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In this paper we demonstrate that a passive vibration strategy can bring a one-degree-of-freedom ball to a
specified periodic trajectory from all initial conditions. We draw motivation from the problem of parts feeding
in sensorless assembly. We provide simulation results suggesting the relevance of our analysis to the parts
feeding problem.
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1. INTRODUCTION

As industry moves toward faster product cycles, smaller production runs, and shorter
product development time, the idea of flexible manufacturing as a means of improving the
quality, variety, and overhead cost of producing goods has caught on. Programmable
mechanisms—robots, NC controlled milling machines, and so on—abound. However,
much of this machinery suffers from a common drawback: parts need to be fed, one at a
time and, absent sensors, each part must be fed in a precise orientation at a precise
location. This is the Parts Feeding Problem, which has been the subject of considerable
academic interest [5, 10] and industrial concern [2]. “Ultimately, the smartest assembly
robot and the best assembly machine in the world are useless without the mechanism that
delivers the parts [12].”

1.1. Parts Feeding: The Orientation Problem

The Parts Feeding Problem can be broken into three subproblems: singulation, orienta-
tion, and presentation. Singulation is the process of separating the mass of parts into
individual parts, and can be very difficult if the parts nest within each other easily (like
thimbles) or become entangled (like paper clips). Orientation is the process of reorienting
the randomly oriented parts to a small predetermined subset of the possible orientations
(typically only one). Presentation is the action of moving the singulated and oriented part
to a known location, where a machine tool or robot can easily perform an operation on it.

*This work was supported, in part, by the NSF under grant IRI-9123266, and in part by Deneb Robotics, Inc.
The third author gratefully acknowledges the hospitality of the Japan MITI Mechanical Engineering
Laboratory where he began the initial work on this project.
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The problem of singulation is unique to each family of similar parts. No automated
technique of performing singulation for an arbitrary part exists, so singulation strategies
are often custom designed through trial and error for each new type of part. Failures in
singulation strategies are often not discovered until the factory is ready to start production,
since there is also no automated way of determining whether two parts will become
tangled again down line from the singulation process [27]. Current flexible parts feeding
strategies assume that the parts are pre-singulated and concentrate on the orientation step.

The orientation problem lies at the heart of the parts feeding problem. Little is known
about how to orient an arbitrary part beyond decades of craftsmanship and experience.
Even in textbooks, the orientation problem is presented with a cookbook approach, in the
manner of “this approach worked with this type of part [5, 4, 10, 18].”

Once a part is singulated and oriented, it still must be presented to the machinery. This

is the easiest part of the parts feeding problem, usually accomplished with a conveyor or
buffer.

1.2. Current Technology

Often, the parts that need to be fed are manufactured in a known orientation. If this
orientation could be maintained throughout the assembly process, there would be little
need for a parts feeder. However, for many inexpensive parts it is not economical to
maintain orientation. Such parts are typically shipped or stored in bins, and are oriented
only when necessary for feeding.

Current technology in parts feeders relies heavily on rejection techniques. These
techniques randomize the orientation of the parts, often by shaking or dropping them, and
then reject all those parts which are not in the correct orientation. The rejected parts are
then recirculated, and the process repeats indefinitely. Rejection-based feeders include
vibratory bowls, centrifugal disks, and various conveyor-based approaches. Custom
tooling for these feeders often makes them expensive and inflexible. Research into the
probability distribution of stable random part orientations [33] suggests that for a typical
part, a minority' of the parts will randomly assume the correct orientation. For this reason,
rejection based methods are very inefficient [6].

Vision-based systems replace the obstacles in the conveyor approach, requiring a robot
manipulator to separate the good and bad orientations. A camera records the image of
parts, and is capable of determining the position, two-dimensional orientation and, to a
limited degree, shape of each part in its field of vision. A robot then removes the properly
oriented parts, and the rest are recirculated. The robot may also partially reorient parts at
the expense of cycle time. The major problems of vision systems include lighting
difficulties [9], processing speed, and robot cycle time. The result is that vision systems
have an advantage in flexibility over hard-tooled feeders, at the expense of a much slower
feed rate.

'We note that flat or round parts have a high probability of randomly assuming a useful orientation, and are
easily fed with existing technology. We consider here more complex parts, such as irregular polyhedra.
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1.3. Contributions and Background

We present preliminary simulation results from a three-degrees-of-freedom simplification
of the parts-feeding problem, and analysis of a system which is a one-degree-of-freedom
further simplification of this problem. We hope this suggestive analysis will lead to more
general results which may ultimately be useful for industrial parts-feeding applications.
Section 2 states the general problem and develops the simplified setting. Section 3 presents
an analysis of that setting. Section 4 derives our formal results.

Mason and colleagues have pioneered the analysis and potential assembly applications
of sensorless manipulation in the robotics field [11]. Canny and Goldberg have enlarged
and have begun to formalize this program in the effort to minimize sensing and automation
complexity without unduly compromising its usefulness [8]. An interesting and rather
different approach to the parts-feeding problem considered here has recently been taken by
Bohringer and colleagues [3], who consider the possibility of reorienting planar parts
through nodal shapes introduced by plate vibrations in the supporting table. Antecedent to
this work, Singer and Seering [26] investigated the problem of parts rocking (rather than
bouncing) on a vertically vibrating table. Sony’s APOS system [25] nests multiple parts
on a vibrating tray with indentations shaped to conform to the desired pose. Grossman and
Blasgen’s tilted vibrating box randomized motion, capturing parts in a limited number of
predictable poses, which could be distinguished by simple probe measurements [13].

We seek in this paper to enlist properties of dynamical manipulation in the program of
reduced sensory and actuator complexity just described. We adapt suggestive work by
Atkeson and Schaal on the “Shannon juggler” to the sensorless manipulation paradigm
[23]. The robotics literature reports a growing number of experimental successes with
dynamical manipulation, mostly involving hopping, walking, or juggling mechanisms
[1,7,17,20,21,26].

Analysis of these machines has also been reported, albeit with more limited success [15,
30, 35]. There is a large and growing analytical literature surrounding the one-degree-of-
freedom bouncing ball that we study here, most of it motivated by an interest in chaos [14,
28]. We, of course, are interested in stable motion.

In this paper we analytically demonstrate the feasibility of deterministically manipulat-
ing the stable dynamic behavior of a one-degree-of-freedom part without the use of
feedback. This is equivalent to juggling without sensing.

2. PROBLEM STATEMENT

Since rejection techniques are inefficient, and remote sensing and orientation techniques
are often slow or expensive, we examine a potentially alternative strategy. Namely, we
seek to design a table motion which will cause all the “bodies” on the table to
asymptotically approach a known state without using feedback. We propose a flat, level,
three-degree-of-freedom vibratory table as a viable means of orienting pre-singulated
parts.

The vibrational strategy should work by bouncing parts gently on the table vertically,
while inducing momentary horizontal forces at the contact points which cause a torque to
be applied to the center of mass. One would hope that, if the vibrations are adequately
designed, after a short period of time the parts will all rotate to a stationary predetermined
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orientation. The shaking may then be stopped and the parts would land in this known
orientation. Different part geometries and material properties ought to require different
vibration strategies. But changing the type of part should only require changing the
vibration strategy in software: the lack of orienting devices mounted on the table should
allow a wide range of parts to be oriented without changing the hardware.?

The problem now amounts to finding favorable vibration parameters—wave shape,
frequency, magnitude—or, indeed, determining whether such parameters exist at all.
Despite the intuitively compelling nature of this idea, it turns out that the design of such
vibratory strategies seems possible but not obvious, as our preliminary simulation data
will suggest.

In this preliminary study, we consider only impacts between the table and a single part.
Neither the three-degree-of-freedom simulation model nor the one-degree-of-freedom
analytical model presented in this paper allow for the possibility of two flying parts
knocking against each other. While this is evidently an unrealistic simplification, we prefer
to explore the single-part-orientation problem before embarking on the much more
complicated multiple-part problem. Moreover, to begin our investigation, we have elected
to work in a deterministic framework with the emphasis on a global result. We hope (but,
of course, have as yet no reason to claim) that vibration strategies inducing a large domain
of attraction in the deterministic single-part setting will translate into a very high
probability of orientation in the multiple-part, real-world setting.

2.1. General Problem and Successive Simplifications

Figure 1 depicts a three-degree-of-freedom simplification of the general problem. In this
simplification, the part is free to move in the x, y, and 0 directions, while the table follows
a preprogrammed motion in the x and y directions. Several assumptions make the
simulation more tractable. The coefficients of restitution and friction are assumed to be
constant when, in reality, these values are often unpredictable during impulsive interac-
tions. The table is assumed to have very large mass compared with the part, so that the
impacts of the part on the table do not affect the table motion. It is assumed that the part
does not lose energy while in flight. The restriction to one rotational degree of freedom
eliminates complications resulting from several axes of rotation. Furthermore, it is
assumed that the stick, slip, and reverse-slip dynamics caused by the rotation of the part
as it contacts the table are governed by the rules developed by Routh [22] and refined by
Wang [31]. In the face of this long list of assumptions, we view the simulation results as
merely suggestive. We are presently developing an experimental apparatus to test the
validity of this model.

Figure 2 depicts a typical simulation of the part-table interaction shown in Figure 1. In
this simulation, the parts are constrained to move in vertical planes indicated by the
horizontal lines on the table. The simulation uses a standard three-degree-of-freedom
Newtonian flight model when the part is not in contact with the table, and employs an
impact model developed by Wang and Mason [32] as soon as a contact is made. As

2The three degrees-of-freedom of the table are each translational: rotational motion of the table is not allowed,
because the parts near the edges of the table would experience different forces than those in the center.
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Figure 1 A three-degree-of-freedom model of the part-orientation problem.

mentioned above, each part is integrated in isolation from all the others: part—part
interactions are not modeled. Each part was modeled as a 1- X 2- X 4-cm block of
aluminum. The foremost row of parts on the table have initial orientations 8, at ¢ = 0 from
6 = 0° to O, = 9°, viewed from left to right. Each successive row on the table increases
the initial orientation by 10°, up to the lone part in the back row with 8, = 90°. All parts
are initially in contact with the table in their lowest corners. Letting the parts fall in gravity
without vibration, those with orientations 0-26° are attracted to the 0° orientation, while
those with orientations 27-90° are attracted to the 90° orientation.

t=30s

Figure 2 The three-degree-of-freedom simulation. Parts are constrained to move in vertical planes indicated
by horizontal lines on the table. Part—part interactions are not modeled. In the top scene, 91 initial conditions of
a part are shown in parallel laminar plates. Their evolution after 0.8 and 3.0 seconds is depicted in the two lower
scenes. For this particular run, the table vibration was 60 Hz 0.2 mm in the y direction in phase with 30 Hz 1.0
mm in the x direction.
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Figure 2 now depicts the future evolution of these 91 different initial conditions at times
t=0s,t=0.8s, and ¢t = 3.0 s in the face of a table vibration. For this particular run, the
table vibration was a 60 Hz 0.2 mm sinusoidal vibration in the y direction with an in-phase
30 Hz 1.0 mm sinusoidal vibration in the x direction. Supposing our goal is to end up with
a part lying with its long face on the table, this vibration seems to work. The simulation
data suggest that the vibration successfully destabilizes the 0° orientation without
destabilizing the 90° orientation. After 0.8 s of simulated vibration, some parts remain
upright while their neighbors have fallen. After 3.0 s of simulated time, all initial
conditions are attracted to the desired 90° orientation. A closer look at the data from which
the pictures in Figure 2 are taken suggests that there are rather complicated transients. The
vibrations appear to cause an intermittent resonance in the parts with orientations near 0°
whose magnitude increases until the orientation is destabilized.

Table I illustrates the results of several such simulations. Noting that the relative impact
velocity increases proportionately both with vibration frequency and amplitude, one might
expect these parameters to give rise to similar behavior. However, these simulations
instead demonstrated that such an easy generalization cannot be confirmed. The
simulation labeled “chaotic” was capable of reorienting parts back and forth between the
0° and 90° stable states.

Analysis of why some vibrations are more effective than others is difficult for the
following reasons. The impact model [32] has 5 dynamically distinct contact modes whose
selection depends not only on the system parameters but also on the state of the system
at impact. Due to the quadratic form of Newtonian flight and the sinusoidal form of the
part rotation and table vibration, the flight time between impacts cannot be expressed in
closed form. The varying time between impacts makes a standard sampled-data approach
impossible. Thus while analysis is clearly possible, it will not be straightforward. Yet,
these simulations demonstrate that, even for such a simply shaped part, finding an
effective vibration strategy is by no means straightforward. The success of this simulation
encourages further study of the problem, and the apparent sensitivity of the vibration

strategy demands it. We are now motivated to investigate a still simpler setting of the
problem.

2.1.2. The one-degree-of-freedom simplification. The one-degree-of-freedom problem
shown in Figure 4 removes all orientation: the part and table are both constrained to move

Table I Sensitivity to Horizontal and Vertical Sinusoidal Vibrations

x Frequency, Magnitude All Parts Lying Down
15 Hz 2 mm 40s

15 Hz 4 mm “chaotic”

30 Hz 1 mm 29s

30 Hz 2 mm 2.1s

60 Hz 0.1 mm 50s

60 Hz 1 mm 31s

Note: Times indicate approximate onset of steady state where all initial orientations have evolved to the 90°
orientation. “Chaotic” denotes a vibration in which both statically stable orientations were destabilized and no
simple steady-state behavior emerged. The y vibrations used were 60 Hz 0.2 mm.
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in the y direction, and the goal is to choose a table motion which brings the part into a
specified periodic vertical trajectory. The hope here is that the nature of vertical table
trajectories that bring a point mass to a specified repeated height at apex will have some
relationship to vertical and horizontal trajectories that bring a rigid mass to a specified
orientation. Our simulations suggest that, by careful parameter selections, we can create
globally attracting trajectories even for three-degree-of-freedom systems. We hope
analytically to prove global results in these systems as well.

Here we seek to demonstrate global stability of a desired bouncing state for a particular
one-degree-of-freedom juggling scheme. It should be noted that, although this problem is
far simpler than that of the previous three-degree-of-freedom setting, it has spawned a
large and growing analytical literature [14,16,19,28,29,34].

Sinusoidal motions [28] have an extensive background in this literature, but study of
their dynamics has been mostly limited to system parameters leading to chaotic motion.
Local stability of the Shannon juggler [24] has been established: we seek a global result
motivated by the intended application. To our knowledge, ours represents the first effort
in the literature to obtain a globally asymptotically stable period one orbit.

2.2. The One-Degree-of-Freedom Problem

Figure 3 shows the results of a one-degree-of-freedom simulation of the evolution of the
boundary of the attracting energy region, R, described later, in section 4. This simulation
provided the basic understanding of the system which led to the analysis in the sequel.

We will first describe the setup in words alongside the formal notation that appears in
the analysis below. We will next introduce the physical models that underlie this analysis.

bdot bdot.

\\W E i
" "

o After 1 T

After 2 T. After 3 T'.

Figure 3 One-degree-of-freedom simulation results.
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Y

Robot-Table
r=(p,p)

Figure 4 Setup for the one-degree-of-freedom ball-part orientation problem.

Appendix section B.7 lists the notation we employ to represent the one-degree-of-freedom
version of the problem depicted in Figure 4.

For the remainder of the discussion, the terms “robot” and “table” (henceforth
“robot-table””) will be treated as synonymous, as are the terms “ball” and ‘“part”
(henceforth “ball-part™).

2.2.1. Notational preview. / denotes the region B > 0 on the (8, B) plane, the physically
realistic part of the state space in which the ball-part is on or above the robot-table. The
part of the state space not in - is not physically realizable and will be ignored in the
remainder of this paper. & is shown in Figure 5.

We will introduce an impact model and use the # half-plane to plot the iterates of
successive impact states. Looking ahead, 2, denotes the region in -# (defined by 0 =
7.(b) < T) within which the ball-part will strike the robot-table within one period. 4, is
defined as the A4, region (T =< 1), in which the ball-part will not strike the robot-table
within one period. The boundary line, d3,, between 2, and 5, (defined by 7. = 7T) is by

\ \

\\\Q::ik\\\\\\\ &

RN

>®r

\\

Figure 5 4 regions.
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Figure 6 A, and A, regions.

definition contained within 4,. The part of the B = 0 axis below the 92, line is explicitly
contained within 4,, while the part of the axis above the 33, line is contained in 3,. These
regions are depicted in Figure 6.

Figure 7 indicates the level curves of the ball-part’s total energy function, E(b), defined
in section 3.4. During free flight, the ball-part state moves along these lines in the direction
shown by the arrows.

In B, E is changed at impact, except on a parabolic curve which we denote as

A= {ZE/;WAE(E)=O}

as depicted in Figure 8. In the same figure, a new region £ is shown, which will figure
prominently in the sequel. In particular, these curves are important for the global attraction
analysis presented later.

T

&,
Y

Figure 7 Constant energy lines/free flight trajectories.
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Ema:t + AEmaz

8= {b e n|aBE) = 0}
Figure 8 Important energy related lines.

2.2.2. Physical models. The state of an arbitrary one-degree-of-freedom mass is
denoted x = (x, xX) € R% Newton’s equation of free flight,

X = —vy,

gives, upon two integrations, a map on the plane,

F'(x)=A,x—aq,

A = b 1

e 01 ( )
e

a, .=yt 1

indexed by the time of flight 7, which we shall use throughout the discussion.

For the purpose of analysis, we assume that impacts occur on a very short time scale
compared to the system dynamics, so that velocity changes at impact are effectively
instantaneous. Suppose the point mass x loses some energy (through deformation, sound,
etc.) during an impact with another point mass y in a manner captured by the coefficient
of restitution (o),

0<a<l 2)

where x and ' are the relative point mass velocities of the masses immediately before and
immediately after impact, respectively.

If x collides with a much more massive body, y, then the massive body’s state is
unchanged by the impact whereas, the new state of smaller body is given by
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Cx) =Ry x+ (I —Ryy

R'—lo 3
= lo al &)

2.3. The Effective Environmental Control System

The system shown in Figure 4 consists of a one-degree-of-freedom “robot-table,”

r=(p,p)

and a lighter “ball-part,”

b= (BB

falling in the earth’s gravitational field and constrained to move in the direction of
gravitational field gradient (vertically). The ball-part falls from some initial position and
velocity, b, according to Newton’s law (1) and reacts to a collision with the robot-table at
some state r according to the coefficient of restitution law (3).

Now let b denote the state of the ball-part just prior to an impact. Suppose the
robot-table impacts with velocity u, and allows the ball-part to fall freely for the next «,
interval of time. Then the state of the ball-part just prior to the next impact is given by

fb,u):= F*0C, (b) @)

Any effect of the robot-table on the ball-part may be described with regard to this model,
which is, in effect, a discrete dynamical control system. In this paper, we find it more
convenient to sample the ball-part’s trajectory at state b, when the robot-table is at the
minimum p of it’s motion, as shown in Figure 9.

| Trajectory

Robot-Table
Trajectory

I —
s

Time

Figure 9 Coupled oscillators.
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Figure 10 A lossless relaxation oscillator.

3. LOCAL ANALYSIS OF A SIMPLE JUGGLER

A parabolic robot-table trajectory was chosen primarily for ease of analysis: the time to
collision, T, is a closed-form expression, which simplifies the remainder of the analysis.
Unfortunately, this type of trajectory is not physically realizable due to the discontinuous
jumps in velocity, which also results in a discontinuity in the iteration function. In the
future we hope to use a similar strategy to prove global stability for a more realistic
sinusoidal robot trajectory, for which the time of collision expression cannot be exhibited
in closed form [28].

3.1. The Robot-table’s Strategy: A Lossless Relaxation Oscillator

Consider a robot-table control strategy that induces the relaxation oscillator depicted in
Figure 10, independent of the ball-part’s state. This trajectory characterizes the behavior
of a perfectly elastic point mass, r(f) = (p, p)(f), bouncing in the earth’s gravitational field
subject to lossless collisions with the ground at impact and lossless free flight in between.
Fixing coordinates, say the robot-table collides with the ground at time ¢ = 0, in the state
—ro = (0, —py)- Lossless collisions correspond to coefficient of restitution unity, so that the
evolution of the robot-table’s state from zero height at the “post bounce” velocity, p,, is
now given by

r(t)y = F" (r,) &)

where 7, denotes time modulo the period of flight,> T := 2py/y. The parameter p, is
assumed positive throughout the sequel.

3 That is, T, denotes the piecewise linear periodic function coincident with the identity on the interval 0 = ¢ <
P p
T.
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3.2. Coupling the Ball-part: A Lossy Relaxation Oscillator

Suppose now that a much lighter point mass is constrained to fall along the same vertical
axis as the previous one. Denote its position and velocity by b = (B, B), measured at the
moment the heavy point mass just touches the ground, 7, = 0. Again, we will suppose no
energy losses in flight.>

There is a region, 8, C o, in the ball-part’s state space, such that if b € £, then there
will be a collision with the robot-table,5

0=[F™®)] — [F™ (o)l
= [AT‘(B - rO)]l

=B+Tc(§~bo)

before the robot-table next touches the ground. Solving this equation for T, gives the
function,

BB = ——, ©6)

PO“E

that computes the time to collision. Imposing the inequalities

0= TC(E) =T,

makes explicit the extent of the region 4,

_ .| P .
By:= {bEe‘/ﬁ[%v,po][E]<pé} @)

The state of such a ball-part at the time, T, of the robot-table’s next collision with
ground (at state —rp), may now be modeled by flying the two masses to collision,
CET¢(y o F(b), and then flying the ball-part onward for time T — .. This yields a map
F" o C, (b) where

C,(B):= F ™o Cp gy, 0 FO(B) ®)

* Note that the barred variables b, B, E are simply samples of the unbarred variables b, B, B introduced in
section 2.3.

5 This is shown later in section 3.4.
¢ Denoted in the following by equating the position components—[-],—of both balls.
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Note that

E'r (B) = A[—‘r(] RA‘T‘. (E - rO) + To-

By definition of 7, it follows that both

A, (b—rp) [ 0 ]
T — 1) T | = . s
‘ ° B — po

and
oB = —or(B — py),
so that
C,(B)= —ab —r) +r,
and

FTO—CrO(E) = —OLAT(I_) - ro) - ro.

3.3. Local Stability Analysis of the Coupled Oscillator System

)

If the next state of the ball-part after the first collision is also in 2, then its state after a
second collision is.given by composing the last function with itself. Assuming that all
further iterates, remain in 2, as well, it would follow that the state of the ball-part at the

time of the robot-table’s K bounce with the ground is given by the recursion

Bk+l = JF1(E/<)

= —aArb, + (@ = DA_7,

(10

where &, := aT/(1 — o). We now demonstrate the existence of an open set of points in 2,

whose iterates remain in that set.
The map, f,, has a unique fixed point,

el = (I + OLAT)—I . (1 - a)A_ger

l -«
BN

where €, := 2aT/(1 — &?). Now

4045(2)
(1+a)’y
—(1—a)p,
1+a

e = € 8;,
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since the first component is positive (i.e., ¢; € # ) and

T(e;) <T.
Moreover, —aAy has eigenvalues inside the unit circle for any choice of Po- Thus, some
open neighborhood of e, remains in A, under iteration by f,. This open neighborhood

takes e, as its limit.

3.3.1. Extending f to 4. There is a second region, 2, =4 — £, in the ball-part’s state
space such that

T < 1,b)

and

By:={bEH|T=1,(b)} (11)
and no impact occurs in the next table oscillation period. When this condition holds, we
may define

fai=F (12)
We may then define a global discrete-time function f on J4:
= _ f1 bER
f-‘{f"2 b es, a3

Note (unfortunately) that fis not continuous—a consequence of the velocity
discontinuity of the robot-table’s trajectory in Figure 9.

3.4. Total Energy and Energy Change

Presented here are elementary results regarding energy within the system which are
critical to the global stability analysis.

3.4.1. Total energy. We make use of the fact that total energy is preserved whenever
flight dynamics are applicable. (We ignore any dissipative effects in flight).
Defining:

— — 1 —_
E():=vB + 3 B (14)
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and
E, := E(by)
- 1.,
=B, + 3 Bo
flight dynamics imply
b(t)=F Ob,,
and we have
E(t):=EOF'

_ - 1
=v(By + Bot—aytz)
Ly )
E(Bo_‘W),

which reduces to

Therefore, under f energy is conserved in the region 4,
Eof b,=E (15)
3.4.2. Energy change. We define an energy change function AE,
AE(D) :=Eof(b) — E(b)
AE := AE\BI b €8,

AE := AE\EI b ER,

which expresses the energy change caused by f. From (15), we know that A,E = 0. Thus
we need only be concerned with A E.

Referring back to (8), since energy is conserved during free flight and potential energy
is conserved during impact, all energy changes must take place in the kinetic energy at
impact. According to (1) and (3), the energy change may be expressed as:
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1 -
AE = 5[—013 + ayT,
+(1+ a)py — (1 + @)yt (16)
L .
> B — 7,
3.5. Fixed Points

The existence of the e, fixed point in f, was shown in section 3.3. However, there may
be a large number of fixed points of f which we consider in this section.

3.5.1. Existence of fixed points.  Aside from the period T fixed point e, there are fixed
points, ey, of period KT for the composite map f, o f%;! . We call these fixed points
“subharmonic” because they represent trajectories which impact the robot-table only once
every K time periods.”

These subharmonic fixed points must satisfy two conditions. The first requires that time
of flight, t,= 23/y, must be an integer multiple of the robot-table period, 7, so that #,= KT:

.1
=—KyT
B 5 Ky

The second requires that velocity be conserved in the restitution balance equation (33),
resulting in:

) =- KT 17
p(,) 7 T+ a5 a7
_l—aK.
_1+a Po

Whenever the robot-table velocity at impact, p(t.), is high enough to satisfy (17) for a
given K, there exists a period K fixed point, eg. Since the maximum robot-table velocity
is limited, we can define the maximum fixed point period, K,,,,, :

- 14« p

=R 1-a p, (18)
|.1+u-|

Tll -«

" Note that “harmonic” fixed points, in which the ball-part impacts the robot-table multiple times in a
oscillation period, are not possible under our formulation. Because the ball-part and the robot-table operate

under the same gravitational field, B >p after the first impact and it is impossible for a second impact to occur
before the end of the period.

K _J\ max

m
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3.5.2. Maximum energy of fixed points. In order to allow fixed points up to period X,
(18) requires that

K=K, <K+1 (19)

When the definition of K,,,,, (18), is inserted into (19), the resulting condition which
restricts the set of fixed points to {e,lk = K} is:

K-1_ K 20)
K+1 ““km2

To limit our attention to only a period 1 fixed point, (20) shows?

1
0<a<3 1)

A question to consider at this point is whether this range of « is reasonable. We believe
it is possible to decrease the restitution coefficient by using an energy-absorbent covering
on the robot-table. It is easy to reduce the restitution coefficient in this manner without
changing the material properties of the ball-part.

3.5.3. Local stability of fixed points.  As noted in section 3.5.1, period K fixed points
exist on the composite map f, O f5~' . It is readily determined that the Jacobian of the
composite map is

K
_ K= - —OLT
oAy [ 0 o ]

and the eigenvalues are within the unit circle for all physical a. Thus, every fixed point
that meets the existence criteria in section 3.5.1 is locally stable.
4. GLOBAL STABILITY ANALYSIS

This section contains a demonstration of the global stability of the e, fixed point, assuming
favorable parameter values.

4.1. Attracting Energy Boundary

As discussed in section 3.4, every point in the 2, region experiences an energy change
caused by impact during the next table period. A zero-energy-change boundary /) can be

8 Note that the possibility of a = 0 is not applicable to the problem considered.
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defined by AE = 0 from (16) as

/))0.._ be E- _1+_0L ) —
1~ = Y7 (pO 'ch) (22)

l—a
This zero-energy-change boundary partitions 23, into three regions, as shown in Figure 11:

a region A7 which gains energy after impact (A,E > 0), a region 2 ] which sheds energy
after impact (A,E < 0), and 49.

We use the maximum E on the 2% U A9 region, defined in equation (34) from Appendix

section A.1,
E _1 1+a.\?
max_z l_aPo

This value represents the maximum ball-part energy that the robot-table can maintain. We
also use the maximum AE on the 2% U 29 region, defined in equation (37) from Appendix
section A.2,

[u——

-+
1_

R

AE,, =

max

Po

N |-
R

This value represents the maximum AE on /. Combining these values results in

l+a .,

Epp + AE,,, = A= apf

A conservative estimate of the attracting energy region £ can then be obtained with respect
to the function

NNN\\X"777//111/ 11777277
SN\ Z4

e

7

Figure 11 Impact energy regions in /3,
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Figure 12 The regions 4, 3,, and 4,.

R(b) :=E,,, + AE,, — E(b) (23)
=%p§—vﬁ—%§z-
ri={pes|r(E) =0} 24)

where E(b) is as defined in (14).

Proposition 1. If (21) holds, then R (24) is a globally attracting invariant set.

Proof. By construction, all points in the region 8; —R also lie in the region 2 ; (See
Figures 11, 12). According to (1), all points in A,, and hence in 2, — A, move along
invariant energy trajectories (free flight) to the region 2, — . Therefore, all points external
to X are attracted to R as they lose energy at successive impacts. In fact, all finite states are
drawn into the R region in finite time.

Pick any finite state b, € # — 2. Remembering the definition of energy in (14), we then
define the energy of b, as E(b,). We then define the worst-case time to impact, 7,,:°

\/ 2E(by). (25

Referring to Appendix section A.4, the worst-case number of impacts before b, enters R
LE(bO) -E,,—AE,,

T

221N

w e

is given by

. Noting that states with less energy also have
—AE,,

shorter times between impacts, the maximum time between impacts is given by 7,,, from
(25). Thus the maximum time it will take for any given finite initial state in # — £ to enter

° Note that 7, = 7.(bo) if By = 0 and by is in the A, region, and T,, is an integer multiple of T. Otherwise,
Ty > Tc(bO)‘
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R is given by:

2 — | E(by) — E,,, — AE,,,
i \/2E(by) | —— N } . (26)

sup

Because of the worst-case assumptions of flight time and A E, states are typically attracted
to £ in a much shorter time than #.

Once a trajectory is trapped within the R region it cannot leave. The highest energy
possible within the 2% U 29 region is E,,,,. The highest energy gain possible within the 2%
region is AE,,,,. Adding E,,, + AE,,, does not provide sufficient energy to leave A.
Therefore, R is attracting and invariant under f .

4.3. Global Attraction to £ C R

In this section, we show that all trajectories rapidly decay to another invariant set, £, after
they enter .

4.3.1. Relative kinetic energy decreases in . Once a trajectory has entered A, it can

be shown that the trajectory rapidly approaches a constant kinetic energy (constantB) at
each impact, as shown in Figure 3. In order to prove this, it is useful to perform a change
of coordinates:

z=b— e @27

where e, is the period 1 fixed point of the return map. The z, series follows the same linear
dynamics as the b, series for points in the # N A, region:

Zr1 = by — €
= —aArb + (a — DA_r5 —e;
= — aArb, + aAre
= oAz

Noting that kinetic energy!?, K, may be expressed

1 ' 2
K(z) = 2 (3 2) (28)

' Note that this definition of the kinetic energy K is distinct from the integer K used in the fixed-point
discussion of section 3.5.
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it is possible to write
AK=Kof—-K

and

AK (z) = KOf (3 — K(z)

= K(—aArz) — K(z)
1 ' 2 1 ' 2
= 5 (—owuy Arz)” — 5 (u3 2)

(—owy ) = (7))

N -

1
=3 (o = 1)(u} z,)°
sothat for0 = a <1,

AK <0

Since K = 0 and A K < 0, LaSalle’s theorem states that
lim K(z,) = 0
k—>
Furthermore, the change of coordinates defined in (27) requires that
lim K(b,) = K(e,).
k—x

Since £, applies on 2 N A,, trajectories in this region also approach K(e,) during free
flight (Fig. 7).

In plain English: the kinetic energy of an orbit within the £ region rapidly approaches
the kinetic energy of the 2, fixed point, e,.

4.3.2. The attracting invariant set K. Now parameterize the 95, line as

B=| B+ (29)
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The intersection of 33, with the line defined by the kinetic energy of the fixed point, e;,
occurs at the point p:

p:= R (30)

as shown in Figure 13. Since

IR PN Y S Y 2
) =g P Y 2\ T e

>E, .+ AE,.. (€2))

we note that p & 2. Thus, points with kinetic energy near the fixed point within the 2 region
are in the 2, region, and the dynamics of f, apply.

We define a region £, within the R region with kinetic energy close to the fixed point
(Figure 14),

K:={BEBI|K(E—e1)SG}ﬂR, (32)

where K(E}_is as defined in (28). Now note thgtfl@)() C X, since K is decreasing (section
i.3.1) and f ;(8RNA,) C R (section 4.2). Since f_IK =f, is continuous, we now conclude that
f () C K. Moreover, £ attracts all of 2 under f since KX is decreasing on .

4.4. Fixed Point Is a Global Attractor

Since fl, = f, is linear, the stable fixed point, e,, attracts all of K. Since £ is a globally
attracting invariant set, we conclude that e, attracts all of A4.

il }

0B,

——
Lp

1{(81)

) =

NS

B3}

R(®) =0

Figure 13 Some important curves and their intersections.
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Figure 14 The region.

5. CONCLUSION

We have found a parameter range for the coefficient of restitution that insures the global
asymptotic stability of a specified period one orbit—a bouncing motion—of a ball subject
to excitations from an oscillating table. In contrast, this physical setup has traditionally
been studied as providing a classic example of chaotic dynamics. Our positive result
encourages further investigation of this approach to the parts-feeding problem.

In the problem studied here, the table is assumed to behave as a perfectly elastic
(lossless) bouncing ball. This is not a motion that an industrial machine can reliably
reproduce, and our next analytical efforts will be directed at finding a more realistic
sinusoidal motion resulting in global stability. Should our three-degree-of-freedom
experiments corroborate the suggestive simulation results described here, we will seek to
generalize this analysis to the three-degree-of-freedom and six-degree-of-freedom
problems.

Acknowledgements

We wish to thank Deneb Robotics for their assistance in the form of their Igrip robotic
simulation software used for the three-degree-of-freedom table simulation.

References

1. R. L. Andersson. Understanding and applying a robot ping-pong player’s expert controller. In Proceedings
1989 International Conference on Robotics and Automation, Scottsdale, AZ, 1989, pp. 1284-1289.

2. Assembly Automation: Proceedings of the 8th International Conference, Springer Verlag, New York,
March, 1988.

3. Bohringer, K. F. V. Bhatt, and K. Goldberg. Sensorless manipulation using transverse vibrations of a plate.
(Submitted to ICRA 95), May 1995.

4. Boothroyd, G. Assembly automation and product design. Marcel Dekker, New York, 1992.



10.
11.
12.
13.
14.
15.
16.
17.

18.

20.
21.

22.
23.

24.
25.
26.
27.
28.
29.
30.
31
32.

33.

34.

3s.

STABILITY OF PASSIVE JUGGLING 217

Boothroyd, G. C. Poli, and L. E. Murch. Automatic assembly. Marcel Dekker, New York, 1982.

Brost, R. A Cad-based approach to general-purpose part feeders. Presented at the Robotic Industries
Association Flexible Parts Feeding Workshop, October, 1993.

Biihler, M. D. Koditschek, and P. Kindlmann. A family of robot control strategies for intermittent
dynamical environments. IEEE Control Systems Magazine, 10(2) (February, 1990).

Canny, J. and K. Goldberg. “RISC” for industrial robotics: Recent results and open problems. In IEEE
International Conference on Robotics and Automation, May, 1994.

Daum, R. Machine vision lighting for flexible parts feeding. Presented at the Robotic Industries Association
Flexible Parts Feeding Workshop, San Jose, CA, October 1993.

den Hamer, H. E. Interordering: A new method of component orientation, vol. 2 of Studies in mechanical
engineering. Elsevier Scientific Publishing, New York, 1980.

Erdmann, M. and M. T. Mason. An exploration of sensorless manipulation. In Proc. IEEE International
Conference on Robotics and Automation, San Francisco, April, 1986, pp. 1569-1574.

Farnum, G. Delivering the part. Presented at the Robotic Industries Association Flexible Parts Feeding
Workshop, October, 1993. (Quote attributed to Bill Davis, President of Feeder Systems).

Grossman, D. and M. Blasgen. Orienting mechanical parts by computer-controlled manipulator. JEEE
Transactions on Systems, Man, and Cybernetics, September, 1975, pp. 561-565.

Guckenheimer, J. and P. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of vector
fields, vol. 42 of Applied mathematical sciences. Springer-Verlag, New York, 1983.

Koditschek, D. and M. Biihler. Analysis of a simplified hopping robot. International Journal of Robotics
Research, 10(6) (December, 1991).

Kowalik, Z. M. Franaszek, and Pi. Pieraniski. Self-reanimating chaos in the bouncing-ball system. Physical
Review A, 37(10) (May 1988), 4016—4022.

McGeer, T. Passive bipedal running. Technical Report IS-TR-89-02, Simon Fraser University, Centre for
Systems Science, April, 1989.

Natarajan, B. K. Some paradigms for the automated design of parts feeders. International Journal of
Robotics Research, 8(6) (1989), 98-108.

Pieraniski, Pi. Z. Kowalik, and M. Franaszek. Jumping particle model. a study of the phase space of a
non-linear dynamical system below its transition to chaos. J. Physique, 46 (May, 1985), 681-686.
Raibert, M. Legged robots that balance. MIT Press, Cambridge, MA, 1986.

Rizzi, A. and 'D. Koditschek. Progress in spatial robot juggling. In Proceedings of the 1992 IEEE
International Conference on Robotics and Automation, 1992.

Routh, E. Dynamics of a system of rigid bodies. Dover, New York, 1905.

Schaal, S. and C. G. Atkeson. Open loop stable control strategies for robot juggling. In IEEE Int. Conf. Rob.
Aut., 3, Atlanta, May, 1993, pp. 913-918.

Schaal, S. D. Sternad, and C. G. Atkeson. One-handed juggling: Dynamical solutions to a rhythmic
movement task. 1994.

Shirai, M. and A. Saito. Parts supply in Sony’s general-purpose assembly system “smart”. Japan Journal
of Advanced Automation Technology, 1, (1989), 108-111.

Singer, N. C. and W. P. Seering. Utilizing dynamic stability to orient parts. ASME Journal of Applied
Mechanics, 54, (December, 1987), 961-966.

Snavely, G. Personal communication, September, 1993. (Robotics Group Engineer, General Motors Tech
Center).

Tufillaro, N. T. Abbott, and J. Reilly. An experimental approach to nonlinear dynamics and chaos.
Addison-Wesley Publishing, Redwood City, CA, 1992.

Tufillaro, N. T. Mello, Y. Choi, and A. Albano. Period doubling boundaries of a bouncing ball. J. Physique,
47 (September, 1986), 1477-1482.

Vakakis, A. F. and J. W. Burdick. Chaotic motions of a simplified hopping robot. In Proc. IEEE Conference
on Robotics and Automation, IEEE, Cincinnati, 1990, pp. 1464—-1469.

Wang, Y. Dynamic analysis and simulation of mechanical systems with intermittent constraints. Ph.D.
dissertation, Carnegie Mellon University, 1989.

Wang, Y. and M. Mason. Two-dimensional rigid-body collisions with friction. ASME Journal of Applied
Mechanics, 59 (September, 1992), 635-642.

Wiegley, J. A. Rao, and K. Goldberg. Computing a statistical distribution of stable poses for a polyhedron.
In 30th Annual Allerton Conference on Communications, Control and Computing, University of Illinois,
September, 1992, pp. 836-843.

Wiesenfeld, K. and N. Tufillaro. Suppression of period doubling in the dynamics of a bouncing ball.
Physica, 26D (1987), 321-335.

Zumel, N. and M. Erdmann. Balancing of a planar bouncing object. In IEEE International Conference on
Robotics and Automation, May 1994, pp. 2949-2954.



218 D. E. KODITSCHEK ET AL.

APPENDIX A. MAXIMAL AND SUPREMAL POINTS
A.1. Maximum Sustainable Energy

Since the robot-table has a maximum velocity pq, it can impart a limited amount of energy
to the ball’s motion. Using (2) and substituting x = B— p, we obtain

B'=-p=-aB-p

Under the high-mass robot-table assumption p’ = p, and rearranging:

B =—aB+(1+a)
Note that if we assume p = 0 (a stationary robot-table), each successive impact causes a
loss of (1 — a) of the ball-part velocity. To sustain a given ball-part velocity, the
robot-table must contribute this much velocity in the restitution equation. Seeking to
maximize B (and hence energy), we assume p to be its maximum of p,. Since we need
sustainable ', we assume the equilibrium velocity Beq = —B = B'. Then,

(1 - OL).Beq = (1 + 0‘)(’0

which leads directly to

. [ 1ta) .
Beg = T=a | PO (33)
Noting that p, can only occur when 7. = 0 and p = 0, it must be the case that 8 = 0 and

B= E, thus

1[1+a . \?
Emax = 5 T__ Po (34)
A.2. Maximum Energy Change
As discussed in section 4, most of # loses energy with impact, while a small region gains
energy. As a consequence of restitution and limited robot-table velocity, an upper bound

exists on the A,E function on 4 .
Finding the gradient of A E:

B
9B

DA, E) :=
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ME_ e 35
i ay-—ry (35)
6A1E N .
— =—oyT=(1-a)B —afa — g (36)
ap

Since (35) is constant (meaning A, E is unbounded as s a function of B), we conclude that
the maximum A, E on the -# region must occur on the 8 = 0 boundary. The Kuhn-Tucker
conditions require

oA E
— =0
B
which leads to a maximum:
AE. = 1 1+a , 37)
max ~ 71—« Po

at

b= (0’(!_%)_
a—1

Since AE,,,. > A,E, the result holds for the entire # region.
A.3. Supremum AE on #-R

In this section, we derive the supremum AE on the # — R region. This quantity is important
for the proof of finite-time attraction to .

A.3.1. AE,, not on R(b) = 0. In order for a supremal state, b,, to exist on R(b) =0,
it must satisfy

DA, E(b,) = \DgR(b,)
Dg A, E(b,) = \D3R(b,) (38)
where
DsR(6) = —yand D 5 R(%) = —B.
Recalling from (35),

D'EAIE:_U"'Y_'Y’
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which requires A = a + 1. Recalling from (36),

DA VE=—ayT — (1 — az)E — a (o — 1)py,

and \ = a + 1 does not satisfy (38). Thus, AE,,, cannot exist on R(b) = 0.

up

A.3.2. Finding AE,,. We then consider the leftmost boundary of 8, — R given by the
line B = 0. Noting that o> — 1 < 0 for realistic @ (0 = a < 1), A\E must achieve its
supremum where the curve, R(b) = 0, intersects the line, B = 0. This occurs at the state

B=0

B=-V20+a —lp" (39)
-«
Recalling the definition of A,E from (16) and noting that (39) implies 7. = 0,

AE,, :=AE®,)

sup

1 = |
=l-eB+ I+ @)pol” — 2 B

-

1+
_ [_1_"‘+ 1 +a—\/2(1+a)1—5—]><(1+a)p%
-

<0

We note that AE,,, is strictly negative, and that Vb € B, — R, AE(b) < AE

sup*
A.4. Number of Impacts to Enter R

Next we find the supremum of A, E on the 2, — Rregion, AE,,. Note that AE,, is distinct
from AE,,,,, as defined in (37). Recalling (35), the supremum of A,E must occur on the
leftmost boundary of the 2, — R region. Because 2, — R is an open set, we first check the
closure of the set defined by the boundary of 4, given by R(b) = 0. Referring to Appendix
section A.3.1, the supremum cannot exist on this boundary line. Referring to section A.3.2,
we find AE,,, on the b =0 line and demonstrate that it is a strictly negative quantity.

Returning to the discussion of b,, we note that the ball-part will experience an energy
change of at most AE,, at each impact. The state of the ball-part will therefore enter R in
at most [E(bo) i’"g A E""“] impacts.

sup




STABILITY OF PASSIVE JUGGLING 221

APPENDIX B. HANDY EQUATIONS, DEFINITIONS, AND
PARAMETERIZATIONS

This appendix contains a brief summary of equations, definitions, and parameterizations
which were useful in deriving our results. This summary is particularly useful when
graphing simulation results, as in Figure 3.

B.1. Time to Collision
Time to collision, T, is given by the solution of

B+ Br.— v = pr. — yri
so that
B
- B

TC= )

assuming that the impact occurs within the first robot-table period.
Similarly, the robot-table period is given by the nonzero solution of

0=pl —T?

so that

B.2. Important Regions

The dynamics only have meaning when the ball-part is at or above the robot-table, so the
possible states in the defined coordinates are limited to

H:={b|B=0}
A, is defined as the region in which the ball-part impacts in less than one T. So:
Bi:={pEH|T.<T}
B, is defined as the region in which the ball-part impacts in at least one T.
Byi= {EEJ/}TCE T}
The boundary line between 3, and 5, is then

3B, :={pbEH|1. =T}
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This line can be parameterized as

B.3. System Dynamics

The system dynamics on 3, are

f—l (Ek) = OLATEk + (OL - I)A_glro

= by
1t
A = 41)
01
£ = aT
T o
The dynamics on 3, are
fiby) =-Arx—ar
172
op:=yT
1
So that
_— ,_71 _B € B,
F=\7, bes,
B.4. Fixed Point
The fixed point, e,, of f, is located at
4op5
(1+a)y

—1(1"0‘)!50
1+«
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B.5. Zero Energy Change Boundary

The zero energy change boundary, 2 , is defined parametrically as

o - ~ l+a .
B:=1bEH B = 'Y"'c"l—(Po"YTc)
-«
B.6. Boundary of ?
The boundary of the attracting energy region, 4, is defined by
R(®) =
where

R(b) :=E,, + AE,, — E(B)
1+a .
(1 )2 p() B -3 B

B.7. Table of Notation

Common notation is shown in Table II.

Table II Table of Notation

Symbol Explanation
Constants
vy gravitational constant
<1 coefficient of restitution
T robot-table oscillation period T := 2py/y
Po robot-table initial velocity
Variables
t time
T

time elapsed since last minimum of p
state of robot-table (p, p)

position of robot-table

velocity of robot-table

(B, B) State of ball-part

position of ball-part

velocity of ball-part

(B, B) State of ball-part sampled at 7, = 0
position of ball-part sampled at 7, = 0
velocity of ball-part sampled at 7, = 0

Al

B T® ST Y
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Table II Table of Notation (Continued)

Symbol Explanation
Functions
F'(x) function describing trajectory of point with initial condition x flying in gravity
for time ¢
C.(x) function describing instantaneous change of ball-part state y caused by impact
with robot-table state x
f® ) discrete time function which specifies (b,.,,)
(B, [_3)‘ Time to collision from time since start of period
-1.8, B) Time until next period (—7.=T — T1.)
11t
A, used in flight calculations and recursions: A,: = [0 1]
E total energy of a given point: E(): = y B + 1; §2
AE change in energy at impact: AE(b): = E(f(b_)) — E(b)
K kinetic energy of a given point: K(b): = - B’
Regions
H The region of the b phase plane corresponding to physically realistic conditions
B, The region in o/ for which 7. < T
B, The region in # for which 7. = T
R The globally attracting total energy region
K The globally attracting kinetic energy region




