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A finite element based sensitivity analysis procedure is developed for buckling and postbuckling of composite
plates. This procedure is based on the direct differentiation approach combined with the reference volume
concept. Linear elastic material model and nonlinear geometric relations are used. The sensitivity analysis
technique results in a set of linear algebraic equations which are easy to solve. The procedure developed provides
the sensitivity derivatives directly from the current load and responses by solving the set of linear equations.
Numerical results are presented and are compared with those obtained using finite difference technique. The
results show good agreement except at points near critical buckling load where discontinuities occur. The
procedure is very efficient computationally.
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1. INTRODUCTION

Design sensitivity analysis (DSA), in which derivatives of responses are calculated with
respect to design variables, is necessary in optimal design process, reliability analysis,
probabilistic analysis and in the determination of relative importance of design variables
in structural performance. The simplest technique for DSA is the finite difference method
which is often computationally prohibitive. Two alternate approaches are the direct
differentiation approach (DDA) and the adjoint variable approach. The DSA using either
of these two techniques can be performed either semi-analytically or analytically. In the
semi-analytical approach [1], which is most commonly used, some of the derivatives
involved are calculated once again using the finite difference technique. This can be
expensive and often inaccurate. Therefore, efforts are currently being made in developing
completely analytical approaches for DSA.

Considerable advances have been made recently in the development of DSA of
nonlinear structures. Comprehensive reviews of the literature were given by Haftka and
Adelman [2] and Kamat [3]. Several theories have been proposed based on continuum
formulation. Tsay et al. [4] presented a direct differentiation approach and an adjoint
variable approach for DSA of structures with geometric and material nonlinearities. The
shape and nonshape design problems were unified using the reference volume concept.
Vidal et al. [5] discussed the DSA of history dependent problems. Lee et al. [6] developed
DSA of structural systems with elastoplastic material behavior using the continuum

255



256 R. GUO AND A. CHATTOPADHYAY

formulation. The above studies were limited to isotropic materials. Since composites are
increasingly becoming popular in structural applications, recently research in DSA was
extended to composite structures by Chattopadhyay and Guo [7] and a nonlinear DSA
approach was presented for composites undergoing elastoplastic deformations. A rate
(time-independent) model was employed to account for the plastic material behavior. A
higher order approximation of the integration of the rate constitutive equations was
proposed in the plastic range. The direct differentiation approach was combined with the
reference volume concept. A design partial differentiation approach of the rate constitutive
equations was developed and used in the DDA procedure.

The continuum approach is difficult to implement in practical engineering applications.
Therefore, a discrete approach is often more practical where the structure is discretized
using finite elements and the resulting discretized set of governing equations are used in
the DSA. Lee et al. [6] developed a discrete approach by adopting the DDA approach into
a finite element procedure. In the numerical implementation, the semi-analytical method
was employed and an incremental procedure which often requires iterations was used to
solve for the system sensitivities.

In this paper, the continuum DDA approach proposed by Chattopadhyay and Guo [7] is
adopted within a finite-element procedure to develop design sensitivities of composite
plates undergoing buckling and postbuckling. The reference volume concept is used to
unify shape and nonshape design variables. A linear elastic material model and nonlinear
strain-displacement relations are used in the present work. This finite element-based
procedure of DSA yields a set of linear algebraic equations of sensitivity derivatives of
response variables with respect to design variables. The sensitivity derivatives are
obtained directly from the current load and responses by solving the set of linear
equations.

2. DESIGN SENSITIVITY ANALYSIS OF POSTBUCKLING

The postbuckling analysis of laminated plates, using the classical theory, is outlined
below. This is followed by the development of the DSA procedure for postbuckling
responses.

2.1. Virtual Work Equations

Figure 1 shows the force analysis of a plate. In this figure N,, N, and N, represent in-plane
stress resultants, M,, M, and M, represent stress moments and Q, and Q, denote shear
resultants. The quantities N, and N, represent boundary in-plane stress resultants, M, and
M, represent boundary stress moments and Q represent boundary shear resultant. The
virtual work equation for the postbuckling of the plate is convenient for the development
of a finite element procedure and is written as follows [10].

adu adu —
fQ(ENx + —EEny)dxdy = | r N, duds

adv adv —
fQ(ENXy +—5Ny)dxdy = erySVds (6))
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Figure 1 Force analysis of a plate.
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where du, dv, and dw represent the variations of the mid-plane displacements u, v and w,
respectively, () represents the domain of the plate and I" represents the boundary of the
plate.

2.2. Finite-Element Model

In an arbitrarily element e with domain )¢ and boundary I'®, the mid-plane displacements
u, v and w are approximated as follows.

m

u= 2 u: lpk (§,T])

k=1

m

v=2 vl &) @

k=1

w= 2 Ai ¢k (g,'f\)

k=1

where uj and v denote the nodal values of u and v, respectively and A denote w and its
derivatives with respect to x and y. The quantities £ and m denote the natural coordinates
(—1 =§& n = 1), Y& m) denote the Lagrange interpolation functions and ¢,(€, m) denote
the Hermite interpolation functions.

Substituting Eqns. (2) for », v and w into Eqns. (1) and using du = {;, dv = ¥; and
dw = ¢, yields the finite element representation of the governing equation for element e as
follows.
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erR,. dxdy = freﬁxqj,. ds (i=1,..,m)

Q«S,-dxdy=fpe1_\7y¢,~ds (i=1,..,m) 3)

T
Jomasdy =~ oG+ 1M ~ 6Q1ds (=1,

The expressions for the quantities R;, S; and T; are listed in the Appendix A.

Assembly and imposition of the boundary conditions yields a set of asymmetric and
nonlinear equations of the global nodal displacement vector. The set of equations can be
written in matrix form as follows.

KU=F “)

where U represents the global nodal displacement vector and K represents the global
stiffness matrix which is a function of U. The quantity F represents the external force
vector. Several approaches can be used to solve the nonlinear equations [8], [10], [11]. In
this paper, a direct iterative method is used.

Let q be the design variable vector. Its components can include the plate geometry or
the material properties. Since q may include both nondomain (e.g., plate thickness) and
domain design variables (e.g., plate width and length), the reference volume concept is
used. Using this concept, a reference volume with domain "() and boundary T is defined
which remains fixed during the design procedure. Let "q represent the design variable
vector corresponding to the reference domain. The actual domain coordinates x and y are
related to the reference domain coordinates "x and "y through the following transformation.

x=x(q,'q, 'x,"y)
y=y(q.'q,'x,"y) 5)

Equations (5) transform the domain () with boundary I' into the reference domain ") with
boundary T

The area Jacobian "J and the line Jacobian "Jy- are calculated, respectively, as follows.

dx dy
d'x 'x
ry __r r r r —
J - J(q’ q’ X, }’) det Ax ay (6)
ay 'y
and
dy dy
—cosa+—s1na) +(—cosa+—,sma) @)
a’y a'y

where o is the directional angle of the boundary tangent.
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Using Egs. (6) and (7), the element e with domain {)° and boundary I'® is transformed
to element ¢ with domain "Q)° and boundary "I in the reference volume. Equations (3) are
now expressed in the reference domain as follows.

f R Jd xd"y = f N Jpdl (i=1,..,m)
f weS; Jdxd"y = f N Ipdl (=1, ., m) 8)
T’Jd’d'——f ¢’M+@11T4— 01 "Jdl =1
Tt xa'y = l'"[( x ay y) d)JQ] l"d (.] = Ly e ﬂ)

Taking the derivatives of Egs. (8), with respect to the design variable vector q, the
governing equations of the design sensitivity are written as follows.

) (ot s R D drar —f ¢( J+Ndrj)dl G=1,.m)
e dq dq xdy e T q j=1..m
ds,, . dl dn, d'Jy .
frﬂr(_ J + S, —)dxd y= f Fflbl JF + N dq )dl (_] = ]-s eeey m) (9)
aT, ob— | ab— —
e (—L — | ~I=EM, + M) — o,
J oG J UG+ ) — o,
d ob, —  obdM, d od; — a¢.d1T4 dQ
— CHM, + L —= 2 6 EVrd (=1
=) o dq dq' ay) o da Y r} (j n)

It must be noted that in the above equations, the quantities {;; and ¢; are independent of
the design variables since they are only functions of the natural coordinates. Further,
according to the concept of equilibrium of secondary variables of element boundaries [8],
the assembly of the elements either eliminates the secondary variables LNX, N,M,M,
and Q) and their sensitivities (dN,/dq, dN,/dq, dM,/dq, dM /dq and dQ/dq) or assigns
them prescribed values. The expression for the quantities dR/dq, dS;/dq and dT;/dq are
listed in Appendix B. An important observation is that the quantities dR;/dq, dS/dq and
dT,/dq are linear functions of the response sensitivities du?/dq, dv%/dq and dA%/dq.
Assembly techniques, similar to finite element procedure, are employed to obtain the
global stiffness sensitivity matrix and the global force sensitivity vector. Next, the
boundary conditions are imposed. Finally, the finite element sensitivity equations are
written symbolically as follows.

Il
e

K (10)

2&

where dU/dq represents the global nodal displacement sensitivity matrix and K represents
the generalized global stiffness sensitivity matrix which consists of the known functions
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of the global nodal displacement vector U. The quantity F represents the generalized
global external force sensitivity vector. Note that once the displacement responses are
obtained from the finite element analysis, the quantities K and F can be determined.
Equations (10) represent a set of linear algebraic equations in dU/dq, which are easy to
solve.

Once the nodal displacement sensitivities are obtained, the stress sensitivities are
calculated by direct differentiation of the stress-strain relations and the strain-displacement
relations.

3. RESULTS AND DISCUSSIONS

In this section, numerical results of the developed finite element based DSA procedure are
presented for both isotropic and composite plates undergoing buckling and postbuckling.
A plate of length a, width b and constant thickness h is used (Fig. 2). The plate is assumed
to be simply supported on its edges and subjected to in-plane compressive force per unit
length, N,, in the x direction (Fig. 2). Since the structure and the applied loads are
symmetric, only the part of the plate in the quadrant I is analyzed. A four-node
noncomforming rectangular element is used in the finite element implementation. A
4 X 4 mesh and a 8 X 8 mesh are used in quadrant I in the numerical computations.
To demonstrate the procedure developed, results are presented for isotropic, orthotropic
and a cross-ply laminated plates. The mid-plane deflections (w) of the plates are computed
at the centers of the plates and the surface stresses o (in the principal material direction)
are computed at the reduced Gauss points which are closest to the plate centers. The
sensitivity derivatives of both w and o; with respect to the domain design variable a (plate
length) and the nondomain design variable h (plate thickness) are presented. A value of
a = b = 10in and h = lin is used for the plates. The materials properties are as follows.

Isotropic: E = 1.0 X 107 psi, G = 0.4 X 107 psi, v = 0.25
GI/EP: EL/EI‘ = 3, GLT/EI‘ = 0.5, vLT = 0.25
Gr/Ep: EL/EF = 40, GLT/F’I‘ = 0.5, vLT = 0.25

?y

f

Nx

a

Figure 2 Simply supported rectangular plate subjected to in-plane force, N,, with constant thickness h.
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where E, G and v represent, respectively, the Young’s modulus, the shear modulus and the
Poisson’s ratio of the materials. The subscripts L and T denote longitudinal and transverse
direction, respectively.

To validate the finite-element-based postbuckling analysis procedure, the responses are
compared with exact solutions which were obtained by double Fourier series and
generalized double Fourier series [12]. These series solutions are said to be exact in the
sense that an infinite set of nonlinear set of nonlinear algebraic equations can be truncated
to obtain any desired degree of accuracy. The variations of the load N,, normalized with
respect to the critical buckling load N, are plotted against normalized mid-plane
displacement (w/h) in Fig. 3 for the isotropic plate and in Fig. 4 for the GI/Ep
singlelayered orthotropic plate. Figure 5 presents the load-deflection curve of a (0/90),
Gr/Ep laminated plate with the load, N,, normalized by the factor b*/E;h>. These results
show exact match up to primary buckling. In the postbuckling region, the results of the
8 X 8 mesh show better agreement with the series solutions than those of the 4 X 4 mesh.

Figures 6-19 present comparisons of the central deflection sensitivities and stress
sensitivities obtained from the finite element sensitivity (FES) analysis procedure with
those obtained using the finite difference sensitivity (FDS) analysis procedure using an
incremental step of 0.0001. Both domain (length, a) and nondomain (thickness, /) design
variables are used.

Figures 6 presents the comparison of the sensitivities of the central deflection with
respect to the plate length (a) for the isotropic plate during the complete loading process.
Theoretically, the sensitivities of the central deflection with respect to any of the design
variables must be zero in the prebuckling stage since the central deflection itself is zero
in this region. This is verified by the developed FES procedure in both 4 X 4 and 8 X 8
mesh results. However, as shown in Fig. 6, the results of the FDS procedure show serious
error by producing nonzero values in the 4 X 4 mesh case. Obviously, the 4 X 4 mesh is
inadequate for the FDS analysis. Therefore, in the subsequent discussions, only the 8§ X 8
mesh results are presented. For clarity, the postbuckling region alone is presented in Fig.

—— series solution
-+ 8x8 mesh

0.5
=& 4x4 mesh
0 1 1 1 1 1 ]
0 0.5 1 1.5 2 2.5 3

w/h
Figure 3 Comparison of postbuckling responses of isotropic plate; N,, = 3.656 X 10° Ib/in.
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Figure 4 Comparison of postbuckling responses of GI/Ep single layered orthotropic plate; N, = 1.918 X 10°
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Figure 5 Comparison of central deflection (w/h); (0/90),Gr/Ep laminated plate.

Figure 6 Comparison of sensitivities of central deflection (dw/da); isotropic plate; complete loading; N..,

3.656 X 10° Ib/in.
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Figure 7 Comparison of postcritical sensitivities of central deflection (dw/da); isotropic plate; N, = 3.656 X
10° 1b/in.

7. In this range the results of the FES are better than those of the FDS. The fluctuations
observed in the FDS results point to the instability of the technique.

Figure 8 presents the comparison of the sensitivities of the central deflection with
respect to the plate thickness (k) for the isotropic plate during the complete loading
process. The results agree very well. However, it can be seen that the sensitivity at the
buckling load is discontinuous. This can be explained as follows. At critical buckling, the
value of the deflection changes from zero to a nonzero value which results in a big jump
in the sensitivity.

Figures 9 and 10 present the comparisons of the sensitivities of stress o, (in the principal
material direction) with respect to the length (a) and the plate thickness (h), respectively,
for the isotropic plate. The results show jump in the sensitivities near the buckling load

dw/dh
&

—- 8x8 mesh FES
—{> 8x8 mesh FDS

-14 1 1 1 1 1 | | ]
0 0.2 0.4 0.6 _0.8 1 1.2 1.4 1.6

Figure 8 Comparison of sensitivities of central deflection (dw/dh); isotropic plate; complete loading; N, =
3.656 X 10° Ib/in.
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Figure 9 Comparison of stress sensitivities, (do,/da); isotropic plate; complete loading; N, = 3.656 X 10°
Ib/in.

which is a result of the discontinuity of the deflection sensitivity at this point. The results
of the FES agree very well with those of the FDS.

Figure 11 presents the comparison of the sensitivities of the central deflection with
respect to the plate length (a) for the GI/Ep single layered orthotropic plate during the
complete loading process. Once again, serious error near the buckling load is observed
with the FDS results even with 8 X 8 mesh. Figure 12 presents the postbuckling region
only and shows that the results of the FES agree very well with those of the FDS. The
comparison of the sensitivities of the central deflection with respect to the thickness (%) for
the orthotropic plate during the complete loading process are presented in Figure 13. Once
again, the discontinuity of the sensitivity at the buckling point is observed using both
techniques. However, for the most part, good agreement is seen between the results of the
FES and the FDS.

Figures 14 and 15 present the comparisons of the sensitivities of stress o, with respect
to the plate length (a) and the plate thickness (h), respectively, for the orthotropic plate
during the complete loading. Once again the sensitivities near the buckling points are

°r
~~ 8x8 mesh FES
< 40  —& 8x8 mesh FDS
>
A 20
(o]
=
5 0
)
° .20
-0 1 ] 1 ] 1 1 1 ]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
NX/Ncl'

Figure 10 Comparison of stress sensitivities (do,/dh); isotropic plate; complete loading; N, = 3.656 X 10°
Ib/in.
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NN,

Figure 11 Comparison of sensitivities of central deflection (dw/da); GVEp single layered orthotropic plate;
complete loading; N,, = 1.918 X 10° Ib/in.

0.45

04 |
—O- 8x8 mesh FES
0.35 |- —4~ 8x8 mesh FDS

03

dw/da
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1 1.1 1.2 1.3 1.4 1.5
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Figure 12 Comparison of postcritical sensitivities of central deflection (dw/da); GUEp single-layered
orthotropic plate; N,, = 1.918 X 10° 1b/in.
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Figure 13 Comparison of sensitivities of central deflection (dw/dh); GVEp single layered orthotropic plate;
complete loading; N, = 1.918 X 10° Ib/in.
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—{3+ 8x8 mesh FES
4r =& 8x8 mesh FDS

do, /da (x10°1b/in?)

0 0.5 1 1.5
NX/NCI’
Figure 14 Comparison of stress sensitivities (do,/da); GVEp single layered orthotropic plate; complete
loading; N, = 1.918 X 10° b/in.

discontinuous in both cases. However, the agreements are excellent between the FES and
the FDS approach over the remaining region.

Figures 16 and 17 present the comparisons of the central deflection sensitivities with
respect to the plate length (a) and the plate thickness (%), respectively, for the (0/90),
Gr/Ep laminated plate during the complete loading process. Figure 16 shows that the
results of the FES procedure agree very well with those obtained using the FDS for
moderate values of ]Tlx. At higher values of Nx, the results of the FDS deviate from those
of the FES. This can be explained as follows. For higher values of the load, the accuracy
of the approximations deteriorates and this effect becomes more pronounced when finite
difference technique is used. Figure 17 shows excellent agreement of the displacement
sensitivities, with respect to the nondomain design variable (%), between the FES and the
FDS procedures.

120 ~
100 -~ 8x8 mesh FES
"2 —— 8x8 mesh FDS
2
)
<)
=
=l
)
el
-20 | 1 1
0 0.5 1 1.5
NX/NCY

Figure 15 Comparison of stress sensitivities (do,/dh); GVEp single layered orthotropic plate; complete
loading; N,, = 1.918 X 10° 1b/in.
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Figure 16 Comparison of sensitivities of central deflection (dw/da); (0/90), Gr/Ep laminated plate; complete
loading.

Figures 18 and 19 present the comparisons of the sensitivities of stress o; with respect
to the plate length (a) and the plate thickness (h), respectively, for the laminated plate
during the complete loading process. Excellent agreement is obtained between the results
of the FES and those of the FDS.

From the above discussion, the following conclusions can be made. At the buckling
point, the sensitivities derivatives are discontinuous for both isotropic and orthotropic
plates. For the cross-ply laminated plate, in which there is no critical buckling point, the
sensitivities are continuous over the complete loading process.

A comparison of the CPU time is made between the FES and the FDS techniques.
Figure 20 presents the comparison of the CPU time for a complete sensitivity analysis
which includes calculations of all displacement and stress sensitivities with respect to all
three design variables a, b and & (Fig. 2). The load levels corresponding to the isotropic,

dw/dh
A

-+ 8x8 mesh FES

-6
=& 8x8 mesh FDS
8 |
-10 ! 1 1 ! 1 1 i
0 S 10 15 20 25 30 35

Nbe/E Thl
Figure 17 Comparison of sensitivities of central deflection (dw/dh); (0/90), Gr/Ep laminated plate; complete
loading.
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-3 8x8 mesh FES
—x 8x8 mesh FDS
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Figure 18 Comparison of stress sensitivities, (do,/da), (0/90), Gr/Ep laminated plate; complete loading.

do, /dh (x10°1b/in?)

—{3 8x8 mesh FES
=0 8x8 mesh FDS

0 5 10 15 20 25 30 35
N b’E 0’

Figure 19 Comparison of stress sensitivities (do,/dh) (0/90), Gr/Ep laminated plate; complete loading.

CPU time (second)

isotropic orthotropic laminated
Figure 20 Comparison of CPU time of the FES and FDS.
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the orthotropic and the cross-ply laminated plates are 1.3677N,,, 1.5644N,, and N =
32Erh*/b?, respectively. It can be seen that the FES approach saves approximately 40
percent CPU time in all cases.

4. CONCLUSION

A finite-element sensitivity (FES) analysis procedure was developed for the design
sensitivity analysis (DSA) of composite plates undergoing buckling and postbuckling. The
direct differentiation approach combined with the reference volume concept was applied
to address both shape and nonshape design variables. Linear elastic material model and
nonlinear geometric relations were adopted. The sensitivity equations obtained from this
procedure represent a set of linear algebraic equations in terms of derivatives of the
displacement responses with respect to the design variable vector. The sensitivity
derivatives were obtained directly from the current load and responses by solving the set
of linear equations and no iterations were required. Numerical results were presented for
isotropic, orthotropic and (0/90), laminated composite plates. Deflection and stress
sensitivities were calculated using both domain and nondomain design variables. Results
were compared against those obtained using finite difference approach. The following
important observations were made from this study.

1) The developed finite-element sensitivity analysis procedure agrees very well with
the finite-difference technique except at critical buckling point where discontinuity
occurs.

2) The finite-difference sensitivity analysis procedure shows serious accuracy
problem in regions close to the buckling load.

3) The approach saves significant CPU time.
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NOMENCLATURE

a length of plate

b width of plate

E,,E; longitudinal and transverse Young’s moduli, respectively
F global external force vector

F generalized global external force sensitivity vector

G global stability matrix

G° element stability matrix

Gyt shear modulus

h thickness of plate
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J area Jacobian from reference domain to design domain
"Jr line Jacobian from reference domain to design domain
K global stiffness matrix
K element stiffness matrix
K generalized global stiffness sensitivity matrix
M, M, M, stress moments of plate
M, M, boundary stress moments of plate
N, N,, N,, in-plane st.ress resultants of plate
N, N, boundary in-plane stress resultants of plate
N, critical buckling load of plate
0, O, shear resultants of plate
(0] boundary shear resultant of plate
q design variable vector of design domain
q design variable vector of reference domain
u displacement in the x direction
us element nodal values of displacement u (i = 1,..., m)
v displacement in the y direction
Ve element nodal values of displacement v (i = 1,..., m)
w mid-plane deflection of plate
x, y design domain coordinates
"x, Ty reference domain coordinate vector
Q domain of plate
" reference domain of plate
r boundary of plate
T reference boundary of plate
Vi Poisson’s ratio
A global nodal displacement vector
Af element nodal values of w and its derivatives with respect to x and y
(i=1,.,n)
v, Lagrange interpolation functions (i = 1,..., m)
¢j Hermite interpolation functions (j = 1,..., n)
o; stress in principal material direction (i = 1, 2, 6)
&En natural coordinates
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where Ay Cij and Bij (i, j = 1,2,6) are the extensional stiffness, bending stiffness

and bending —extensional coupling stiffness of the plate, respectively.
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follows. The transformation between element coordinates (x,y) and natural coordinates
(&,m) is written as follows (the superscript e is omitted for brevity).
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From Eqn. (15), the following expressions can be obtained.
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