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We discuss the robust dissipativity with respect to the quadratic supply rate for uncertain
impulsive dynamical systems. By employing the Hamilton-Jacobi inequality approach,
some sufficient conditions of robust dissipativity for this kind of system are established.
Finally, we specialize the obtained results to the case of uncertain linear impulsive dyna-
mical systems.

1. Introduction

In many engineering problems, stability issues are often linked to the theory of dissipa-
tive systems which postulates that the energy dissipated inside a dynamical system is less
than the energy supplied from an external source. In the literature of nonlinear control,
dissipativity concept was initially introduced by Willems in his seminal two-part papers
[14, 15] in terms of an inequality involving the storage function and supply rate. The ex-
tension of the work of Willems to the case of affine nonlinear systems was carried out by
Hill and Moylan (see [7, 8] and the references therein).

Dissipativity theory along with its connections to Lyapunov stability theory have been
mainly applied to dynamical systems possessing continuous motions. However, there are
many real-world systems and natural processes which display special dynamic behavior
that exhibits both continuous and discrete characteristics. For instance, many evolution-
ary processes, particularly some biological systems such as biological neural networks
and bursting rhythm models in pathology, are characterized by abrupt changes of states
at certain time instants. In addition, optimal control models in economics, frequency-
modulated signal processing systems, and flying object motions may also exhibit the same
feature. This feature is the familiar impulsive phenomenon, and the corresponding sys-
tems are called impulsive dynamical systems (see [1, 2, 9, 10, 11, 12, 17]). Recently, re-
searchers have also introduced and studied the stability for other discontinuous dynam-
ical systems such as hybrid systems [18], sampled-data systems [6], and discrete-event
systems [13]. For all these systems, discontinuous system motions arise naturally. More
recently, Haddad et al. have developed dissipativity and exponential dissipativity concepts
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for nonlinear impulsive dynamical systems and left-continuous dynamical systems (see
[3, 4, 5] and the references therein). They have extended the notions of classical dissipa-
tivity theory using generalized storage functions and supply rates for impulsive dynamical
systems and left-continuous dynamical systems.

In practice, the mathematical model used in design usually has some uncertainties.
Therefore, robust control strategy becomes important. Hence, in the dissipative synthe-
sis problems, we should consider the robustness of dissipativity in the presence of the
uncertainties.

In this paper, we consider the robust dissipativity with respect to the quadratic supply
rate for uncertain impulsive dynamical systems. The uncertainty is assumed to be a non-
linear function of the state that happened on the continuous part of the system, and it
is bounded by a known function. Under this condition, we derive a sufficient condition
under which an uncertain impulsive dynamical system is a robust dissipative one. Finally,
we specialize the results to the case of uncertain linear impulsive dynamical systems.

2. Main results

2.1. Dissipativity for impulsive dynamical systems. We consider the impulsive dynam-
ical system

ẋ(t)= fc
(
x(t)

)
+ gc

(
x(t)

)
uc(t), tk < t ≤ tk,

∆x(t)= fd
(
x(t)

)
+ gd

(
x(t)

)
ud(t), t = tk,

yc(t)= hc
(
x(t)

)
, tk < t ≤ tk,

yd(t)= hd
(
x(t)

)
, t = tk,

(2.1)

where x(t0)= x0, t ≥ 0,x(t)∈ Rn, ∆x(tk)= x(t+
k )− x(tk), uc(t) ∈ Rmc , ud ∈ Rmd , yc(t)∈

Rlc , yd ∈Rld , fc : Rn→Rn is Lipschitz continuous and satisfies fc(0)= 0, gc : Rn→Rn×mc ,
fd : Rn → Rn is continuous and satisfies fd(0) = 0, gd : Rn → Rn×md , hc : Rn → Rlc and
satisfies hc(0)= 0, and hd : Rn→Rld and satisfies hd(0)= 0. We will assume that uc(·) and
ud(·) are restricted to the class of admissible inputs consisting of measurable functions
(uc(t),ud(t))∈U for all t ≥ 0, where (0,0)∈U .

Definition 2.1. A function (γc(uc, yc),γd(ud, yd)), where γc : Rmc ×Rlc →R and γd : Rmd ×
Rld →R are such that γc(0,0)= 0 and γd(0,0)= 0, is called a supply rate of system (2.1)
if γc(uc, yc) is locally integrable; that is, for all input-output pairs uc(t), yc(t), γc(uc, yc)

satisfies
∫ t̂
t |γc(uc(s), yc(s))|ds <∞ for any t̂ ≥ t ≥ 0, and γd(ud, yd) is locally summable. In

other words, for all input-output pairs ud(tk), yd(tk), γd(ud, yd) satisfies

∑
k∈N[t,t̂)

∣∣γd(ud(tk), yd(tk))∣∣ <∞, (2.2)

where N[t, t̂)= {k : t ≤ tk < t̂}.
Definition 2.2. An impulsive dynamical system of the form (2.1) is said to be dissipa-
tive with respect to supply rate (γc,γd) if there exists a Cr (r ≥ 0) nonnegative function
V : Rn → R with V(0) = 0, called storage function, such that, for all (uc,ud) ∈ U , the



Bin Liu et al. 121

following dissipation inequality holds:

V
(
x(t)

)≤V
(
x
(
t0
))

+
∫ t

t0
γc
(
uc(s), yc(s)

)
ds+

∑
k∈N[t,t̂)

γd
(
ud
(
tk
)
, yd
(
tk
))
, (2.3)

where x(t) (t ≥ t0) is a solution to (2.1) with (uc,ud)∈U and x(t0)= x0.

In [4], several basic dissipativity results for impulsive dynamical systems have been
established, one of which will be introduced in following lemma.

Lemma 2.3 [4]. An impulsive dynamical system given by (2.1) is dissipative with respect to
the supply rate (γc,γd) if and only if there exists a C0 nonnegative definite function V : Rn→
R such that, for all k ∈N= {0,1,2, . . .},

V
(
x
(
t̂
))−V

(
x(t)

)≤
∫ t̂

t
γc
(
uc(s), yc(s)

)
ds, tk < t ≤ t̂ ≤ tk+1,

V
(
x
(
t+
k

))−V
(
x
(
tk
))≤ γd

(
ud
(
tk
)
, yd
(
tk
))
.

(2.4)

Remark 2.4. If in Lemma 2.3, V(x(·)) is Cr (r ≥ 1), then, in this case, dissipativity of the
impulsive dynamical system with respect to the supply rate (γc,γd) is given by

V̇
(
x(t)

)≤ γc
(
uc(t), yc(t)

)
, tk < t ≤ tk+1,

∆V
(
x
(
tk
))≤ γd

(
ud
(
tk
)
, yd
(
tk
))
, k ∈N,

(2.5)

where

∆V
(
x
(
tk
))=V

(
x
(
t+
k

))−V
(
x
(
tk
))

=V
(
x
(
tk
)

+ fd
(
x
(
tk
))

+ gd
(
x
(
tk
))
ud
(
tk
))−V

(
x
(
tk
))
.

(2.6)

2.2. Robust dissipativity for uncertain impulsive dynamical systems. The uncertain
impulsive dynamical system under our consideration can be described as follows:

ẋ(t)= fc
(
x(t)

)
+ f̂c

(
x(t)

)
+ gc

(
x(t)

)
uc(t), tk < t ≤ tk,

∆x(t)= fd
(
x(t)

)
+ gd

(
x(t)

)
ud(t), t = tk,

yc(t)= hc
(
x(t)

)
, tk < t ≤ tk,

yd(t)= hd
(
x(t)

)
, t = tk,

(2.7)

where f̂c : Rn → Rn represents uncertainty characterized by f̂c(x)= ec(x)δc(x), f̂c(0)=0,
the mapping ec : Rn→Rn×m is a known functional matrix whose entries are smooth func-
tions of the state and δc : Rn → Rm is an unknown smooth vector function belonging to
the set Ωc = {δc(x) : ‖δc(x)‖ ≤ ‖nc(x)‖}, where nc : Rn→Rm is a given continuous func-
tion with nc(0)= 0 and ‖ · ‖ stands for the Euclidean norm.

Definition 2.5. System (2.7) is said to be a robust dissipative system with respect to supply
rate (γc,γd) if, for every δc ∈Ωc, the system is dissipative with respect to the supply rate
(γc,γd).
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In this paper, we focus our attention on the quadratic supply rate (γc,γd) as follows:

γc
(
uc, yc

)= 1
2

{
yTc Rc yc + 2yTc Scuc +uTc Qcuc

}
, (2.8)

γd
(
ud, yd

)= 1
2

{
yTd Rd yd + 2yTd Sdud +uTdQdud

}
, (2.9)

where Rc, Sc, Qc, and Rd, Sd, Qd are symmetric matrices with Rc ≤ 0, Rd ≤ 0, and Qc > 0,
Qd > 0.

Theorem 2.6. Suppose that there exist functions V : Rn → R, ld : Rn → Rpd , wd : Rn →
Rpd×md , P1ud : Rn → R1×md , and P2ud : Rn → Rmd×md with P2ud (x) ≥ 0 for all x ∈ Rn, such
that V(·) is C1 and positive definite with V(0)= 0 and that the following conditions hold:

(C1) for all x ∈Rn, ud ∈Rmd ,

V
(
x+ fd(x) + gd(x)ud

)=V
(
x+ fd(x)

)
+P1ud (x)ud +uTd P2ud (x)ud; (2.10)

(C2) there exists a positive definite function λ(x) > 0 satisfying the Hamilton-Jacobi in-
equality, for all tk < t ≤ tk+1, k ∈N, given by

∂V

∂x

[
fc− gcQ

−1
c Schc

]
+
λ

2
∂V

∂x
ece

T
c
∂VT

∂x
+

1
2λ

nTc nc

+
1
2
∂V

∂x
gcQ

−1
c gTc

∂VT

∂x
+

1
2
hTc
(
ScQ

−1
c Sc−Rc

)
hc ≤ 0;

(2.11)

(C3) for t = tk, k ∈N,

V
(
x+ fd(x)

)−V(x)− 1
2
hTd (x)Rdhd(x) + lTd (x)ld(x)= 0,

1
2
P1ud (x)− 1

2
hTd (x)Sd + lTd (x)wd(x)= 0,

1
2
Qd −P2ud (x)−wT

d (x)wd(x)= 0.

(2.12)

Then the uncertain impulsive dynamical system given by (2.7) is a robust dissipative system
with respect to the quadratic supply rate (γc,γd) given by (2.8) and (2.9).

In order to prove Theorem 2.6, we first prove the following lemmas.

Lemma 2.7. If there exists a C1 positive definite V(x), with V(0) = 0, which satisfies the
Hamilton-Jacobi inequality

∂V

∂x
fc(x) +

1
2γ2

∂V

∂x
gc(x)gTc (x)

∂VT

∂x
+

1
2
hTc (x)hc(x)≤ 0, γ > 0, (2.13)

then V(x) must satisfy the following dissipation inequality

∂V

∂x
fc(x) +

∂V

∂x
gc(x)uc ≤ 1

2

{
γ2
∥∥uc∥∥2−∥∥yc∥∥2

}
. (2.14)
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Proof. From (2.13), we get

∂V

∂x
fc(x) +

∂V

∂x
gc(x)uc

≤−1
2
hTc (x)hc(x)− 1

2γ2

∂V

∂x
gc(x)gTc (x)

∂VT

∂x

+
∂V

∂x
gc(x)uc− 1

2
γ2uTc uc +

1
2
γ2uTc uc

= 1
2

{
γ2
∥∥uc∥∥2−∥∥yc∥∥2

}
− γ2

2

∥∥∥∥uc− 1
γ2

gTc (x)
∂VT

∂x

∥∥∥∥
2

≤ 1
2

{
γ2
∥∥uc∥∥2−∥∥yc∥∥2

}
.

(2.15)

Hence, inequality (2.14) follows. �

Lemma 2.8. For every δc ∈ Ωc and any positive definite function λ(x) > 0, the following
inequality holds

∂V

∂x
ec(x)δc(x)≤ λ(x)

2
∂V

∂x
ec(x)eTc (x)

∂VT

∂x
+

1
2λ(x)

nTc (x)nc(x). (2.16)

Proof. Since ‖δc(x)‖ ≤ ‖nc(x)‖, so for any positive definite function λ(x) > 0, we get

∂V

∂x
ec(x)δc(x)≤

∥∥∥∥∂V∂x ec(x)δc(x)
∥∥∥∥≤

∥∥∥∥∂V∂x ec(x)
∥∥∥∥ ·∥∥δc(x)

∥∥

≤ λ(x)
2

∥∥∥∥∂V∂x ec(x)
∥∥∥∥

2

+
1

2λ(x)

∥∥δc(x)
∥∥2

≤ λ(x)
2

∥∥∥∥∂V∂x ec(x)
∥∥∥∥

2

+
1

2λ(x)

∥∥nc(x)
∥∥2

= λ(x)
2

∂V

∂x
ec(x)eTc (x)

∂VT

∂x
+

1
2λ(x)

nTc (x)nc(x).

(2.17)

Thus, inequality (2.16) holds. �

Proof of Theorem 2.6. First, we will show V̇(x)≤ rc(uc, yc), for all tk < t ≤ tk+1, k ∈N.
Since Qc > 0, Rc ≤ 0, we can find nonsingular matrices D and E such that Qc = ETE,

ScQ−1
c Sc−Rc =DTD, and such that the transformation

(
ũc
ỹc

)
=
(
E EQ−1

c Sc

0 D

)(
uc
yc

)
(2.18)

is nonsingular.
Let f̃c(x) = fc(x)− gc(x)Q−1

c Schc(x), g̃c(x) = gc(x)E−1, and h̃c(x) = Dhc(x), then sys-
tem (2.7), with respect to the supply rate (rc, rd), given by (2.8) and (2.9), changes into
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the form

ẋ(t)= f̃c
(
x(t)

)
+ ec(x)δc(x) + g̃c

(
x(t)

)
ũc(t), tk < t ≤ tk,

∆x(t)= fd
(
x(t)

)
+ gd

(
x(t)

)
ud(t), t = tk,

ỹc(t)= h̃c
(
x(t)

)
, tk < t ≤ tk,

yd(t)= hd
(
x(t)

)
, t = tk,

(2.19)

with respect to the supply rate (rc, rd); here,

r̃c
(
ũc, ỹc

)= 1
2

{∥∥ũc∥∥2−∥∥ ỹc∥∥2
}
. (2.20)

Hence, system (2.7) is robust dissipative with respect to the supply rate (rc, rd), given by
(2.8) and (2.9), if and only if system (2.19) is robust dissipative with respect to the supply
rate (r̃c, rd), given by (2.9) and (2.20).

From (C2) and Lemma 2.8, we get

∂V

∂x

(
f̃c(x) + ec(x)δc(x)

)
+

1
2
∂V

∂x
g̃c(x)g̃Tc (x)

∂VT

∂x
+

1
2
h̃Tc (x)h̃c(x)

≤ ∂V

∂x
f̃c(x) +

λ(x)
2

∂V

∂x
ec(x)eTc (x)

∂VT

∂x
+

1
2λ(x)

nTc (x)nc(x)

+
1
2
∂V

∂x
g̃c(x)g̃Tc (x)

∂VT

∂x
+

1
2
h̃Tc (x)h̃c(x)

= ∂V

∂x

{
fc− gcQ

−1
c Schc

}
+
λ

2
∂V

∂x
ece

T
c
∂VT

∂x
+

1
2λ

nTc nc

+
1
2
∂V

∂x
gcQ

−1
c gTc

∂VT

∂x
+

1
2
hTc
{
ScQ

−1
c Sc−Rc

}
hc ≤ 0.

(2.21)

Hence, by Lemma 2.7, V̇(x)≤ r̃c(ũc, ỹc)= rc(uc, yc), for all tk < t ≤ tk+1, k ∈N .
We will now show that ∆V(x(tk))≤ rd(ud(tk), yd(tk)), k ∈N.
Applying (C1) and (C3), we get

∆V(x)=V
(
x+ fd(x) + gd(x)ud

)−V(x)

=V
(
x+ fd(x)

)−V(x) +P1ud (x)ud +uTd P2ud (x)ud

= 1
2
hTd (x)Rdhd(x)− lTd (x)ld(x) +

{
hTd (x)Sd − 2lTd (x)wd(x)

}
ud

+uTd

{
1
2
Qd −wT

d (x)wd(x)
}
ud

= 1
2

{
hTd (x)Rdhd(x) + 2hTd (x)Sdud +uTdQdud

}
− {lTd (x)ld(x) + 2lTd (x)wd(x)ud +uTd w

T
d (x)wd(x)ud

}
= rd

(
ud, yd

)−∥∥ld(x) +wd(x)ud
∥∥2

≤ rd
(
ud, yd

)
.

(2.22)

Hence, ∆V(x(tk))≤ rd(ud(tk), yd(tk)) holds for all k ∈N.
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Thus, by Lemma 2.3, system (2.19) is robust dissipative with respect to the supply rate
(r̃c, rd), given by (2.20) and (2.9), that is, system (2.7) is robust dissipative with the supply
rate (rc, rd), given by (2.8) and (2.9), as required. �

In the following discussion, we will apply Theorem 2.6 to a particular class of nonex-
pansive impulsive dynamical systems.

Definition 2.9. A system G, given by (2.1) ((2.7)), is (robust) nonexpansive if G is (robust)
dissipative with respect to the supply rate

(
rc, rd

)= 1
2

(
γ2
c u

T
c uc− yTc yc,γ

2
du

T
d ud − yTd yd

)
, (2.23)

where γc > 0, γd > 0.

Corollary 2.10. Consider system (2.7) and suppose that there exist the following func-
tions: V : Rn → R, ld : Rn → Rpd , wd : Rn → Rpd×md , P1ud : Rn → R1×md , and P2ud : Rn →
Rmd×md with P2ud (x) ≥ 0 for all x ∈ Rn, such that V(·) is C1 and positive definite with
V(0)= 0 and that the following conditions hold:

(C1)′ for all x ∈Rn, ud ∈Rmd ,

V
(
x+ fd(x) + gd(x)ud

)=V
(
x+ fd(x)

)
+P1ud (x)ud +uTd P2ud (x)ud; (2.24)

(C2)′ there exists a positive definite function λ(x) > 0 satisfying the Hamilton-Jacobi in-
equality, for all tk < t ≤ tk+1, k ∈N, given by

∂V

∂x
fc +

λ

2
∂V

∂x
ece

T
c
∂VT

∂x
+

1
2λ

nTc nc +
1

2λ2

∂V

∂x
gcg

T
c
∂VT

∂x
+

1
2
hTc hc ≤ 0; (2.25)

(C3)′ for t = tk, k ∈N,

V
(
x+ fd(x)

)−V(x) +
1
2
hTd (x)hd(x) + lTd (x)ld(x)= 0,

1
2
P1ud (x) + lTd (x)wd(x)= 0,

γ2
d

2
Imd −P2ud (x)−wT

d (x)wd(x)= 0.

(2.26)

Then the uncertain impulsive dynamical system given by (2.7) is robust nonexpansive with
respect to the quadratic supply rate (γc,γd), given by (2.23).

Proof. The result is a direct consequence of Theorem 2.6 with Qc = γ2
c Imc , Sc = 0, Rc =

−Ilc , Qd = γ2
dImd , Sd = 0, and Rc =−Ild , where I is the identity matrix. �
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3. Specialization to uncertain linear impulsive dynamical systems

In this section, we specialize the results of Section 2 to the case of uncertain linear impul-
sive dynamical systems. This kind of system can be formulated as follows:

ẋ(t)=Acx(t) + Âcx(t) +Bcuc(t), t �= tk,

∆x(t)= (Ad − In
)
x(t) +Bdud(t), t = tk,

yc(t)= Ccx(t), t �= tk,

yd(t)= Cdx(t), t = tk,

(3.1)

where x(t0)= x0, Ac ∈Rn×n, Bc ∈Rn×mc , Cc ∈Rlc×n, Ad ∈Rn×n, Bd ∈Rn×md , Cd ∈Rld×n,
and Âc ∈ Rn×n represent uncertainty. By [16, Lemma 2.1], we can conclude that Âc =
EcΣcFc, where Ec ∈ Rn×n2

and Fc ∈ Rn2×n are known matrices, and Σc ∈ Rn2×n2
is the

uncertain matrix satisfying

Σ∈Ωc =
{
Σc ∈R

n2×R2
: Σc = diag

{
ε11, . . . , εnn

}
,
∣∣εi j∣∣≤ 1; i, j = 1,2, . . . ,n

}
. (3.2)

Remark 3.1. From (3.2), it is easy to get that Σc is characterized by ΣT
c Σc ≤ In2 .

Theorem 3.2. Suppose there exist matrices P ∈Rn×n, Ld ∈Rpd×n, and Wd ∈Rpd×md , with
P positive definite, such that the following conditions are satisfied.

(a1) There exists a positive constant λ satisfying the Riccati inequality

AT
c P +PAc−

(
PBcQ

−1
c ScCc +CT

c ScQ
−1
c BT

c P
)

+ 2λPEcET
c P

+
1

2λ
FT
c Fc + 2PBcQ

−1
c BT

c P +
1
2
CT
c

(
ScQ

−1
c Sc−Rc

)
Cc ≤ 0.

(3.3)

(a2) The following equations hold

AT
d PAd −P− 1

2
CT
d RdCd +LTd Ld = 0,

AT
d PBd − 1

2
CT
d Sd +LTdWd = 0,

1
2
Qd −BT

d PBd −WT
d Wd = 0.

(3.4)

Then the uncertain linear impulsive dynamical system (3.1) is robustly dissipative with re-
spect to the supply rate (γc,γd), given by (2.8) and (2.9).

Proof. Let V(x)= xTPx, then V is C1 and positive definite. Furthermore, let

fc(x)= Acx, gc(x)= Bc, ec(x)= Ec,

δc(x)= ΣcFcx, fd(x)= (Ad − In)x, gd(x)= Bd,

hc(x)= Ccx, hd(x)= Cdx, nc(x)= Fcx.

(3.5)

This implies that ‖δc(x)‖ ≤ ‖nc(x)‖ =
√
xTFT

c Fcx.

Clearly, P1ud (x)= 2xTAT
d PBd and P2ud (x)= BT

d PBd ≥ 0.
Thus, by using Theorem 2.6, the conclusion of this theorem follows. �
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Corollary 3.3. Suppose there exist matrices P ∈ Rn×n, Ld ∈ Rpd×n, and Wd ∈ Rpd×md ,
with P positive definite, such that the following conditions are satisfied.

(a1)′ There exists a positive constant λ satisfying the Riccati inequality

AT
c P +PAc + 2λPEcET

c P +
1

2λ
FT
c Fc +

2
γ2
c
PBcB

T
c P +

1
2
CT
c Cc ≤ 0. (3.6)

(a2)′ The following equations hold

AT
d PAd −P +

1
2
CT
d Cd +LTd Ld = 0,

AT
d PBd +LTdWd = 0,

γ2
d

2
Imd −BT

d PBd −WT
d Wd = 0.

(3.7)

Then the uncertain linear impulsive dynamical system (3.1) is robustly nonexpansive with
respect to the supply rate (γc,γd), given by (2.23).

Proof. The result is a direct consequence of Theorem 3.2 with Qc = γ2
c Imc , Sc = 0, Rc =

−Ilc , Qd = γ2
dImd , Sd = 0, and Rd =−Ild . �

4. Conclusions

We have studied the robust dissipativity with respect to the quadratic supply rate for
uncertain impulsive dynamical systems. By employing the Hamilton-Jacobi inequality
approach, some sufficient conditions of robust dissipativity for this kind of system are
established. As for the robust dissipativity with respect to the generalized supply rate for
uncertain impulsive dynamical systems, we will discuss it in future papers.
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