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This paper introduces a systematic, structure-based modeling framework for analysis and control of electric
power systems for processes evolving over the mid-term and long-term time horizons. Much simpler models than
the detailed dynamics specifically for control design at different hierarchical levels are obtained by applying both
temporal and spatial separation. These simple models, or the aggregate models, represent the net effect of
interactions among interconnected regions on specific hierarchical levels. They are exact, since no assumptions
on weak interconnections among the subsystems are made. Moreover they are easily understood in terms of
power flows among the regions. The approach is essential for improving present performance of the system. It
is also potentially useful in a competitive utility environment in which it is critical to study the interplay between
technical and economic processes.
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1. INTRODUCTION

Electric power systems in the United States and many other parts of the world are
undergoing drastic restructuring. The trend is toward deregulating an industry which has
traditionally been a regulated monopoly, and allowing for economic competition.

Much confusion arises in discussing technical and economic concepts supporting the
two extremes. At one extreme, there are advocates to preserve the basic technical
framework and its standards in operating the interconnected system, while accommodat-
ing competitive non-utility—owned generation. At the other extreme, there are advocates
of drastic changes based entirely on economic competition. A challenging change of
thinking is needed in both the engineering and economic circles to put the debates in a
meaningful framework, essential for assuring that under whichever industry structure
evolves, basic principles of technical operation as well as the free-market economy are
met.

This is a heavy order for researchers in the area of large-scale power systems. The issues
are system-theoretic in their basic nature. Researchers with the strong background in
large-scale systems could identify many new theoretical challenges and develop their
solutions in the context of problems directly relevant for the power industry. However, to
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avoid specific formulations under technical assumptions which are often qualitatively
different, one needs a systematic framework for posing these problems.

Over the years, much effort has gone into mathematical modeling of large-scale power
systems and, to a lesser extent, toward systematic control designs. Given this, one would
at least believe that models are available for posing the main operating problems of
interest to industry at present.

Unfortunately, it turns out that some processes which are essential for relating technical
operation to economics, particularly in a distributed competitive setting, have never been
formulated in a systematic way for power systems. The first author of this paper strongly
believes that, without such a basic framework for scientific solutions to the power systems
under restructuring, not much progress can be made. Faced with this realization, we have
put significant effort toward establishing a possible starting framework. The essential
feature of our approach is that it naturally lends itself to the present structures, and could
be used to enhance the operation of the present system. Yet, it is generalizable to any other
evolving industry structure. Moreover, our approach allows for relating technical
processes to economic processes and their interplay.

The material in this paper describes our framework. The paper is organized into three
major parts. The first part introduces the structural modeling and control for present
structures and its performance objectives. The second part describes its potential use in a
distributed environment, and puts the emphasis on new technological enhancements, such
as improved regional controls. The third part outlines its potential use for studying
economic processes in power systems under competition, and relating them to technical
processes. Even with the framework established much work remains to be done to make
it useful to industry.

In the past, and at present, power-system monitoring and control has been based on a
hierarchical structure under which the monitoring and control tasks are shared by different
hierarchical levels. Local (primary) controllers on individual generating units are currently
decentralized, in the sense that they respond to deviations of local outputs from the
steady-state values, or set values, assigned from higher levels. The steady-state, set values
of primary controllers are regulated at a regional level (secondary), assuming weak
interconnections among the regions. The regional controllers are, however, not systemati-
cally coordinated at present, leading to deviations from optimal systemwide performance
and a possibility of global system instability.

The lack of systematic coordination exists in two of the most important control
problems of the power system: frequency regulation and voltage regulation. In the case of
frequency control, a simple coordination scheme, commonly referred to as the Automatic
Generation Control (AGC), has been automated throughout the United States, as well as
in some other parts of the world. This scheme is based on a reduced information structure
which allows for simple automation. Although it has been successful in practice in a
relatively static operating environment, hidden problems that may lead to potential loss of
global frequency regulation have been identified in the literature [1].

In the case of voltage control, a systemwide coordination level is not automated at
present in this country. Instead, each administratively separate region regulates its own
voltages, with interconnections to the neighboring regions neglected. However, as the
system experiences unusual reactive power deficiency due to large disturbances, the need
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for a systematic on-line coordination is emerging to insure the global security of the
interconnected system [9]. France and Italy are the only two countries with automatic
regional voltage control of electric power systems.

This paper introduces a structurally based modeling and control approach for large-scale
electric power systems whose interactions among the subsystems are characterized by the
interregional flows. An interconnected system is first decomposed into administratively
divided regions. This natural division makes practical sense because each region has
independent controls and makes its own decisions. Next, dynamics of each region are
obtained by combining the local dynamics of individual generator units with algebraic
power balance constraints imposed by the transmission network. Throughout this work,
loads are modeled as disturbances from their expected values. Control design has the main
purpose of suppressing the effects of load-demand fluctuations from normal operating
conditions over the variety of time scales, ranging from seconds through hours.

Introduction of a structurally based aggregation is the second major contribution of this
paper. Structural interaction variables relevant for different control levels are defined and
the corresponding interaction dynamical models are obtained to account for interactions
on different time scales among the interconnected regions. A particularly important feature
of the interaction variables is that they are interpreted in terms of physically meaningful
quantities such as interregional power flows. The preservation of physical meanings of the
interaction variables, in contrast to all other aggregation methods currently known in the
area of power systems, is critically important for systematic control designs aimed at
responding to changes in neighboring regions. The derived aggregate models provide a
basis for coordinated on-line automatic control of large-scale power systems, because they
extract only information relevant for each specific control level and are of very low
dimensions relative to the detailed models of typical electric power systems.

A distinct advantage offered by these results is that no assumptions with regard to the
strength of interconnections are needed, in contrast to the present state-of-the-art methods
which typically require the weak-interconnection assumption. Since the system is
decomposed according to its structural properties, the approach is entirely independent of
the strength of interconnections. Eliminating this assumption is important, because strong
interconnections are needed for interregional wheelings imposed in the open-access
operating mode [9].

In the last part of this paper potential use of the framework for developing concepts for
competitive electric power systems is described. The basic link between economic and
technical processes is described as the starting formulation for further studies.

2. STRUCTURAL MODELING

This section introduces a new structurally-based modeling approach to large-scale electric
power systems. While the approach recognizes the decomposition of the system into
interconnected, but administratively divided regions, it does not make any a priori
assumptions with respect to strength of their interconnections. The administrative regions
within the interconnected system are tied together through the tie-lines, and the regional
dynamics are coupled through the tie-line power flows. To maintain the traditional



320 M. D. ILIC AND X. S. LIU

decentralized control structure, an administrative region is chosen as the base for study, for
which dynamical models are derived explicitly in terms of the tie-line flows. It is shown
that this framework of modeling captures fundamental properties of power system
dynamics and facilitates the physical understanding of the inter-area dynamics.

Each administrative region consists of a certain number of generating and control units,
and a transmission network that interconnects these generating and control units. Typically
these units are located over different locations, and each individual generator has its own
local control, in the sense that the control regulates output variables associated with this
particular generator only. The schematic representation of the structure is shown in
Figure 1.

Dynamics of each individual unit, referred to here as the local dynamics, are derived in
terms of local state variables of each unit. If the transmission network were not present the
local dynamics of these generating units would be completely decoupled. The role of the
transmission network is to constrain outputs of individual equipment by imposing power
balance conditions on subset of local variables of all generators and loads connected
through the transmission network. The subset of local variables directly constrained by the
system interconnections is referred to as coupling variables. The local dynamics of
individual units, in the form of ordinary differential equations (ODE), together with the
algebraic constraints imposed by the transmission network, form the dynamics of each
administrative region in the form of differential-algebraic equations (DAE).

It is well known that DAE problems are very difficult to study. The approach proposed
here is to convert the DAE problem to an ODE problem by differentiating the network
constraints under an assumption which holds for a very wide range of system operation.
A standard state space nonlinear dynamical model for the administrative region in the
form of unconstrained ODE:s is obtained by combining local dynamics for individual units
with the differentiated network constraints. The resulting dynamical model is in an
extended state space, since the coupling variables also become states.

The developed structural dynamical model offers an essential, yet simple, vehicle for
rigorous analysis of the power system dynamics. The model is uniquely suited for
controlling inter-area dynamics at all time horizons.

The developed structural dynamical model also provides a theoretically solid basis for
hierarchical control design of power systems to reject load disturbances over the

Figure 1 An administrative region with local controls.
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widespread frequency spectrum. Much simpler models than the detailed dynamics
specifically for control design at different hierarchical levels are obtained by applying time
scale separation techniques to the new structurally based models proposed here. These
simple models, or the aggregate models, represent the net effect of interactions among
interconnected regions on specific hierarchical levels. They are exact, since no assump-
tions on weak interconnections among the subsystems are made.

2.1. Modeling Issues

Prior to introducing this modeling process, general issues related to power system analysis
and basic modeling assumptions made are reviewed such as time scales, network and load
modeling, control hierarchy, and the frequency/voltage decoupling assumption.!

2.1.1. Time scales. Modeling and control of large-scale systems usually exploits
significant time scale separation among a variety of processes. Due to these different time
scales, dynamics and responses of the system exhibit different characteristics. Much of the
analysis work is currently available for studying shortest response of the system to fast
disturbances. Very little systematic analysis is available for system responses over the
mid- and long-term time horizons. In order partly to eliminate this gap, it is adopted here
that, for short-term stable operations, steady-state outputs of fast dynamics can be viewed
as the moving equilibria under slower disturbances, forming a discrete event process
(DEP) over longer time scale. A fundamental difference between this class of processes
and the continuous dynamics is that a DEP, under certain conditions on the continuous
dynamics, is driven solely by control actions and disturbances.

Electric power systems, generally large in size and complex in operation, typically
display this special class of processes. The local (primary) controllers stabilize system
dynamics to within a threshold of their-steady state reference values with a very fast time
constant. The steady-state outputs of these primary controllers are regulated at a regional
(secondary) level with a significantly longer time constant than the primary controllers,
forming what can be viewed a DEP process. To fully optimize the operation of a system
consisting of several electrically interconnected regions under varying loading conditions,
the reference values of the output variables are adjusted at an even higher (tertiary) level
with a still longer time constant than the secondary.

Most important sources of different time scales include loads which vary over different
time scales and different electrical distances within a large-scale interconnected network.
Power systems involve huge number of devices interconnected over far geographical and
electrical distances. The connections among these devices within an administrative region
(electric power utility) are relatively meshed and strong, compared with very sparse, and
normally weak tie-line interconnections among different administrative regions. The
meshed or strong intra-area connections represent shorter electrical distances and the
sparse or weak inter-area connections imply longer electrical distances. Loads typically
have widespread frequency spectrum. They are modeled as containing dynamics at threes
qualitatively different time scales, fast fluctuations, mid-term and long-term variations.

' Modeling approach developed here is generalizable to the coupled dynamics.
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The controls responding at these three distinct time scales are the basis for a hierarchical
control scheme to stabilize the frequency and voltage throughout the system.

As a convention throughout, we refer to the fast transient dynamics of the system as the
primary process, with typical time constant 7,,, the DEP on the mid-range time scale as the
secondary process, with typical time constant T, and the slowest process a the tertiary
process with time scale T,. The primary process is simply the continuous dynamics of the
system, the secondary process is the set value adjustment by the regional controls over
mid-time horizon, and the tertiary process is associated with the slowest adjustment of
system settings relevant for the entire interconnected system.

Since the secondary and tertiary processes are activated only at discrete times, any
variable v of interest can be decomposed into

=v(t)+v[k]—+—v[K], kKkK=0,1,2,- - - 1))

where v(¢) is the continuous component associated with the primary dynamics with time
scale T, the discrete secondary process is defined as v[k] = v(kT), and v[K] W(KT,) is the
slowest component associated with the tertiary process. A schematic presentation of
relevant time horizons is illustrated in Figure 2.

2.1.2. Network and load modeling. In large-scale power system studies, the transmis-
sion network is modeled ass a linear circuit, normally with inductances, resistances and
shunts capacitances. For the frequency range of interest here, dynamics of the transmis-
sion network are neglected. Under this modeling assumption, the transmission network
effectively imposes algebraic constraints to the dynamics of the local generating units and
their local controls. The constraints are simply the real and reactive power balances.
Generator local dynamics in the form of ODEs, together with the algebraic network
constraints, lead to a constrained dynamical problem of a DAE form.

Loads are modeled as sinks or sources of real power P, and reactive power Q,. The
deviations from constant power sinks/sources are further modeled as external disturbances
to the system. Although more realistic models include dependence on their voltage and
frequency, these models are not presently actively used for on-line control of the
interconnected system. Using the notation introduced in (1), loads are represented by

P, = P,(t) + P,[k] + PL[K] kKK=0,1,- - - 2)
0= 0,(1) + Q)[k] + Q/[K] Kk K=0,1,--- 3
v[K] e
vk]

v(t)
0 Tp 2Tp Ts 2Ts Tt T;ne

Figure 2 Multiple time scales.
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for real power P, and reactive power Q,. In this equation, P,(f) and T,(f) are the fast
continuous fluctuations, P, [k] and P,[K] represent variations over the mid-term horizon,
Q; k] and Q,[K] correspond to variations of the load on the long-term horizon.

2.2. Present Control Hierarchy

Corresponding to the three different time scales, monitoring and control of large-scale
power systems typically employs a hierarchical structure:

e Primary control: This level is most often entirely localized in the sense that controllers
respond to the local output variable changes only. The main function of primary control
is to correct for small, fast output deviations caused by fast load disturbances. Excitation
and governor systems are the main primary controllers responsible for voltage and
frequency controls, respectively.

e Secondary control: This level is concerned with changes at the regional level,
considering interactions with the neighboring regions to be small. Its main function is
to eliminate frequency and voltage deviations at certain critical locations over the
mid-term time horizons. These deviations are caused by slow load deviations. Adjusting
speed-changers of governors and terminal voltages of the generators are the main
control objectives at this level of hierarchy.>

o Tertiary control: This level is concerned with the coordination of secondary controllers
by incorporating effects of interactions on the quasi-static changes of the interconnected
system over the long-term time horizon. The ultimate goal of this coordination is to
achieve a systemwide optimal performance over the long-term time horizon.

In terms of the load decomposition, the main purpose of the primary frequency and
voltage controllers is to cancel the effects of the fast load fluctuations P, () and Q,(¢) . The
regional secondary controllers are designed to control frequency and voltage under the
slower load changes P,[k] and Q,[k]. The systemwide tertiary controller is intended to
update settings at secondary controllers in response to slow nominal load changes P;[K]
and Q,[K] over the time horizon 7,.

2.3. Decoupling Assumption

It is well understood that, in a static operation, real-power injections to a power system
closely affect voltage angle differences across the transmission lines, and that reactive
power injections closely affect voltage magnitudes, under normal operating conditions. In
other words, sensitivities of real powers to phase-angle differences, and sensitivities of
reactive powers to voltage magnitudes are relatively larger than the cross-sensitivities of
real powers to voltage magnitudes and reactive powers to phase-angle differences. This
property is referred to in the power systems literature as the real power/voltage decoupling
assumption.

?The control hierarchy is described in terms of most standard controls, that is, generator controls. Qur concepts
directly apply to many other controls available on modern power systems [8].
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Under normal conditions, power systems operate in a quasi-steady state on slow time
scales, that is, the system reaches its steady state within the fast time scale T),. Therefore,
it is generally a valid assumption that real power/angle dynamics and reactive power/
voltage dynamics are decoupled in normal operating conditions. In order to exploit the
most fundamental characteristics of power system dynamics, and not confuse with
complex mathematical expressions associated with the coupled dynamics, the decoupling
assumption of real power/frequency and reactive power/voltage dynamics will be made
throughout this framework. This, however, does not imply that the decoupling assumption
holds in general.

2.4. Modeling Process

A complete dynamical model of any power system is the combination of the local
dynamics and the network coupling. This structural decomposition is schematically
illustrated in Figure 1. Keeping in mind the general background of a reader, we present the
material using standard systems jargon, instead of specialized power systems formulation
in terms of frequency or voltage. Specific illustrations of the results can be found in [9],
[10] and [11] .

2.5. Local Dynamics

Let us define x} - as the local states of generator i. One can express local dynamics of this
generator in a general form as

Xpc = frc(re uie Xcp) 4

where u' is the control input to the generator, and x\-, represents the coupling variables
which relate local dynamics of different generator sets. For example, in the case of real
power/frequency dynamics, the coupling variable is simply the real-power generation of
the generator. Real-power generations of different generators are coupled together by the
transmission network that connect different generators. The primary task of the local
controller is to stabilize the local output variables of the specific generator to their desired
settings, which can be calculated locally or more often given by higher level controls.
Assume that

¥ = Cxjc Q)
is the vector of output variables of interest for generator i. Let yfef represent the desired

settings for output variables. The local control 4 - is typically a feedback control designed
using the error signal

é=y -y, ®

After appropriate design of the local controller, the closed-loop dynamics of the generator
set can be written as

Xie = fiexie, yiref’ Xcp) @)
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We now derive local dynamical models for all generator units in the network. As
discussed in the previous section, we choose any administratively divided region as the
base system for our study. Consider here such a region consisting of m generator units.
Define the local states, output variable settings, and coupling variables for the region as

1 1 1
XLc Y ref X cp

. A . A .
Xre : s Vref : »Xep™ : (®)

m m m
Xrc Y ref X cp

II>

Since (7) is true for any generator control set, one can simply obtain the local dynamical
model for the entire region as

Xrc = JidXees Yrep Xcp) )

where the nonlinear function is defined as

1 1 1 1
fre@pey rep X cp)
A .

Jre(Xees Yrep Xcp) (10)

Flc (X ey vep X Cp)
2.6. Network Constraints

The transmission network imposes algebraic constraints on the coupling variable xp and
a small subset of local state variables x; . With definition (8), it is demonstrated in [9] that
the constraints are always given in the following structural form

8xep X F) =0 (1)

where the nonlinear function g(¢, *, *) has the same dimension as that of the coupling
variables. The term F represents tie-line flows into the region from its neighboring regions.
This formulation assumes constant power loads. Any variations in the loads are viewed as
disturbances to the system. The primary goal of power system control design is to reject
the load disturbances. The differential equation of local dynamics given in (9), together
with this algebraic relationship, forms the dynamics of the system in the form of
differential-algebraic equations (DAE).

It is well known that DAE problems are very difficult to handle in general. It is proposed
here that the DAE problem is converted to ordinary differential equations (ODE), by
differentiating the algebraic constraint equation (11) with respect to time. It follows that

Jepxep ¥ Jicxye +JrF=0 (12)
where
) ) 9
A B T B (13)
0xcp 0x; ¢ oF
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are defined as the Jacobian matrices of the network constraints. Note that these Jacobian
matrices are evaluated at the actual value of the state and flow variables (x¢p, X; ¢, F), and
therefore no approximations are introduced.

To derive a standard state space ODE model for the dynamics of thereon, let us assume
that the square matrix J-p is nonsingular. If this is not the case, complicated phenomenon
such as impasse points [3] will occur. This case is out of the scope of this paper and will
not be further discussed. Under this condition, (12) can be equivalently written as

Xcp = Spe (eps Xy, F)Xpc + Sp (xep, X100 F)F (14)

where

SicGep X )& =T M e and Sy (xep Xy A — T ATy (15)

are defined as the sensitivity matrices of coupling variables to local states and flows,
respectively. Again, these sensitivity matrices are functions of the state and flow variables,
as explicitly indicated above. Eq. (14) represents an equivalent nonlinear ODE set for the
network algebraic constraints.

2.7. Structural Dynamical Model

The local dynamical model (9), combined with the coupling dynamics given in (14), forms
a complete set of ODEs for dynamics of the specific region under consideration,

[XLC] _ I: Jre (K Yrep Xcp) ] (16)
Xcp Sie (s Xpoo Flige + Sp (xcp, X0, F)F
or,
|:XLC ] _ [ ch (ch’ Yrep xcp) :| 17
Xcp Sre (eeps Xpes F) fre (e Yrep xcp) + Sp (Xcps X0 F)F

Define the state variables in the extended state space for the region under study as

)cé [XLC] (18)
Xcp

and the nonlinear function on the right hand side of (17) as

= A fLC
f(-x’yref’F’F) |:SLCfLC+SFF] (19)

We obtain the nonlinear standard state space dynamical model for any administratively
divided region as

%= F (6 Vygs Fo F) (20)
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Notice that the reference values for output variables, y,.r are updated mere slowly than the
transient dynamics by a higher level control center. The purpose of updating the reference
Yrer 18 to render an optimal performance of the system accommodating the slowly varying
component of the load fluctuations (fast component of the load variations is stabilized by
the appropriate design of local controllers). This typical implementation of the control,
referred to in this paper as the hierarchical control structure, gives rise naturally to
different time scales for the closed-loop dynamics. The following section will discuss the
time scale separation associated with this particular structure.

Note also that this dynamical model is written explicitly in terms of tie-line flows into
the region from neighboring systems. In (20), the tie-line flows act as an external input to
the dynamics of the region under study. These flows play important roles in thee inter-area
behaviors of different regions within the interconnected system. It will be shown that the
decoupled real power/frequency dynamics are not completely controllable under the
present control structure; the local control u, - cannot regulate inter-area behaviors of the
interconnected system. The Popular, but not well-understood phenomenon of inter-area
oscillations cannot be effectively suppressed with local governor controls, without
significantly changing voltages throughout the network. In this case, additional control
actions are needed to guarantee a desired performance of the system. This leads to the idea
of direct flow control for which basic hardware is available at present [9].

2.8. Control-Induced Time Scale Separation

Because the updating of reference values of output variables is done typically more slowly
than the time constant of the system transient dynamics, different time scales exist in the
system dynamics over long time horizon. Time-scale separation techniques can be used to
support higher-level control designs.

The linearized dynamical model for any administrative region as

x=Ax+By,ef+ UF + VF (¥2))

In this equation, vector F represents the tie-line flows into this region from its neighboring
regions. The reference value y,, is updated, by either the local level or higher level
controls, at discrete instants to regulate the profiles of output variables of direct interest so
that some predefined optimality is achieved. Due to physical limitations and practical
considerations, the updating is typically done more slowly than the transient dynamics.
This process of updating the reference values of individual controllers is often called the
secondary control. Let us denote the time interval of the secondary control as T, that is,
the reference value is updated at instant kT, k=0, 1,. . . .. Thus the reference value Vref
is constant in the interval kT, < t < (k + 1)T,. Let us further denote v [k] =y, (kKT as a
discrete time sequence of the reference value. With this notation, (21) can now be written
as

X = Ax + Bv,[k] + UF + VF (22)

The objective of secondary control is to design an appropriate discrete time sequence
v,[k] to achieve some prespecified optimality criterion at each subsystem level.
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Because the discrete sequence v [k] varies more slowly than the transient dynamics,
much simpler models can be derived to assist the secondary control design. Let us now
carry out the detailed derivations. Because the time constant of the transient dynamics is
much shorter than the secondary control time interval T, one can assume that all transient
dynamics settle to a steady state before each time instance kT, that is, x = 0 at kT|. Eq.
(22) then reduces to

Ax +Bv[k]+ UF =0, att=kT, (23)

or
Ax[k] + Bv[k] + UF[k] = 0 (24)

using the convention of (1). Eq. (24) determines a static relationship between the steady-
state equilibria of the system and the reference values to be adjusted by the secondary
control.

The secondary level controls are designed to eliminate the slower steady-state offset of
some critical variables in the region under the slow drifting of disturbances. Let us express
these critical variables for the secondary level as

x, = Dx (25)
The dimension of x; is in general much lower than the dimension of x. The reference value
v,[k] is updated on the time scale T so that slower steady-state offset in x; on the time

scale T, is eliminated. The desired relationship between x[k] and v k] can be easily
determined from (24) as

x[k] = — A”'Bv[k] — A"'UF[K] (26)
and therefore
xJk] = By[k] + M(Flk] — Dd[k]) 27)
. A -1 A -1
withB.= — DA™ B and M;= — DA 'U.
Eq. (27) determines a quasi-static relationship between x,[k] and v,[k]. This quasi-static
relationship is best utilized for the secondary control design when transformed into a

dynamical model. To introduce the secondary discrete time dynamical model, let us
subtract (27) at two consecutive time instances kT, and (k + 1)T:

xlk + 1] = x[k] = B{(v[k + 1] = v[k]) + M(F [k + 1] = F[k]) (28)

Define the update of the reference value, or the corrective control for the secondary level
as

ulk] = vk + 1] = v[k] (29)
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and the change of tie-line flows as

F k] = Flk + 1] — FIk] (30)

One obtains the secondary level discrete time dynamical model as

xlk + 1] = x[k] = Bulk] + MF k] (3N

Model (31) is introduced as the simplest model for designing output feedback-based
secondary level controllers at the regional level. This model can also be interpreted as
representing a discrete event process of a moving equilibrium x[k] driven by the discrete
contraction u k] and the tie-line flows [2]. Variables x[k] will be referred to as the
secondary level states.

It should be pointed out that the corrective control signal u[k] defined in (29) represents
an implicit integral control, because, from (29),

-
vl = El uk] + v [0] 32)

k=0

for any integer /. It is this implicit integral control that rejects the steady-state error in the
output variables on the secondary level time scale.

3. HIERARCHICAL CONTROL DESIGN

In this section we present the hierarchical control design methodology based on the
time-scale separation method discussed above. It is shown that the effect of neighboring
regions can be easily accounted for in the regional control design, using the derived simple
model at the secondary level.

3.1. Controllability

Let us first show a structural property associated with a control-driven system—the
controllability of the system is determined by the relative dimensions of the states and
controls. Assume that the dimension of the secondary level states xJ[k] is n, and the
dimension of the secondary level controls u[k] is m. Recall that the controllability matrix
of (31), with F[k] treated as an external input, can be written as

[,0- - -0] (33)

This matrix has maximum rows of m and therefore maximum rank of m. If the number of
controls m is less than the number of states n, as is typically always the case, this
controllability matrix is always singular, and the system is not fully controllable. This
property is a structural one since it is independent of the numerical values of the system.
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As a result of this structural uncontrollability, only at most m states can be controlled
independently. Let us choose m critical states as the output variables to be regulated by the
secondary control, expressed as

s [k] = Cyx k] (34)

with matrix C; having dimension m X n. Variations in the output variables y.[k] can be
easily obtained from (31) as

ylk + 1] = y[K] = CBulk) + CM,FK] (35)

Define the m = m square matrix U; = CB,. Then the above can be written as

ylk + 1] — y[k] = UuJk] + CMF[k] (36)

Under the further assumption that the number of controls and relevant outputs at each
regional level is the same? one obtains an explicit recursive relationship between the
controls, relevant output variables and flows of the form

vk + 1] = vlk] = Lyy[k + 1] = LyF [k + 1] + Ly[k] (37

where

L3[k] = - Llys[k] + LZFS[k] + LZdS[k] (38)
3.2. Conventional Secondary Control

The goal of the secondary level control is to stabilize the output variables y [k] over the
secondary time horizon to an optimal value determined by the tertiary control. The
conventional secondary control takes the simple proportional form

ulk] = Gy Jk] = y" K] (39
where y%' [K] £ y?' (KT,) is the optimal value for the output variables on the even longer
tertiary time scale T,. This optimal value is calculated by the tertiary control, and is
constant for secondary processes.

Under this conventional feedback control, secondary level closed-loop dynamical
model for output variables is obtained as

ylk + 1] = y[k] = UG(y[k] = yPK]) + CMF k] (40)

3This can be relaxed
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The gain matrix G can be chosen to optimize a performance index at the regional level

Jo= 3 GTK QK + ullk R ufk) o

for some matrices Q = Q7 = 0 and R = R” > 0 specified by each region. The superscript”
denotes the transpose of a matrix. The optimization is with respect to u[k], and the result
is the optimal gain matrix G. In this process, tie-line flows with neighboring regions are
neglected, due to the large scale of the system and the desire to maintain decentralized
nature of the regional control.

3.3. Improved Secondary Level Control

It is clear from (40) that tie-line flows viewed as an independent external input to the
system affect the dynamics of the output variables. The conventional “optimal” control
designed with interconnections neglected will no longer be optimal when implemented to
the actual system where interconnections are indeed present. To fully compensate the
effect of interconnections, we propose a modified feedback control law in the form

ulkl = G(y[k] — yP[K]) + H F[k] (42)

where the term HF [k] is to cancel the effect of F [k] on output variables. Substituting (42)
into (40) yields

ylk + 1] =y[k] = U, Gy Jk] = yPK]) + (U, H + CM)F[k] 43)

It is clear that if U, is invertible, then the effects of the tie-line flows can be fully
eliminated by simply choosing

H=-U'CM, (44)

With this choice of H, (43) reads

ylk + 1] — y[k] = UK (k] — yTK]) (45)

with no flows entering into the equation. In other words, the region under study looks as
if it were fully isolated from the rest of the system, as far as the output variables are
concerned.

Note that the condition that U is invertible should not be viewed as restrictive; instead,
it ought to be taken as one of the requirements for the choice of output variables. This is
due to the fact that the matrix (I + U K,) is the system matrix for the output variables y[k]
seen from (40) or (45); therefore, if the matrix U, were singular, the closed-loop system
matrix (/ + U,K,) would always have an eigenvalue of 1. The consequence of this is that
steady state errors are inevitable for the chosen output variables. To fully control all output
variables, it is required that they are selected such that Uj is of full rank.
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Note also that the control scheme presented here is totally decentralized, assuming that
tie-line flows are locally measurable at each region level. No detailed information about
neighboring regions is needed; only tie line flows are required, since they aggregate the
net effect of detailed dynamics of neighboring regions. It is not an unrealistic assumption
that tie-line flows are locally measurable.

3.4. Quasi-Static Interaction Variables

The secondary quasi-static dynamical model for any region explicitly in terms of the
tie-line flows has been derived as 28 where x,[£] is the state vector representing all buses
in the region. The dimension of the sensitivity matrix B; is n X m, with n being the total
number of buses in the region, and m the number of generator buses that participate in the
secondary level regulation. In general it is true that n X m, that is, the number of load buses
is larger than the number of generator buses participating in the secondary level control.

Under the condition of n > m, one can easily verify that the closed-loop system using
any feedback control is singular, because matrix B, has maximum rank of m. This
structural singularity due to the relative numbers of controls and states. This is a general
property for any control-driven systems. In exploiting this structural singularity of the
quasi-static voltage dynamics, we first give the following definition.

DeriniTioN 1. (Quasi-Static Interaction Variables). Any linear combination of the states,
z [k] = Tx [k], T # 0, that satisfies

Zlk + 1] — k] = 0, Vk (46)

for any secondary control actions, and in the absence of interactions among regions and
the disturbance, that is, F; = 0 and d, = 0, is defined as the quasi-static interaction variable
of the administrative region under study.

The quasi-static interaction variables do not vary with time when interconnections are
removed and load disturbances are not present. For the interconnected system, therefore,
any variations of the interaction variables with time are entirely due to the interactions
among regions or load disturbances. It should be noticed from the definition that the
interaction variables are not unique. In fact, any combination of the interaction variables
is still a set of interaction variables.

Let us derive the condition for the transformation matrix 7. Combining (46) and (28)
yields

k + 1] — Z[k] = TBu k] + TD(F[k] — d[k]) (47)
Under the conditions in the definition, F[k] = 0 and d[k] = 0, we arrive at
dk + 1] — k] = TBu[k] (48)
In order to have z[k + 1] — z[k] = O for any control u[k], matrix T must satisfy

TB, = 0 (49)
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This is the desired equation for calculating T. Note that matrix B, has maximum rank
m < n, and therefore, equation (49) has nonzero solutions for 7. It is quite easy to solve
T from (49), since it is a simple algebraic equation, and can be solved using Gauss
elimination method. The need for eigenstructure analysis is completely avoided.

Note that the definition for interaction variables is for any secondary control, meaning
that the interaction variables are independent of the specific secondary control.
Equivalently, the secondary control cannot affect the interaction variables. Any variations
of the interaction variables are uniquely due to the interactions with other regions or the
load variations. The matrix 7, as a result, will not be dependent on the specific form of the
secondary control.

Once the interaction variables are determined from (49), one can further derive the
dynamical model for these interaction variables. Egs. (47) and (49) simply lead to

dk + 1] — o[k] = TD(F k] — dk]) (50

This is the desired dynamical model for the interaction variables. This simple model
relates the interaction variables to the tie-line flows and load variations. It is of crucial
importance for the secondary control and tertiary level coordination, as is discussed in
more detail below.

Notice that the definition for interaction variables does not assume numerically weak
interconnections. Rather, it reflects a structural property of the system, different numbers
of the states and controls. It is interesting to relate the interaction variables defined above
to the slow variables in singular perturbation analysis when the interconnections are
indeed weak. It is easily seen from the interaction dynamical model (50) that, in the weak
interconnection case, the interaction variables do vary more slowly than the rest of the
states. One can rigorously prove that, in the weak interconnection case, the interaction
dynamics derived here will be the slow subsystem in the singular perturbation analysis.

For illustration of the interaction variables see [9]. To summarize, this section presents
a structurally based modeling approach for dynamics of an interconnected power system.
Dynamics of the system are formulated by combining the local dynamics of individual
generators and the network couplings. Quasi-static dynamical models on slower time
scales are derived. The structural models developed here has been used to define
systemwide voltage control on slower time scales according to performance specifications
at each regional level [12]. Both conventional and improved secondary voltage control are
studied using this framework.

4. TERTIARY COORDINATION

With an increased tendency toward large energy transfer over long distances, the problem
of maintaining voltages and frequency within the acceptable operating specifications has
merged in operating and planning power systems throughout the world.

The main purpose of the tertiary level controls is to update set values for tie-line power
flows F[K], K =0, 1, . . . on the tertiary level time scale in order to optimize systemwide
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performance for the anticipated base load P,[K] and Q,[K], K =0, 1, . . .. This could be
done on hourly basis, if not more often in accordance with the statistical information on
base load. The actual setting of tie-line flows is achieved by changing settings of
secondary controllers. Because this is done so infrequently, it could involve recomputing
of basic matrices around a new operating point for the anticipated load over the time
horizon T,.

The optimization problem for the optimal set values can be formulated for three basic
architectures (industry structures):

e Fully centralized: The coordination tasks are performed by a global coordination center
which has available full information. The entire interconnected system is modeled as a
single region. One single performance criterion is optimized, and the optimal set values
for all regions are obtained.

e Fully decentralized: The determination of set values of the pilot voltages is done by
each individual region itself. Each region optimizes its own performance criterion. Each
region does not assume any information about the rest of the system. In the optimization
process of each region, the tie-line flows into the region are measured and used to
determine the optimal pilot voltage set values for the region.

e Partially centralized/decentralized: In this scheme, each region assumes limited
information about the rest of the system, and, with the limited information, tries to
optimize its own performance criterion. The natural choice for the limited information
about the rest of the system is simply the aggregate model developed previously. We
model this scenario in a game-theoretical setting.

The systemwide performance criterion for the fully centralized methods is, in general,
quite difficult to establish, and the computational effort for the solution is enormous, as the
power system is very large. Therefore the coordination scheme cannot be implemented
quite often. The fully centralized methods also require global communication over far
distances. The fully decentralized or partially centralized/decentralized schemes, on the
other hand, have obvious advantages. There is an extensive degree of handling specific
problems of different regions with different performance criteria. This is particularly
suitable for a multi-utility environment. The performance criteria for smaller regions are
easier to obtain, and the computational work is significantly reduced. As a result, no global
communication is required, and the coordination schemes can be implemented relatively
more frequently. The major disadvantage of the schemes with competition nature is that
instability can occur.

Due to the large size of the system and complexity of the system operation, any practical
on-line coordination schemes must be based on a reduced-information structure in order
to be applied efficiently. In this paper, we develop a tertiary coordination scheme, based
on a reduced-information structure, using the interaction variables defined in the previous
section. The defined interaction variables represent the inter-area tie-line power flows, and
serve as a basis for the inter-area coordination. We shall derive an important relationship
between the quasi-static interaction variables and the set values of critical outputs at each
regional level.
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5. NEW TERTIARY LEVEL AGGREGATE MODELS

Using the structural modeling approach described above, one can derive the relationship
between the critical subsystem outputs at each regional level and the regional controls, the
relationship between the flows and the interaction variables, and the relationship between
the flows and the output variables, on the tertiary level time scale T,. These relationships
serve as constraints to the optimization problem for determining optimal set values for the
most relevant output variables. Here only the most relevant relations in context of this
paper are described. For others, see [9]

5.1. Centralized Aggregate Models

In this subsection, the global interconnected system is considered as one single region.
Since this big single region is an isolated system, there are no tie line flows into the
system. All previous derivations carry over to the global interconnected system, except all
tie-line flow terms drop out.

We use the boldface italic letters to represent any variable associated with the global
interconnected system. For example, let us define v, and y, to represent the critical output
variables of the global system. The relationship between the critical outputs and controls
is in the same form as (37)—(38)

v,[K+ 1]=Ly[K + 1] + Ly[K] (€28

where
v, [K] = Lj[K] — Ly [K] + L,d[K] (52)

Comparing with Equation (37)—(38), we observe the absence of the flow term, because the
global system is assumed to be an isolated one, and there is no flow for the isolated
system.

The rudimentary economic models describing cost processes associated with the
controls at both tertiary and secondary levels are described in [15]. Conceptually, they are
derived by mapping the control sequence performed into its cost sequence. It is essential
to combine these two processes for a coordinated technical and economic performance of
these controllers. The authors are continuing work into this direction.

5.1.1. Flows and the critical output voltages at the interconnected system level. The
relationship between the internal flows among the regions within the global system and
the critical output variables is obtained by combining (51) with the model (37)—(38)
written for all regions. Its general form is

S(FIK + 1] — F[K]) = Ly[K + 1] — y[K]) + Ld[K] (53)

This model is referred to as the tertiary level model, which relates explicitly the interaction
variables among the regions and the critical output variables in the interconnected system.
One should observe a difference between this model and the model expressed explicitly
in terms of flows. The latter is not possible, implying that at the interregional level only
interaction variables can be set explicitly, and not individual tie-line flows.
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6. OPTIMALITY OF DECENTRALIZED MANAGEMENT AND ITS
LONG-TERM STABILITY

The formulation and proofs in this section are essential for beginning to differentiate
among the ways system optimization in a deregulated utility environment is formulated at
present, and the most likely ways in the future. It is emphasized here that these issues are
typically not well thought through and, therefore, not appreciated. As a result, much
confusion arises in interpreting how the future energy management should be done.

Consider any administratively separated region i within an interconnected system. Let
the control variables be u' (real power generation settings or voltage settings), state
variables be x' (frequencies and voltage of loads). The task of controllers at a subsystem
level is to determine «', in order to minimize a cost function defined in equation (41),
restated here as:

J =Ty, u) (54)

where i = 1, II, . . . , R, assuming there are R regions in the system.

Using the structure-based modeling approach from [10] and reviewed briefly above, the
outputs y' and controls u’ at each subsystem level shown to be related as (28) and restated
here for simplicity as

Y =AW + BF + L} (55)

where A’, B’ are system constants, L] is a function of the system condition at the previous
step, and F' is the tie-line flows into the region i, one could pose necessary conditions for
constrained optimum in a distributed environment. This is described next.

Case A—Decentralized Optimization
In the decentralized, each region optimizes its own cost function J'. It is straightforward
to show that the necessary optimality condition at the equilibrium is given as

aror [ay]Tas
o iniew il el Bewie (56)
du'  du ou' | dy
Using (55), one obtains
' - oF |Tar
—+|A+B—| =0 (57)
ou ou | dy
Comparing with the centralized method, we see that all
o
2 i (58)
ou

are neglected in the distributed optimization.
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Different ways of treating F'/du’ yield different results. We propose two strategies:
(i) Constant-flow strategy. In this strategy, flows are viewed as a measured parameter;
thus, all derivatives of the flow with respect to controls are neglected, that is,

oF 0 Vi, j (59)
= = i,
P, /

(ii) Nash strategy. In this game strategy, flows are viewed as function of the controls
in its own region. As a result, all cross-derivatives of the flow with respect to controls in
other regions are neglected—equivalent to the so-called “reaction curves”.

Neglecting dDyx'/w, J # i, we have

oF
— F 0 (60)
ou

These two decentralized optimization problems have different solution. Their relation-
ship is easily seen as that letting 9F"/0w’ = 0 in the Nash solution yields the constant-flow
solution. The above mathematical derivations are essential for understanding the limita-
tions of decentralized energy management. Only in the very particular case when
individual performance criteria are functions of controls will the decentralized and
centralized optimization in a multi-utility environment lead to the same optimum value.
This means that a general competitive, decentralized setup will entail deviations of the
interconnected system from its ideal optimum performance.

The general solution form of both decentralized optimization processes can be written
as

u' = fi(F) 61)

6.1. Achievable Optimality as a Function of Controls/Management
Structure

Here for the first time a mathematical formulation needed to quantify systemwide
deviations from the ideally achievable optimum in power systems is proposed. The
necessary optimality conditions are strongly dependent on the type of information
exchange available. While Case A above is concerned with different implementations of
a competitive, decentralized management, Case B below provides an interpretation of a
centralized optimum in terms of flow sensitivities explicitly.

Case B—Centralized Optimization
Assume that the centralized cost function is the sum of all regional cost functions, that
is,

R
JIK] = 2 J(K] (62)

i=1
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and assume that all information needed for centralized optimization is available for all
regions. One has

dJ af Ry

@ w2 ©
aJ R R [axt
=5+22 [ } (64)
Ltl i=I k=1 6Xk
.j R INT A i
_y’ LS [ax] aJ 65)
=1 ax'

Note the presence of the cross-terms ax'/ou’, which can be obtained from

X =AU+ BF + L} (66)
‘ oF ..
o | A+Bw T .
P oF .
o T

This optimum can be used as the ideal achievable optimum for comparison of solutions
obtained in a distributed manner.

7. CONCLUSIONS

Drastic changes in electric power industry throughout the world are reflected primarily in
competitive energy supply and demand. Much nontechnical and semitechnical literature is
available on this [14]. While in the past technical functions of very-large-scale dynamical
systems have been organized in a hierarchical way, the underlying mode has been one of
cooperation, and not active competition. With the increased competition across the
interconnected system, including non-utility—owned generation, the performance objec-
tives are truly changing.

The emphasis is and it will be more so in the future on distributed decision making. The
impact of this change is far reaching regarding both technical concepts for system
operation and the economic incentives. One cannot forget that the power systems are a
happy compromise of good technical performance and economic efficiency. It is more so
today than ever before that these two attributes could become truly exclusive. One needs
a mathematical framework study both problems, as well as their interplay.

The economics of interest is different than in the past. Each participant in the
competitive energy market needs to educate itself regarding its meaningful value in the
process, and create a price feedback to the other players.
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The problem is to model in a simplest possible way, with minimum information
structure, the distributed processes and their dynamics.

Starting with an interconnected system as a whole, this is a very challenging problem,
since it is necessary to have models interpretable at each level in terms of actual physical
variables.

The next unique attribute of the mathematics needed is in terms of time scales of
interest. Traditionally dynamical models used in power systems have been used either for
analyzing very short-term responses (transients) or only stationary operation. It turns out
that the most interesting and relevant processes are the processes of moving equilibria
over time horizons in which system inputs change as driven by economic inputs.

These models are essential to even begin to study relations between economic processes
and technical processes, including controls needed over such time horizons to keep the
interconnected system together.

The longer time scales are particularly pronounced at the secondary and tertiary system
levels. The theoretical framework needed is the one which naturally lends itself to both
present horizontal system architectures, as well as to the architectures which are likely to
evolve under the competition.

In this light, a modeling and control framework which provides models at different
levels of hierarchy is useful for both coordinated control design with the performance
objectives different at different levels, yet consistent with the systemwide performance
objectives; it is also essential for formulating processes under competition. One such
modeling and control framework described above uniquely lends itself to the problem
formulations in the competitive power industry.

This is so because the secondary level model, which could be thought of as representing
each individual player is expressed in terms of local states and controls associated with
this level, and in terms of interaction variables with the other players.

A distributed decision-making takes place without any tertiary level coordination. The
problem of technical performance becomes the one of fully distributed controls at the
secondary level with individual objectives.

It is conceptually possible to set up different decision-making processes by means of the
developed secondary level models in order to study stability over the long term horizons
(typical of tertiary level in the traditional environment).

Even more importantly, one could study optimality of the interconnected system as a
function of competitive structure. Some initial results on this can be found in [9].

It is believed by the authors of this paper that the structural modeling described can be
used for efficient game-theory-like formulations of many problems of direct interest to the
power industry. The first author of this paper is actively working in this area.

Finally, the most intriguing aspect of the proposed model is its ability to capture both
technical and economic processes over the time horizons T,. One could think in terms of
value to each market player (subsystem) in a very straightforward way as [13]

TV [KT,] = ; J& u, Fy = J (X, o, F'= 0) (68)

A competitive economic market will reach an equilibrium when these technical values
of all players are equalized. The problem of participating in a competitive energy market
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and stay a winner has much to do with knowing what this value is. A price associated with
this quantity at the economic equilibrium, provided it is unique and it exists, is well known
in economics as the market price.

The power-systems community faces an enormous challenge and opportunity in
formulating and solving the operating and pricing strategies in this light. This sudden
change in thinking from centralized optimizationf the system to gaming is neither easy on
practicing engineers, nor on researchers.
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