constitutive equations
	5. The linear theory
	6. Uniqueness theorem
	References

