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The governing equations for the unsteady flow of a uniformly conducting incompressible
fourth-grade fluid due to noncoaxial rotations of a porous disk and the fluid at infinity
are constructed. The steady flow of the fourth-grade fluid subjected to a magnetic field
with suction/blowing through the disk is studied. The nonlinear ordinary differential
equations resulting from the balance of momentum and mass are discretised by a finite-
difference method and numerically solved by means of an iteration method in which, by
a coordinate transformation, the semi-infinite physical domain is converted to a finite
calculation domain. In order to solve the fourth-order nonlinear differential equations,
asymptotic boundary conditions at infinity are augmented. The manner in which various
material parameters affect the structure of the boundary layer is delineated. It is found
that the suction through the disk and the magnetic field tend to thin the boundary layer
near the disk for both the Newtonian fluid and the fourth-grade fluid, while the blowing
causes a thickening of the boundary layer with the exception of the fourth-grade fluid
under strong blowing. With the increase of the higher-order viscosities, the boundary
layer has the tendency of thickening.

1. Introduction

The formulation of shear stress for non-Newtonian fluids is a difficult problem, which has
not progressed very far from a theoretical standpoint. However, there is no single model
which clearly exhibits all the properties of non-Newtonian fluids. For a more fundamen-
tal understanding, several empirical descriptions have established rheological models. For
example, in most of these models, a significant reduction of the drag past solid walls has
been observed. Moreover, elastic properties of real fluids are also present. A discussion of
the various differential, rate-type, and integral models can be found in Schowalter [20],
Huilgol [9], and Rajagopal [16].

In recent years, the fluids of differential type [22] have received special attention under
a wide range of geometrical, dynamical, and rheological conditions. Some experiments
by Barnes et al. [2] confirmed that an increase in the flow rate is possible and that the
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phenomenon appears to be governed by the shear-dependent viscosity. In fact, in [23]
Walters and Townsend showed that the mean flow rate is unaffected by second-order
viscoelasticity.

Although the second-grade model for steady flows is used to predict the normal stress
differences, it does not correspond to shear thinning or thickening if the shear viscosity is
assumed to be constant. For this reason, some experiments may be well described by the
fluids of grade three or four [3, 10]. The third-grade model exhibits shear-dependent vis-
cosity. Related studies of third-grade fluid are in [1, 4, 14, 18]. The model represented in
this paper is the fourth-grade fluid. A similar model has been used by Kaloni and Siddiqui
[13] to discuss the steady flow of a fourth-grade fluid between two infinite parallel plates
rotating with the same angular velocity about two noncoincident axes. By expanding the
variables in ascending powers of a suitable parameter, Kaloni and Siddiqui found the cor-
rection to the second-grade fluid solution. After making some observations about the
complex shear modulus, they focused the attention on determining the forces on one of
the plates. Numerical calculations are carried out for a third-grade fluid in which the con-
stitutive coefficients are selected by assuming the relationship between third-grade fluid
and the rigid dumbbell molecular model. Finally, they noted some differences between
the result of this variable viscosity model and the second-grade fluid.

In the past years, several simple flow problems of classical hydrodynamics have re-
ceived new attention in the more general context of magnetohydrodynamics (MHD). The
study of the motion of non-Newtonian fluids in the absence as well as in the presence of a
magnetic field has applications in many areas. A few examples are the flow of nuclear fuel
slurries, flow of liquid metals and alloys such as the flow of gallium at ordinary temper-
atures (30◦C), flow of plasma, flow of mercury amalgams, handling of biological fluids,
flow of blood—a Bingham fluid with some thixotropic behaviour, coating of paper, plas-
tic extrusion, and lubrication with heavy oils and greases.

Another important field of application is the electromagnetic propulsion. Basically, an
electromagnetic propulsion system consists of a power source, such as a nuclear reactor,
a plasma, and a tube through which the plasma is accelerated by electromagnetic forces.
The study of such systems, which is closely associated with magnetochemistry, requires
a complete understanding of the equation of state and transport properties such as dif-
fusion, shear stress-shear rate relationship, thermal conductivity, electrical conductivity,
and radiation. Some of these properties will undoubtedly be influenced by the presence
of an external magnetic field which sets the plasma in hydrodynamic motion.

The aim of the present paper is to venture further in the regime of fourth-grade fluids.
The available literature, to the best of our knowledge, are papers by Kaloni and Siddiqui
[13] and Hayat et al. [8]. Thus, it seems that equations of unsteady fourth-grade fluid in
the more general context of MHD and rotation have remained untouched. The present
analysis models the nonlinear partial differential equations of fourth-grade fluid due to
noncoaxial rotations of a porous disk and a fluid at infinity under the influence of a mag-
netic field perpendicular to the direction of motion. Throughout this study, the magnetic
Reynolds number is assumed to be sufficiently small. The presented differential equations
are in the more generalised form. Thus, the modelled partial differential equations are a
significant contribution to understand the behaviour of fourth-grade fluids both from
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the physical and mathematical standpoints. Finally, the steady magnetohydrodynamic
flow of a fourth-grade fluid due to noncoaxial rotations of a porous disk and a fluid at
infinity is numerically solved.

2. Governing equations

We introduce a Cartesian coordinate system with the z-axis normal to the porous disk
and the plane of the disk is z = 0. The axes of rotation, of both the disk and the fluid at
infinity, are assumed to be in the plane x = 0, with the distance l between the axes. The
common angular velocity of the disk and the fluid at infinity is taken as Ω. The fluid is
electrically conducting and assumed to be permeated by an imposed magnetic field B0

having no components in the x and y directions. Following Erdogan [5], we assume the
velocity field of the form

u=−Ωy + f (z, t),

v =Ωx+ g(z, t),
(2.1)

where u and v are the x- and y-components of the velocity, respectively.
If the fluid is assumed to be homogeneous and incompressible, the continuity equation

is expressed by the divergence-free condition

div V= 0, (2.2)

where V is the velocity. On substituting (2.1) into (2.2), we obtain ∂w/∂z = 0. Follow-
ing Kaloni [11], we take w =−W0. Obviously, W0 > 0 is the suction velocity and W0 < 0
corresponds to the blowing velocity normal to the disk. The velocity field can be con-
sidered as the summation of a helical motion (−Ωy,Ωx,0) and a translational motion
( f (z, t), g(z, t),−W0).

The equations of motion governing the MHD flow are

DV
Dt

= 1
ρ

div T +
1
ρ

J×B, (2.3)

∇ ·B= 0, (2.4)

∇×B= µmJ, (2.5)

∇×E= 0, (2.6)

J= σ(E + V×B). (2.7)

In the above equations, D/Dt is the material time derivative, ρ the mass density, T the
Cauchy stress tensor, J the current density,∇ the gradient operator, µm the magnetic per-
meability, E the electric field, B the total magnetic field so that B= B0 + b, b the induced
magnetic field, and σ the electrical conductivity of the fluid. In addition, ∇ · J = 0 is
acquired by using (2.5).
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We make the following assumptions:

(i) the quantities ρ, µm, and σ are all constants throughout the flow field;
(ii) the magnetic field B is perpendicular to the velocity field V and the induced mag-

netic field b is negligible compared with the imposed field so that the magnetic
Reynolds number is small [21];

(iii) the electric field E is assumed to be zero.

In view of these assumptions, the electromagnetic body force involved in (2.3) takes
the linearised form (see [19])

1
ρ

J×B= σ

ρ

[(
V×B0

)×B0
]=−n∗V, (2.8)

where n∗ = σB2
0/ρ has the same dimension as Ω and it plays an important role in the

hydromagnetic analysis.
For the problem under consideration, the Cauchy stress of an incompressible homo-

geneous fourth-grade fluid is related to the fluid motion in the following manner:

T=−pI +
(
µ−β1Ω

2)A1 +
(
α1− γ1Ω

2)A2 +
(
α2− 2γ2Ω

2)A2
1

+β2
(

A1A2 + A2A1
)

+β3
(

trA2
1

)
A1 + γ3A2

2 + γ4
(

A2A2
1 + A2

1A2
)

+ γ5
(

trA2
)

A2 + γ6
(

trA2
)

A2
1,

(2.9)

where −pI is the spherical part of the stress due to the constraint of incompressibility, µ,
αi (i= 1,2), βi (i= 1,2,3), γi (i= 1, . . . ,6) are all material constants, and A1 and A2 are the
kinematical tensors defined by

A1 = (gradV) + (gradV)T ,

A2 = DA1

Dt
+ A1(gradV) + (gradV)TA1.

(2.10)

It should be noted that when αi = 0 (i = 1,2), βi = 0 (i = 1,2,3), γi = 0 (i = 1, . . . ,6), the
model reduces to the classical linearly viscous model which describes the motions of a
Newtonian fluid. When βi = 0 (i= 1,2,3), γi = 0 (i= 1, . . . ,6), it reduces to a second-grade

model, and when µ ≥ 0, α1 ≥ 0, β3 ≥ 0, |α1 + α2| ≤
√

24µβ3, βi = 0 (i = 1,2), and γi = 0
(i= 1, . . . ,6), it reduces to a third-grade model which is compatible with thermodynamics
in the sense of the Clausius-Duhem inequality and the requirement that the Helmholtz
free energy be a minimum when the fluid is at rest [6].

Now substituting (2.1) and (2.10) in (2.9) gives

T11 =−p+
(
α2− 2γ2Ω

2)(∂ f
∂z

)2

+ 2β2
∂ f

∂z

(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)

+ γ3

(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)2

+ 2γ6

(
∂ f

∂z

)2
[(

∂ f

∂z

)2

+
(
∂g

∂z

)2
]
,
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T22 =−p+
(
α2− 2γ2Ω

2)(∂g
∂z

)2

+ 2β2
∂g

∂z

(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)

+ γ3

(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)2

+ 2γ6

(
∂g

∂z

)2
[(

∂ f

∂z

)2

+
(
∂g

∂z

)2
]
,

T33 =−p+
[
2α1 +α2− 2Ω2(γ1 + γ2

)][(∂ f
∂z

)2

+
(
∂g

∂z

)2
]

+ 2β2

[
∂ f

∂z

(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)
+
∂g

∂z

(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)]

+ γ3

( ∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)2

+
(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)2

+ 4

((
∂ f

∂z

)2

+
(
∂g

∂z

)2
)2


+ 2
(
2γ4 + 2γ5 + γ6

)[(∂ f
∂z

)2

+
(
∂g

∂z

)2
]2

,

T12 =
(
α2− 2γ2Ω

2)(∂ f
∂z

)(
∂g

∂z

)

+β2

[
∂ f

∂z

(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)
+
∂g

∂z

(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)]

+ γ3

[(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)]

+ 2γ6

(
∂ f

∂z

)(
∂g

∂z

)[(
∂ f

∂z

)2

+
(
∂g

∂z

)2
]
,

T13 =
(
µ−β1Ω

2)∂ f
∂z

+
(
α1− γ1Ω

2)( ∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)

+ 2
(
β2 +β3

)∂ f
∂z

[(
∂ f

∂z

)2

+
(
∂g

∂z

)2
]

+ 2
(
γ3 + γ5

)( ∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)[(
∂ f

∂z

)2

+
(
∂g

∂z

)2
]

+ γ4

[(
2
(
∂ f

∂z

)2

+
(
∂g

∂z

)2
)(

∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)

+
(
∂ f

∂z

)(
∂g

∂z

)(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)]
,
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T23 =
(
µ−β1Ω

2)∂g
∂z

+
(
α1− γ1Ω

2)( ∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)

+ 2
(
β2 +β3

)∂g
∂z

[(
∂ f

∂z

)2

+
(
∂g

∂z

)2
]

+ 2
(
γ3 + γ5

)( ∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)[(
∂ f

∂z

)2

+
(
∂g

∂z

)2
]

+ γ4

[((
∂ f

∂z

)2

+ 2
(
∂g

∂z

)2
)(

∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)

+
(
∂ f

∂z

)(
∂g

∂z

)(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)]
,

(2.11)

where T12 = T21, T13 = T31, and T23 = T32.
In view of (2.1), (2.3), and (2.8), the three scalar momentum equations become

ρ
(
∂ f

∂t
−W0

∂ f

∂z
−Ωg −Ω2x

)
= ∂T11

∂x
+
∂T12

∂y
+
∂T13

∂z
− σB2

0( f −Ωy),

ρ
(
∂g

∂t
−W0

∂g

∂z
+Ω f −Ω2y

)
= ∂T21

∂x
+
∂T22

∂y
+
∂T23

∂z
− σB2

0(g +Ωx),

0= ∂T31

∂x
+
∂T32

∂y
+
∂T33

∂z
+ σB2

0W0.

(2.12)

Inserting the stress components (2.11) into (2.12), we obtain

ρ
(
∂ f

∂t
−W0

∂ f

∂z
−Ωg

)
=−∂p̂

∂x
− σB2

0( f −Ωy) +
(
µ−β1Ω

2)∂2 f

∂z2

+
(
α1− γ1Ω

2)( ∂3 f

∂t∂z2
−W0

∂3 f

∂z3
+Ω

∂2g

∂z2

)

+ 2
(
β2 +β3

) ∂
∂z

[
∂ f

∂z

((
∂ f

∂z

)2

+
(
∂g

∂z

)2
)]

+ 2
(
γ3 +γ5

) ∂
∂z

[(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)((
∂ f

∂z

)2

+
(
∂g

∂z

)2
)]

+ γ4
∂

∂z

[(
2
(
∂ f

∂z

)2

+
(
∂g

∂z

)2
)(

∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)

+
(
∂ f

∂z

)(
∂g

∂z

)(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)]
,
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ρ
(
∂g

∂t
−W0

∂g

∂z
+Ω f

)
=−∂p̂

∂y
− σB2

0(g +Ωx) +
(
µ−β1Ω

2)∂2g

∂z2

+
(
α1− γ1Ω

2)( ∂3g

∂t∂z2
−W0

∂3g

∂z3
−Ω

∂2 f

∂z2

)

+ 2
(
β2 +β3

) ∂
∂z

[
∂g

∂z

((
∂ f

∂z

)2

+
(
∂g

∂z

)2
)]

+ 2
(
γ3 +γ5

) ∂
∂z

[(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω∂ f

∂z

)((
∂ f

∂z

)2

+
(
∂g

∂z

)2
)]

+ γ4
∂

∂z

[((
∂ f

∂z

)2

+ 2
(
∂g

∂z

)2
)(

∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)

+
(
∂ f

∂z

)(
∂g

∂z

)(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)]
,

σB2
0W0 =−∂p̂

∂z
,

(2.13)

where the modified pressure p̂ is given by

p̂ = p− ρ

2
Ω2(x2 + y2)+

[
2Ω2(γ1 + γ2

)− (2α1 +α2
)][(∂ f

∂z

)2

+
(
∂g

∂z

)2
]

− 2β2

[(
∂ f

∂z

)(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)
+
(
∂g

∂z

)(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)]

− γ3

4

((
∂ f

∂z

)2

+
(
∂g

∂z

)2
)2

+
(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)2

+
(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)2
 .

(2.14)

On eliminating the pressure gradient from (2.13) by cross differentiation, we finally
obtain

ρ
(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
−Ω

∂g

∂z

)
=−σB2

0
∂ f

∂z
+
(
µ−β1Ω

2)∂3 f

∂z3
+
(
α1− γ1Ω

2)( ∂4 f

∂t∂z3
−W0

∂4 f

∂z4
+Ω

∂3g

∂z3

)

+ 2
(
β2 +β3

) ∂2

∂z2

[
∂ f

∂z

((
∂ f

∂z

)2

+
(
∂g

∂z

)2
)]

+ 2
(
γ3 + γ5

) ∂2

∂z2

[(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)((
∂ f

∂z

)2

+
(
∂g

∂z

)2
)]

+ γ4
∂2

∂z2

[(
2
(
∂ f

∂z

)2

+
(
∂g

∂z

)2
)(

∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)

+
(
∂ f

∂z

)(
∂g

∂z

)(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)]
,
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ρ
(
∂2g

∂t∂z
−W0

∂2g

∂z2
+Ω

∂ f

∂z

)
=−σB2

0
∂g

∂z
+
(
µ−β1Ω

2)∂3g

∂z3
+
(
α1− γ1Ω

2)( ∂4g

∂t∂z3
−W0

∂4g

∂z4
−Ω

∂3 f

∂z3

)

+ 2
(
β2 +β3

) ∂2

∂z2

[
∂g

∂z

((
∂ f

∂z

)2

+
(
∂g

∂z

)2
)]

+ 2
(
γ3 + γ5

) ∂2

∂z2

[(
∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)((
∂ f

∂z

)2

+
(
∂g

∂z

)2
)]

+ γ4
∂2

∂z2

[((
∂ f

∂z

)2

+ 2
(
∂g

∂z

)2
)(

∂2g

∂t∂z
−W0

∂2g

∂z2
−Ω

∂ f

∂z

)

+
(
∂ f

∂z

)(
∂g

∂z

)(
∂2 f

∂t∂z
−W0

∂2 f

∂z2
+Ω

∂g

∂z

)]
.

(2.15)

For a steady state, the above equations reduce to the following dimensionless forms:

B̄2 d f̄

dz̄
− W̄0

d2 f̄

dz̄2
− (1− β̄1Ω̄

2)d3 f̄

dz̄3

= Ω̄
dḡ

dz̄
+
(
ᾱ1− γ̄1Ω̄

2)(− W̄0
d4 f̄

dz̄4
+ Ω̄

d3ḡ

dz̄3

)
+ 2
(
β̄2 + β̄3

) d2

dz̄2

[
d f̄

dz̄

((
d f̄

dz̄

)2

+
(
dḡ

dz̄

)2
)]

+ 2
(
γ̄3 + γ̄5

) d2

dz̄2

[(
− W̄0

d2 f̄

dz2
+ Ω̄

dḡ

dz̄

)((
d f̄

dz̄

)2

+
(
dḡ

dz̄

)2
)]

+ γ̄4
d2

dz̄2

[(
2
(
d f̄

dz̄

)2

+
(
dḡ

dz̄

)2
)(
− W̄0

d2 f̄

dz̄2
+ Ω̄

dḡ

dz̄

)

−
(
d f̄

dz̄

)(
dḡ

dz̄

)(
W̄0

d2ḡ

dz̄2
+ Ω̄

d f̄

dz̄

)]
,

B̄2 dḡ

dz̄
− W̄0

d2ḡ

dz̄2
− (1− β̄1Ω̄

2)d3ḡ

dz̄3

=−Ω̄d f̄

dz̄
− (ᾱ1− γ̄1Ω̄

2)(W̄0
d4ḡ

dz̄4
+ Ω̄

d3 f̄

dz̄3

)
+ 2
(
β̄2 + β̄3

) d2

dz̄2

[
dḡ

dz̄

((
d f̄

dz̄

)2

+
(
dḡ

dz̄

)2
)]

− 2
(
γ̄3 + γ̄5

) d2

dz̄2

[(
W̄0

d2ḡ

dz̄2
+ Ω̄

d f̄

dz̄

)((
d f̄

dz̄

)2

+
(
dḡ

dz̄

)2
)]

− γ̄4
d2

dz̄2

[((
d f̄

dz̄

)2

+ 2
(
dḡ

dz̄

)2
)(

W̄0
d2ḡ

dz̄2
+ Ω̄

d f̄

dz̄

)

+
(
d f̄

dz̄

)(
dḡ

dz̄

)(
W̄0

d2 f̄

dz̄2
− Ω̄

dḡ

dz̄

)]
.

(2.16)
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The left-hand sides of (2.16) are linear to f̄ and ḡ, respectively. The emerging dimension-
less parameters are defined as

z̄ = ρU0z

µ
, f̄ = f

U0
, ḡ = g

U0
,

W̄0 = W0

U0
, B̄2 = µσB2

0

ρ2U0
, Ω̄= Ωµ

U2
0
, ᾱ1 = α1ρU

2
0

µ2
,

β̄i = βiρ2U4
0

µ3
(i= 1,2,3), γ̄i = γiρ3U6

0

µ4
(i= 1,3,4,5).

(2.17)

For the problem under consideration, the boundary conditions for the velocity com-
ponents u and v are

u=−Ωy, v =Ωx, at z = 0,

u=−Ω(y− l), v =Ωx, as z −→∞.
(2.18)

We note that (2.16) are higher-order equations and thus require additional boundary
conditions [12, 15, 17]. As we are solving the problem in an unbounded domain, it is
possible to augment the boundary conditions by enforcing additional asymptotic struc-
tures at infinity. Here, we augment the additional boundary conditions by requiring that

dnu

dzn
= 0,

dnv

dzn
= 0, as z −→∞ (n= 1,2). (2.19)

The boundary conditions (2.18) and (2.19) in terms of f̄ and ḡ can be expressed as

f̄ (z̄)= 0, ḡ(z̄)= 0, as z̄ = 0,

f̄ (z̄)= 1, ḡ(z̄)= 0,
dn f̄

dz̄n
= 0,

dnḡ

dz̄n
= 0, as z̄ −→∞ (n= 1,2),

(2.20)

where we choose U0 =Ωl and Ω̄ = 1. For simplicity, in the following, we will drop the
bars of the dimensionless variables f̄ , ḡ, and z̄.

3. Numerical method

The coordinate transformation η = 1/(z+ 1) is applied for transforming the semi-infinite
physical domain z ∈ [0,∞) to a finite calculation domain η ∈ [0,1], that is,

z = 1
η
− 1,

d

dz
=−η2 d

dη
,

d2

dz2
= η4 d2

dη2
+ 2η3 d

dη
,

d3

dz3
=−η6 d3

dη3
− 6η5 d2

dη2
− 6η4 d

dη
,

d4

dz4
= η8 d4

dη4
+ 12η7 d3

dη3
+ 36η6 d2

dη2
+ 24η5 d

dη
.

(3.1)
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With these transformations, the differential equations (2.16) can be rewritten in the
forms

L f
(
f (η),η

)=Nf
(
f (η), g(η),η

)
, (3.2a)

Lg
(
g(η),η

)=Ng
(
f (η), g(η),η

)
, (3.2b)

in which L f and Lg are linear functions in f and g, respectively, and Nf and Ng stand for
the remaining terms and, in general, are nonlinear functions in f and g. Here, we avoid
writing the explicit forms of (3.2) because of their complexity. The boundary conditions
(2.20) in terms of η can be rewritten as

f (0)= 1, g(0)= 0,

dn f

dηn

∣∣∣∣
η=0

= 0,
dng

dηn

∣∣∣∣
η=0

= 0, (n= 1,2),

f (1)= 0, g(1)= 0.

(3.3)

Due to nonlinear terms in the governing equations (3.2), we cannot solve the boundary
value problem directly by a direct finite-difference method. Here we solve them by means
of the method of successive approximation.

We can now define an iterative procedure determining sequences of functions f (0)(η),
f (1)(η), f (2)(η), . . . and g(0)(η), g(1)(η), g(2)(η), . . . in the following manner: f (0)(η) and
g(0)(η) are chosen arbitrarily, then f (1)(η), f (2)(η), . . . and g(1)(η), g(2)(η), . . . are calculated
successively from the following iteration steps:

L f
(
f (k+1)(η),η

)=Nf
(
f (k)(η), g(k)(η),η

)
, (3.4a)

Lg
(
g(k+1)(η),η

)=Ng
(
f (k+1)(η), g(k)(η),η

)
, (3.4b)

where k = 0,1,2, . . . . Note that in the right-hand side of (3.4b) the value of f in the new
iteration step (k + 1), which is just computed from (3.4a), has been used instead of that
in the old iteration step (k) as usual. Test computations have shown that such a variance
can provide much better stability. The effectiveness of the method is often influenced
considerably by the form of the arrangement (3.2) of the given differential equations and
by the choice of the starting functions f (0)(η) and g(0)(η); the method is generally more
effective the closer f (0)(η) and g(0)(η) are to the solutions f (η) and g(η), respectively.

In our calculations, to achieve a better convergence, we use the so-called “method of
successive under-relaxation.” According to the iterations

L f
(
f̃ (k+1)(η),η

)=Nf
(
f (k)(η), g(k)(η),η

)
,

Lg
(
g̃(k+1)(η),η

)=Ng
(
f (k+1)(η), g(k)(η),η

)
,

(3.5)
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where k = 0,1,2, . . . , we can obtain f̃ (k+1) and g̃(k+1), then f (k+1) and g(k+1) are defined by
the formulas

f (k+1) = f (k) + τ
(
f̃ (k+1)−u(k)),

f (k+1) = f (k) + τ
(
f̃ (k+1)−u(k)), (3.6)

where 0 < τ ≤ 1, τ ∈ (0,1], is a real under-relaxation parameter. We should choose τ
so small that convergent iteration is reached. For τ = 1, the successive under-relaxation
method (3.5) with (3.6) is in correspondence with the simple iteration method (3.4).

Because (3.2a) and (3.2b) are differential equations, we can discretise (3.2) for M uni-
formly distributed discrete points in η = (η1,η2, . . . ,ηM)∈ (0,1) with a space grid size of
∆η = 1/(M + 1). Due to the special form of the boundary conditions (3.3), that is, four
pair conditions at η = η0 = 0, but only one pair at η = ηM+1 = 1, we cannot use central
differences to approximate the high-order derivatives emerging in (3.2) and (3.3) (if the
order is greater than 2). For the third-order and fourth-order derivatives, the following
finite-difference schemes are used; they are not central differences, but inclined to the side
toward the boundary η0 = 0; however, they are still of second-order accuracy:

d3 f

dη3

∣∣∣∣
η=ηi

= 3 fi+1− 10 fi + 12 fi−1− 6 fi−2 + fi−3

2(∆η)3
+ �

(
∆η2),

d4 f

dη4

∣∣∣∣
η=ηi

= 2 fi+1− 9 fi + 16 fi−1− 14 fi−2 + 6 fi−3− fi−4

(∆η)4
+ �

(
∆η2), (3.7)

where fi is the numerical value of f at the point η = ηi.
By means of the finite-difference method, we actually obtain two linear equation sys-

tems from (3.5):

A f f̃ (k+1) = b f , Ag g̃(k+1) = bg , (3.8)

where A f , Ag are M×M matrices and f̃ (k+1), b f and g̃(k+1), bg are vectors

f̃ (k+1) =
[
f̃ (k+1)
1 , f̃ (k+1)

2 , . . . , f̃ (k+1)
M

]T
,

b f =
[
Nf
(
f (k), g(k),η

)∣∣
η=η1

,N f
(
f (k), g(k),η

)∣∣
η=η2

, . . . ,N f
(
f (k), g(k),η

)∣∣
η=ηM

]T
,

g̃(k+1) =
[
g̃(k+1)

1 , g̃(k+1)
2 , . . . , g̃(k+1)

M

]T
,

bg =
[
Ng
(
f (k+1), g(k),η

)∣∣
η=η1

,Ng
(
f (k+1), g(k),η

)∣∣
η=η2

, . . . ,N f
(
f (k+1), g(k),η

)∣∣
η=ηM

]T
,

(3.9)

evaluated at the discrete points 0 < η1 < η2 < ··· < ηn < 1.
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In doing so, for each iterative step, two algebraic equation systems of the form (3.8)
with bandwidth of six elements emerge, which can be solved, for example, by Gaussian
elimination. The iteration should be carried out until the relative differences of the com-
puted f (k)

i , f (k+1)
i as well as g(k)

i , g(k+1)
i (i= 1,2, . . . ,M) between two consecutive iterative

steps (k) and (k+ 1) are smaller than a given error chosen to be 10−10.

4. Numerical results and discussions

We compute and compare the profiles of the dimensionless translational velocities in η-
coordinate for two kinds of fluids: a Newtonian fluid, for which ᾱ1 = 0, β̄i = 0 (i= 1,2,3),
and γ̄i = 0 (i = 1,3,4,5), and a fourth-grade non-Newtonian fluid, in which we choose
ᾱ1 = 1, β̄i = 1 (i= 2,3), and γ̄i = 1 (i= 3,4,5); however β̄1 = 0 and γ̄1 = 0 to avoid that the
effect of the lower-order terms is counteracted by these higher-order terms. In addition,
the alone influences of the additional second-, third-, and fourth-order terms on the first-
order Newtonian fluid are also studied, respectively.

All numerical results are depicted in the η-coordinate of the computational domain. It
should be pointed out that in η-coordinate the physical domain at infinity (z̄→∞) or far
away from the disk (large z̄) is massively compressed (η→ 0), whilst the physical domain
near the disk (z̄→ 0) is relatively expanded (η→ 1).

The numerical results obtained by using various suction velocities W̄0 through the disk
are illustrated in Figure 4.1. For both the Newtonian fluid (Figures 4.1(a) and 4.1(b)) and
the fourth-grade fluid (Figures 4.1(c) and 4.1(d)), when the suction velocity W̄0 increases,
the boundary layer near the disk (η = 1 or z̄ = 0) tends to become thinner. In general, the
boundary layer for the Newtonian fluid (0.3≤ η ≤ 1 or 0≤ z̄ ≤ 2.3) is much thinner than
that for the fourth-grade fluid (0.15≤ η ≤ 1 or 0≤ z̄ ≤ 5.7).

On the contrary, for a blowing velocity through the disk, the boundary layer tends to
become thicker, especially for the Newtonian fluid (Figures 4.2(a) and 4.2(b)), in which
the boundary layer thickness increases from η > 0.25 (or z̄ < 3) to η > 0.05 (or z̄ < 19) if
the blowing velocity increases from zero to |W̄0| = 5. However, for the fourth grade fluid,
when the blowing velocity increases from |W̄0| = 1 to |W̄0| = 5, a thinning of boundary
layer occurs. The change of the boundary layer thickness with increasing blowing velocity
loses monotonicity for the fourth-grade fluid.

It is well known that in an inertial frame, for a Newtonian fluid, no steady asymptotic
solution is possible for flow past a porous plate subjected to uniform blowing [7]. This
is due to the fact that the blowing causes a thickening of the boundary layer, as shown in
Figures 4.2(a) and 4.2(b), so that at a sufficiently large distance from the plate the bound-
ary layer becomes so thick that it becomes turbulent and a steady solution is not possible.
In a rotating frame, however, the situation is different. The Ekman boundary layer thick-
ness is of the order of (µ/(ρΩ))1/2, which decreases with an increase in rotation. Thus, if
the blowing is not too large, the thinning effect of rotation may just counterbalance the
thickening effect of blowing so that the vorticity generated at the disk instead of being
convected away from the disk by blowing remains confined near the disk and a steady
solution is possible. It should be pointed out that for the problem under consideration,
if B0 = 0, steady numerical solutions exist only with fairly small values of the blowing
velocity |W̄0| ≤ 0.07 for both the Newtonian fluid and the fourth-grade fluid, while when
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Figure 4.1. Profiles of dimensionless translational velocities f̄ and ḡ with three values of the suction
velocity W̄0 = 0,1,5 for a Newtonian fluid (panels a, b) and a fourth-grade fluid (panels c, d).

B̄ = 1, steady solutions are still possible for much larger values of the blowing velocity, for
example, for |W̄0| = 5, as shown in Figure 4.2. The reason is that the effect of the mag-
netic field causes a thinning of the boundary layer, as shown in Figure 4.3, which can
compensate the thickening of the boundary layer caused by the blowing to some extent,
so that the thickness of the boundary layer remains still at a low level.
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Figure 4.2. Profiles of dimensionless translational velocities f̄ and ḡ with three values of the blowing
velocity W̄0 = 0,−1,−5 for a Newtonian fluid (panels a, b) and a fourth-grade fluid (panels c, d).

As has already been mentioned, similarly to a suction velocity, an applied magnetic
field tends to restrict the shear layer to a thinner boundary layer near the disk (η = 1
or z̄ = 0) for both the fourth-grade fluid and the Newtonian fluid, as one can see in
Figure 4.3. It means that the electromagnetic force provides some mechanism to control
the boundary layer thickness.
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ḡ ×10−2

0

1

2

3

4

5

6

7

8

9

10

η

×10−1

Newtonian fluid

B̄ = 0
B̄ = 1
B̄ = 5

(b)

1211109876543210

f̄ ×10−1

0

1

2
3

4
5

6

7

8

9

10

η

×10−1

W̄0 = 1

Fourth-grade fluid

B̄ = 0
B̄ = 1
B̄ = 5

(c)

4035302520151050−5−10
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Figure 4.3. Profiles of dimensionless translational velocities f̄ and ḡ with three values of the magnetic
parameter B̄ = 0,1,5 for a Newtonian fluid (panels a, b) and a fourth-grade fluid (panels c, d).

The effect of higher-order terms on the flow can be observed in Figures 4.4, 4.5, and
4.6, in which the variations of the dimensionless translational velocity components are
represented for various values of the material parameters of the fluid. It is noted that the
boundary layer thickness is increased by increasing these higher-order material parame-
ters.
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Figure 4.4. Profiles of dimensionless translational velocities f̄ (panel a) and ḡ (panel b) for a non-
Newtonian fluid with various coefficients of the second-grade terms ᾱ1 = 0 (a Newtonian fluid),1,5.
The third-grade and fourth-grade terms are neglected (β̄i = 0, i= 1,2,3; γ̄i = 0, i= 1,3,4,5).
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Figure 4.5. Profiles of dimensionless translational velocities f̄ (panel a) and ḡ (panel b) for a non-
Newtonian fluid with various coefficients of the third-grade terms β̄2,3 = 0 (a Newtonian fluid),1,5.
The second-grade and fourth-grade terms are neglected (ᾱ1 = 0; γ̄i = 0, i= 1,3,4,5).
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Figure 4.6. Profiles of dimensionless translational velocities f̄ (panel a) and ḡ (panel b) for a non-
Newtonian fluid with various coefficients of the fourth-grade terms γ̄i = 0 (a Newtonian fluid),1,5
(i= 3,4,5). The second-grade and third-grade terms are neglected (ᾱ1 = 0; β̄i = 0, i= 1,2,3).

5. Concluding remarks

The flow due to noncoaxially rotations of a porous disk and a fourth-grade fluid at in-
finity subjected to a magnetic field has been studied in comparison with the flow of a
Newtonian fluid. As the magnetic field is intensified and the suction velocity increases,
the boundary layer near the rotating disk becomes thinner for both the fourth-grade
fluid and the Newtonian fluid. On the contrary, the blowing causes a thickening of the
boundary layer, with the exception of strong blowing for the fourth-grade fluid, in which
a thinning occurs. In general, the boundary layer of a Newtonian fluid is much thinner
than the fourth-grade fluid. It is also clear that, as the second-, third-, and fourth-grade
viscosity coefficients increase, the boundary layer tends to become thicker.

The purpose of the presented communication has been to examine the flow of a
fourth-grade fluid with a view towards understanding its response characteristics. This
has been put into practice here by imposing the boundary conditions (2.19), which were
suggested from that the shear stresses are zero on infinity. As long as physical arguments
do not allow us to constrain the boundary condition to exact statements, we do not
see much hope that fourth-grade fluid flows can help us in understanding certain non-
Newtonian behaviours. However, strong dependences of the velocity profiles on suction,
magnetic field, and fourth-grade parameters may shed some light in this regard.
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