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A mathematical model for continuous improvement processes in production systems is formulated. Both
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1. INTRODUCTION

1.1. Manufacturing Considerations

The process of continuous improvement is a route necessary to achieve and maintain
competitive positions in any type of manufacturing environment—mass, lean, or agile.
Unfortunately, no formal methods are available to guide this process on the factory floor.
Typically, continuous improvement projects are conducted using managerial intuition,
manufacturing gurus [1]-[3], and/or discrete event simulations [4]. Given this situation,
knowledge of the basic properties which govern the process of continuous improvement
is of importance. This paper is devoted to the analysis of these properties. More
specifically, we introduce and analyze the property of improvability in production systems.
Roughly speaking, a production system is improvable (under constraints) if the limited
resources involved in its operation can be redistributed so that a performance index is
improved.

Improvability is related to optimality. Indeed, an unimprovable system is optimal.
However, we use the term improvability to indicate that the goal here is not necessarily
to render the system optimal, but rather to determine whether it can or cannot be improved
and indicate directions which lead to this improvement. In addition, given the lack of
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96 D. JACOBS AND S. M. MEERKOV

precise information available on the factory floor, optimality may not be practically
achievable, whereas improvability still may be characterized by simple indicators robust
with respect to imprecise information.

If a system is unimprovable in the sense mentioned above, the only route for continuous
improvement is the relaxation of the constraints, that is, bottleneck elimination. It turns out
that the notion of the bottleneck is closely related to the property of improvability, and this
relationship is also explored in this paper.

Based on the results obtained for improvability and bottleneck analysis, this paper
formulates guidelines for the process of continuous improvement which are applicable, we
believe, to a wide class of production systems in large volume manufacturing. Although
these guidelines are quite informal consequences of the theoretical results derived in this
paper, they have proven to be useful in a number of practical applications which we have
recently carried out in the automotive industry.

1.2. Problem Formulation

Consider a production system of M unreliable machines and B finite buffers intercon-
nected by a material handling system. Assume that each machine is characterized by its

average production rate in isolation, p;, i = 1, ..., M, and each buffer is characterized by
its capacity, N, i = 1, ..., B. Assume that the N;’s and p,’s are constrained as follows:
B
SN =N, (1.1)
i=1
M
I[Ip=r". (1.2)

Constraint (1.1) implies that the total work-in-process (WIP) available in the system
cannot exceed N . Constraint (1.2) is interpreted as a bound on the workforce (WF).
Indeed, in many systems, assignment of the workforce (both machine operators and
skilled trades for repair and maintenance) defines the production rate and the average
up-time of each machine. Therefore, the total WF available can be conceptually mapped
into constraint (1.2).

Let PI( py, ..., pps» Ny -, Np) be the performance index of interest. Examples of PI are
the average production rate, the due-time performance, product quality, and so forth.

Dermvirion 1.1 A production system is called improvable with respect to WIP if there
exists a sequence N |, ..., Ny such that £ | N= N and

PI(py.ccDyp Nys .o Np) > PL(pys . Py Nys ..y Ni).

DeriniTioN 1.2 A production system is called improvable with respect to WF if there
exists a sequence p, ..., py, such that IT*  p7= p” and

PI(py...;pyp Niv ooy Ng) > PI(py, ....pyp Ny ..., Np).
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Dernimion 1.3 A production system is called improvable with respect to WIP & WF
simultaneously if there exist sequences N7, ..., Ny and pj, ..., py, such that 2 N7
=N II"L, p;=p", and

PI(py,.cspyys Ny ooy Ng) > PL(pys ...y pass Npv ...y Np).

The main problem considered in this paper can be formulated as follows:

ProsLEm 1.1 Given a production system described above, find both quantitative and
qualitative indicators of improvability with respect to WIP, WF, and WIP & WF
simultaneously.

This is the first problem addressed in this paper.

When a system is unimprovable under (1.1) and (1.2), constraint relaxation (i.e. increase
p"or N7) is necessary to improve PI. The question arises: Which p; and/or N; should be
increased so that the most benefits are obtained? To formulate this question precisely,
introduce

DeriniTioN 1.4 Machine i is the bottleneck machine if

OPI(p,, ...,y Ny, ..., Np) - oPI(py, ...,py Ny, ..., Np)
ap; apj

DeriniTioN 1.5 Buffer i is the bottleneck buffer if

V) # i

PICpy, ...opps Niy oo s N+ 1, Ng ) > PL(py, oy pyy Ny oo, Ni+ 1, .., Np), Vj # .

Contrary to the popular belief, the machine with the smallest production rate and the
buffer with the smallest capacity are not necessarily the bottleneck machine and the
bottleneck buffer, respectively. In some cases, the most productive machine, that is, the
machine with the largest p;, is the bottleneck (see section 4 for an example). This happens
because the inequalities in Definitions 1.4 and 1.5 depend not on a particular machine or
buffer, but rather on the system as a whole. Therefore, the problem arises:

ProBLEM 1.2 Given a production system defined by machines p, ... p,, and buffers
N, ..., Npinterconnected by a material handling system, identify the bottleneck machine

and the bottleneck buffer.
This is the second problem addressed in this paper.
Finally, in some cases it is important to determine the total work-in-process N, such

that all N> N give practically no increase in PI. To formulate this property, introduce

PIN) = max  PI(p, ....py Ny, ..., Np).

Dernition 1.6 The total WIP, N ™, is said to be e-adapted to py, ..., py, if

|PI(N)—,£DI(N)‘ < e¢VN=N"
PI(N )
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ProBrLEm 1.3. Given a production system and € > 0, find the smallest N* which is €
adapted to the p;’s.

This is the third problem addressed in this work.

The organization of this paper is as follows: In section 2, we introduce a specific
production system and performance index which are studied throughout this work. Section
3 is devoted to improvability under constraints. In section 4, constraint relaxation and
e-adaptation are discussed. The guidelines for the process of continuous improvement are
formulated in section 5. Finally, the conclusions are given in section 6. The facts
established in this paper are either proven mathematically or verified numerically. All
proofs of a mathematical nature are presented in Appendices A-C. Due to the size
limitation, no results of practical applications are included in this paper; they will be
described elsewhere.

2. PRODUCTION SYSTEM
2.1 Model

Although Problems 1.1-1.3 are of interest in a large variety of manufacturing situations,
for the purposes of this study we analyze the simplest, but archetypical, production
system—the serial production line. A number of models for such lines are available in
[5]-[9]. The following model is considered throughout this work.

(i) The system consists of M machines arranged serially, and M — 1 buffers separating
each consecutive pair of machines.

(ii)) The machines have identical cycle time T.. The time axis is slotted with the slot
duration T.. Machines begin operating at the beginning of each time slot.

(iii) Each buffer is characterized by its capacity, N, 1 <i <M — 1.

(iv) Machine i is starved during a time slot if buffer i — 1 is empty at the beginning of
the time slot. Machine 1 is never starved.

(v) Machine i is blocked during a time slot if buffer i has N, parts at the beginning of
the time slot and machine i + 1 fails to take a part during the time slot. Machine
M is never blocked.

(vi) Machine i, being neither blocked nor starved during a time slot, produces a part
with probability p; and fails to do so with probability g; = 1 — p,. Parameter p; is
referred to as the production rate of machine i in isolation.

Remark 2.1 Assumption (vi) implies that each machine’s reliability obeys the Bernoulli
model. This model is appropriate when disturbances occur only for short periods of time,
comparable with the cycle time 7. This is often the case for large volume assembly and
painting operations where the perturbations are due to the quality requirements (i.e., the
operational conveyors are stopped for a short period of time in order to accomplish the
operation with the highest possible quality). The Bernoulli model may not be applicable
to machining operations where the perturbations are due to machine break-downs which
occur for periods of time much longer than the cycle time. In this situation, Markovian
models of machine reliability are more appropriate. The improvability properties for serial
production lines with Markovian machines, although quite similar to the Bernoulli case,
will be addressed elsewhere.



THEORY OF IMPROVABILITY 99

Remark 2.2 Model (i) — (vi) is a generalization of the model considered in [10] and [11],
where p; = 1 — ek, 0 < e << 1. Here, therefore, we treat the general case. Another
generalization of [10], [11] has been described in [12].

The performance index analyzed in this work is the average production rate (PR), that
is, the average number of parts produced by the Mth machine in the steady state of the
system’s operation; we denote this quantity as

PR= PR(pl’ "”pM’ Nl’ eey NM—l)'

Unfortunately, this function cannot be calculated in closed form if M > 3. Therefore, below
we derive an estimate, PR,,,, of the production rate, and evaluate its accuracy.

2.2 Production Rate Estimate

Although a number of recursive algorithms for production rate evaluation in serial lines
have been described in the literature ([7]-[9],[13]-[16]), analytical justification of their
convergence and accuracy seems to be lacking. Since the derivation of the improvability
conditions pursued in this work requires these properties, we present below a recursive
procedure developed for model (i)-(vi), prove its convergence, and provide an estimate
(however weak) of its accuracy.

Consider the following recursive procedure:

Pos+ 1) =pll — Q(phi(s + 1), pls),N)l, 1=i=M-1L
pls+ D =pll = Q(p/ s+ 1,ps+1),N_)D, 2=i=M (1)
pls) = p,, Pay (8) =Py,
s=1,2,3,...,

with initial conditions

plO)y=p., i=1,..M,

where
1 -x (1 - w
L X E Y
X
1 — =o
Ok, y, N) = y (2.2)
1 — x
—_— ,x =y
N+ 1—x .
and
_ 21 = y)

o = .
yad = x
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Lemma 2.1  The recursive procedure (2.1) is convergent, so that the limits

p’; = lim p’: (s),
s> ®
p? = Lim p’ (s), (2.3)
s ®
i=1,... M

exist.

Proof See Appendix A.

Procedure (2.1) represents an aggregating technique consisting of two principal
components, a forward and a backward aggregation. In the forward aggregation, the first
two machines and the intervening buffer are repeatedly replaced by a single machine,
thereby reducing the length of the line, until the entire line has been reduced to a single
machine. Parameter p/is the machine parameter of the single machine replacing the first
i machines and i — 1 buffers. Similarly, in the backward aggregation the last two machines
and the intervening buffer are repeatedly replaced by a single machine until the entire line
has again been reduced to a single machine. Parameter p” is the machine parameter of the
single machine replacing machines i, ..., M and buffers i + 1, ..., M — 1. Parameters p/
and p” can be interpreted as

pl = Prob{machine i produces a part | machine i is not blocked}.
p" = Prob{machine i produces a part | machine i is not starved}.

Therefore, since the last machine is never blocked, the production rate estimate for the line
(i)—(vi) is defined as

PResr(pl""’pM’Nl’""NM—l):pjerI' (24)

To evaluate the accuracy of this estimate, consider the joint steady state probability,
Xi. h, ..., hj), that the consecutive buffers i,i + 1, ...,j, 1 <i<j< M — 1, contain h,,
hiqs .., h; parts, respectively. In general, one cannot expect that this joint probability is
close to the product of its marginals, thatis, X ; ; (h;, ..., h) 2 Xi(h) X;py; (hipys - 5hp),
where X; (h;) is the probability that the ith buffer contains h; parts. It turns out, however,
that for certain values of h;, h,y, ..., h;, related to blockages and starvations, they are
indeed close. Specifically, define

8, (B)=1X, ;(0,b, Ny ... N) = X(0) Xi1y; (b, Niypo ..o, NI
87 (a) =X, ;@ Ny, ... N) = X(a) X;oy; (Niy s ..., N)) (2.5)

b =max max (5 (p) §i(a)).

iy
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Then, as it follows from extensive numerical experimentation, § is always small. An
illustration is given in Table I for several lines with N, = 3,7 = 1, 2, 3. At present, we
do not have an analytical proof that § < < 1, although we believe that such a proof is
possible. Therefore, we formulate

NuMmericaL Fact 2.1 For serial production lines defined by assumptions (i)—(vi),

d< < 1.

It should be pointed out that § turns out to be small only in lines where the first machine
is never starved and the last machine is never blocked, which is the case in model (i)—(vi).
If the first machine can be starved (say, by CONWIP raw material dispatch [17]) or the last
machine can be blocked (for instance, by the empty carriers buffer [18]), & is no longer
much smaller than one. We suspect that many heuristic algorithms for production rate
evaluation work well for open lines and much worse for closed lines precisely due to this
property.
TueoreM 2.1 Under assumptions (i)—(vi), production rate estimate (2.4) results in 0(d)
accuracy, that is,

Error=1PR,, (Pys .o Paps Nis s Nyy—) = PR(D1s oo Paps Nis <o Ny ) | ~ O(3),

where O is defined in (2.5).

Proof See Appendix A.

Although this estimate is quite weak (since 8 is not an asymptotic parameter) numerical
experiments, illustrated in Table I, show that the proportionality constant O(3) is quite
small, and the estimate (2.4) results in high accuracy.

In what follows, the analysis of the process of continuous improvement, that is, the
solution of Problems 1.1-1.3, is carried out in terms of the production rate estimate—
PR, (P15 .- s Pap Nis -y Nyy_y), defined by (2.1)—(2.4).

To conclude this section, we cite the following two structural properties of PR,

THeEOREM 2.2 PR, possesses the reversibility property, that is,

PR, (P1s - Pats Nis oo Ny—1) = PR Ppgs -, P1> Ny -0 V).

Proof See Appendix A.
Reversibility properties of this type have been known for a long time [19].

THEOREM 2.3 PR,,, possesses the monotonicity property, that is, function PR, (p,, ...
P Ny, ..., Ny,_y) is monotonically increasing with respect to all arguments.

Table I Behavior of 8 and estimation error

D1 P» D3 Da PR ) Error

0.80 0.80 0.80 0.80 0.7109 0.0073 0.0008
0.70 0.80 0.70 0.80 0.6352 0.0233 0.0047
0.70 0.90 0.70 0.90 0.6562 0.0568 0.0144
0.60 0.99 0.99 0.60 0.5705 0.1181 0.0283
0.99 0.60 0.60 0.99 0.5294 0.0083 2*107
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Proof See Appendix A.
This theorem is a particular example of a general monotonicity result discovered in [20].

3. IMPROVABILITY UNDER CONSTRAINTS

3.1 Improvability with Respect to WF

In compliance with Definition 1.2, serial production line (i)—(vi) is improvable with

respect to WF if there exists p}, ..., py such that [T p} = p" and

PR, ( Py -oes Paps Niv ooy Ny ) > PR ( D1y ooy Pags Nis oy Ny,
Tueorem 3.1 Serial production line (i)—(vi) is unimprovable with respect to WF if and
only if
pl=p,., i=1..,M-1 (3.1
Proof See Appendix B.

CoroLLarY 3.1 If condition (3.1) is satisfied,

(a) each machine i is blocked with almost the same frequency as machine i + 1 is starred,
that is,

| b, = $i0y| S O@),i=1,...,M— 1.

Il

b; Prob{machine i is blocked,} 3.2)
s; = Prob{machine i is starved,}

where 8 is defined in (2.5);

(b) each buffer is on the average close to being half full in the following sense:

E[h N Nt +0(6)~N" =1 M—1 3.3
122 Nri=4 2 T 2

where h; is the steady-state occupancy of the ith buffer and E[ - | denotes the expectation.

Proof See Appendix B.

Remark 3.1 Although condition (3.3) seems somewhat unexpected it is, in retrospect,
quite logical. Indeed, the buffer between machines i and i + 1 is used to prevent the
blockage of machine i and the starvation of machine i + 1. Therefore, if this buffer is half
full, it offers equal possibilities for alleviating the perturbations for both machines. If the
buffer is too full, the production rate of machine i is too high, and p, can be decreased and
reallocated to another machine, possibly machine i + 1, so that the PR,,, of the whole
system is increased. Analogously, if buffer i is too empty, machine i + 1 works “too fast”
and a fraction of p,,, can be transferred to another machine so that PR, is increased.
Thus, the status of the buffers—which ones are empty and which ones are full—offers
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guidance for potential improvements. Therefore, (3.3) is an indicator of improvability with
respect to WE.

To characterize p}, i = 1, ..., M, which render the system unimprovable, introduce
PR,, = max PR, (P ... PuNyps ooy Ny_y). (34)
Pis oo Py
HA?:] pi= P

Consider the following recursive procedure:

L 1Ml N; + x(n)
+1)= M _ 174. 3.5
x(n + 1) (p),l:ll<N,~+1 (3.5)
THEOREM 3.2 Assume EM ! N = MJ/2. Then recursive procedure (3.5) is a contrac-

tion on [0, 1]. Its steady state x", satisfies the property

x = limx (n) = PR, . (3.6)

n—%

Moreover, the sequence p), ..., py which renders the serial production line (i)—(vi)
unimprovable with respect to WF is defined by

x N, +1 .
PN e, ) PR
1 est
. N, +1 N; + 1 . .
pi= : —|PR,, i=2..,M-1, 3.7
Ni—l + PRext Nz‘ + PRest

\ Nyt 1\ e
Pu = NM 1+ PRES, est*

Proof See Appendix B.
THeoreM 3.3 Serial production line (i)—(vi), with N;=N, i=1,..., M — 1, and (3.1)
satisfied, satisfies the bowl phenomenon:
D1 =Dy <Py --sPy-1-
Proof Follows directly from (3.7) taking into account that PR, < 1.
The bowl phenomenon as an indicator of optimality is well known [21]-[22].
3.2 Improvability with Respect to WF and WIP Simultaneously

As it follows from Definition 1.3, serial productlon line (1) (vi) is improvable with respect
to WF and WIP 31mu1taneously, if there exist p), ..., pj, and N, ..., N, , such that
™, pi=p" and Z¥'N;=N" and

PR, (Pysos P Nivos Ny )) > PR, (Dys oes Pags Ny oo Ny,
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Tueorem 3.4 Let N be an integer multiple of M — 1. Then serial production line (i)~(vi)
is unimprovable with respect to WF and WIP simultaneously, if and only if (3.1) takes
place and, in addition,

pl=ph  i=2.. M- 8
Proof See Appendix B.

CoroLLARY 3.2 If condition (3.8) is satisfied, each intermediate machine is blocked and
starved with practically the same frequency, that is,

b= s{0@), i=2..,M—1. (3.9)

where b,, s, and O are defined in (3.2) and (2.5), respectively.
Proof See Appendix B.

Remark 3.2 Condition (3.9) also can be given a simple interpretation. Buffers i — 1 and
i serve to prevent starvations and blockages of machine i, respectively. Thus, if machine
i is blocked more often than it is starved, buffer i — 1 can be reduced and the excess
capacity could be added to another buffer, possibly buffer i. Analogously, if machine i is
starved more often than blocked, N; should be reduced and N, _, increased. Conditions
(3.3) and (3.9) are indicators of improvability with respect to WF and WIP, simultaneously.

The values of N; and p; which render the system unimprovable with respect to WF and
WIP simultaneously can be characterized as follows:

THEOREM 3.5 Let N* be an integer multiple of M — 1, and let

*%

PR ,,= max PR, (pi,..coPws Ny oo Ny )

*

o ops I1Y pi=p

Ny Ny_s M N,=N
i=1

Then conditions (3.1) and (3.8) are satisfied if and only if

. Ny +1 ”
pl = pM= 1L DD PResr’

Ny + PR,
oo (N PR, i =2,...M~1
P AN Ry e PR
(3.10)
. N’
N = . i=1,..,M—-1
M~—1

Proof See Appendix B.

Thus, a system is unimprovable with respect to WF and WIP simultaneously, if and only
if all buffers are of equal capacity (no bowl phenomenon occurs). The isolation production
rates of machines i, i = 2, ..., M — 1, are also the same; the isolation production rates of
machines 1 and M are somewhat smaller than those for the other machines, as defined by
the first two expressions in (3.10).
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3.3 Improvability with Respect to WIP

From Definition 1.1, serial production line (i)-(vi) is improvable with respect to WIP if
there exists N, ..., Ny, ; such that Z*° N'= N* and

i=1

PR, (Pys s Pap Npp o Nyy—)) > PR, (Pys oo Paps Nips ooos Nyg_ -

THEOREM 3.6  Serial production line (i)—(vi) is unimprovable with respect to WIP if and
only if the quantity

Pl pi
17,17» (3.11)

min  p; < min
i=1...M

is maximized over all sequences Ny, ..., Ny, such that L} N, = N".

Proof See Appendix B.

Unfortunately, this result is of little practical significance, mainly due to the fact that the
first and the last machines (which are never starved or blocked, respectively) are included
in (3.11). In addition, the interpretation of (3.11) is much less obvious than that of (3.2).
To alleviate these difficulties, we modify (3.11) to a form similar to (3.9) with the

provision, however, that the p;” s, i =2, ..., M — 1, may not necessarilty be equal to each
other:

Criterion 3.1 Serial production line (i)—(vi) is practically unimprovable with respect to
WIP if the quantity

1
max  —Ib, — s (3.12)
i=2,...M-1 Pi
is minimized over all sequences N,, i = 1, ..., M — 1, such that Z%_ N, = N°, where

b; and s; are defined in (3.2).
The term “practically unimprovable” is used here in the following sense:

NumericaL Fact 3.1 Let Ny, ..., Ny, be the sequence which maximizes (3.11). Let
N7 ..., Ny, be the sequence which minimizes (3.12). Then

IPR,, (Pps .o Pas N 1o o Nyp—)) — PR,y (Dys s Py N o o N o) | =28, < < L.

This fact has been established on the basis of extensive computer simulation. Several
illustrations are given in Table II for systems with M = 4, N* = 10, p, as indicated, and
where PR, ,= PR, (P, ..., Ps» N, N5, N3).

Remark 3.3 Criterion 3.1 can be given a simple interpretation: A system is practically
unimprovable with respect to WIP if the weighted (by the inverse of the isolation
production rates, 1/p,) differences between blockages and starvations for each intermediate
machine are as close to each other as possible. This, in particular, implies that machines



106 D. JACOBS AND S. M. MEERKOV

Table II Illustration of Numerical Facts 3.1 and 3.2

P P2 P3 P PR*,, 3, g
0.80 0.80 0.80 0.80 0.7211 0 0
0.70 0.80 0.70 0.80 0.6496 0 0

0.70 090 0.70 0.90 0.6795 0.0016 0.0016
0.60 0.99 099 0.60 0.6000 0.0024 0.0201
099 0.60 0.60 099 0.5679 0 0

with smaller p,’s should have 15, — s, | smaller than those with larger p,’s (protection of the
“bottlenecks”). Condition (3.12), rewritten in the form

1
—lb;— s;l~const, i=2,.., M-I, (3.13)

1

is referred to as an indicator of improvability with respect to WIP.
At present, we do not have an analytical expression for the sequence N, ..., N, , which

minimizes (3.12). A procedure, however, has been developed which approaches this
distribution:

Procedure 3.1

(a) Consider the line defined by (i)-(vi) and, using (2.1), calculate b, = 1 — pf’/ p; and
s; = 1=pl/p,i=2,...,M—1.Note that due to Lemma A. 6, 15, — b, | ~O(8) and | 5,
- 5;1~00),i = 1, ..., M. Calculate

| T
t=—1b—51, i=2,.,M-1L.
Pi

Let machine i * be the machine with the largest ,.

(b) If machine i " is blocked more often than starved (i.e., p%-< p/-), transfer one
buffer slot from buffer i~ — 1 to buffer i *. If machine i is starved more often than
blocked (i.e., p% > pl-), transfer one buffer slot from buffer i * to buffer i * — 1.

(c) Calculate PR',,, defined by the new buffer distribution. If PR',;, > PR,,, g0 to step
(a). If PR',;, = PR,,, then stop, retaining the previous buffer distribution.

NumericaL Fact 3.2 Let N, ..., N, be the sequence which maximizes (3.11). Let

stk

N;,"., Ny be the sequence obtained from Procedure 3.1. Then

IPR,;, (s os Pas N1s cos Ny ) = PRy (s s Pas N a N ) 1 =18, < < 1.
This fact has been established through extensive computer simulation. Several illustrations

are given in Table II, starting in each case from the initial buffer distribution N, = 1, N,
= 1, N3 = 8.

4. CONSTRAINT RELAXATION

4.1. General Considerations

In the previous section, improvability under the constraints T~} N; = N " and IT? | p,
= p” has been analyzed. From Theorem 2.3 it is clear that an increase in a particular N,
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or p,, so that T N; > N" or 1%, p, > p ", never leads to a decrease in PR,,,. The
questions, however, arise: Which particular p; should be increased so that the largest
possible increase in PR, is obtained? Which N, should be increased so that the best
possible effect is obtained? Finally, how much should N* be increased so that an
appreciable increase in PR, is observed? These are the questions addressed in this
section.

4.2. Bottleneck Machine

In section 1, the bottleneck machine has been defined (Definition 1.4) as the machine
which leads to the largest incremental increase of the system performance index when the
production rate of the machine is increased. In terms of the serial production line (i)—(vi),
machine i is the bottleneck if

dPR oPR,, . .
=—Vj#i

ap; ap;

est

As it has been alluded to in section 1, the machine with the smallest p; is not necessarily
the bottleneck. An example is given in Table III, where not the worst but the best machine
turns out to be the bottleneck. This happens because the bottleneck property depends not
only on the machines, but also on the buffers. Therefore, in general, the determination of
the bottleneck machine is a non-trivial problem. In systems unimprovable with respect to
WE, however, this problem becomes quite simple due to the following property:

TueoreM 4.1  In serial production lines unimprovable with respect to WF, the following
property holds:

dPR,,,
api

D; = const, i=1,...,.M. “.1)

Proof See Appendix C.

Relationship (4.1) implies that the machine with the smallest p; corresponds to the
largest dPR,, /dp;. Therefore, in lines unimprovable with respect to WF the bottleneck
machine can be found easily—it is the machine with the smallest production rate in
isolation.

4.3. Bottleneck Buffer
As defined in section 1, buffer i * is the bottleneck buffer of the line (i)—(vi) if
PR, (Pis s Pis Nps oos Ne + 1,0, Ny ) > PR, (pys s Paps Ny - N,
1,0 Ny ), Vi#i
As it is the case with the bottleneck machines, the smallest buffer is not necessarily the

bottleneck. However, in lines unimprovable with respect to WIP the search for the

TABLE III Bottleneck example
i 1 2 3 4

P 080 0.83 077 0.80
N, 2 25—
OPR,, [ op, 0369 0.452 0443 0.022
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bottleneck buffer becomes quite simple. Indeed, assume that a line is unimprovable in the
sense that Procedure 3.1 has been carried out. Let machine i * be the machine with the
largest ;. Then either buffer i” — 1 (if p2 > p{-) or buffer i " (if p2 < pf) is the
bottleneck buffer in the following sense:

NumericaL Fact 4.1 Let N7, ..., N}, be the assignment of N * buffer spaces accordmg
to Procedure 3.1 and let machme i * be the machine with the largest t,. Let N}, ..., N~
be the assignment of N~ + 1 buffer spaces according to Procedure 3.1. Then

| PR, (Pys oo Dy Ny s s Ne_ + 1, N o)) —
PR, (Dps oo P N s s Ny | =18, < < 1,

if p2 > pJ, or
| PR, (Pys oo Paes Ny s s Nt Loy Ny ) = PR, (P oo Pas Ny s oy Ny |
=:19,< <1,
if p7- < pl-
This fact has been arrived at through numerical studies. It is illustrated in Table IV for

several lines with N* = 10, and starting Procedure 3.1 in each case with N, = 1, N, =
1, and all remaining buffer slots allocated to N.

4.4. The Choice of N*

As it is clear from the above, an increase in N~ leads to an increase in PR,_. However,

est*

there exists an N " such that any further increase in its value leads to an insignificant
increase in PR,,,. This phenomenon is captured in Definition 1.6 of N~ being e-adapted to

D1s ---» Ppy (section 1). For serial production line (i)—(vi), N * is e-adapted to Pis s Dpg 1
|PR,,(N") — PR .
TR PR gy
R (N7)

where PR, (N™) = PR, (P1s.s Pap Ni» s Nayp 1), N = zM—I N,and Ny, ..., N,,_, are
calculated according to Procedure 3.1. To characterize this N, define T as the time that
each part spends, on the average, from the moment it enters the first machine until the
moment it is processed by the last machine. From Little’s Law and Corollary 3.1, for a line
(i)—(vi) unimprovable with respect to WF,

Table IV Illustration of Numerical Fact 4.1

P P> &) Py P R**,, 3,
0.80 0.80 0.80 0.80 0.7272 0.0004
0.70 0.80 0.70 0.80 0.6575 0.0020
0.70 090 0.70 090 0.6787 0.0053
0.60 099 099 0.60 05817 0.0130
099 0.60 0.60 099 0.5709 0
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*

N
T~ . i .
2PR,(pys--sPu>Nis oo s Ny )

For a line unimprovable with respect to WIP,

*

T= N _
PRest(pl’ -"5pMs Afkl N ""NM—I)

=T(N").

Typical behaviors of T(N ") and PR,, (N ") are illustrated in Figures 1 and 2, respectively.
Since PR, (N") exhibits saturation, the increase of N * beyond a certain value leads only
to a practically linear increase of the residence time estimate T(N *) without a meaningful
increase in PR,;,. When the work-in-process is allowed to become infinite, the average
production rate of the line becomes equal to the average production rate of the slowest
machine, that is, the machine with the smallest p,. Thus, N~ which is e-adapted to p,,
Pu»> can be determined from the equation

ooy

PR,,(N*) =

min P 4.2)
=1,

1+e: M

This N, being distributed according to Procedure 3.1, represents a compromise between
the competing goals of ensuring a high average production rate and maintaining low
work-in-process inventory.

0-9 L] Rl T T T v T 1 T
PR(N*)
0.8 r 4

0.7 8 .1
0.6 -
05 1

04 .

0.3 1 1 1 1 1 1 A 1 Il
0O S5 10 15 20 25 30 35 40 45 50

N*

Figure 1 Production rate of the line with buffers allocated according to Criterion 3.1, M = 4, and p, = 0.8,
i=1,..., 4.
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T(N*)

70 T T T T T T T T T

50 |
40 t
30 |

10 |

0 L 1 i Il 1 1 L 1 1

0O S5 10 15 20 25 30 35 40 45 50
N*

Figure 2 Time constant upper bound for the line with buffers allocated according to Criterion 3.1, M = 4, and
p;=08,i=1,...,4.

5. RECOMMENDATIONS FOR THE PROCESS OF CONTINUOUS

IMPROVEMENT

Based on the properties of improvability described above and on the experience gained in
several applications at automotive plants, we formulate the following guidelines for the
process of continuous improvement in large volume production systems:

1.

2.

. If (B) is not satisfied then either use Theorem 3.5 to calculate p }, ..., p, and N, ..

Verify assumptions (i)—(vi). If they are not met, the methods prescribed here are,

strictly speaking, not applicable. If they are, proceed with the next step.

Verify whether

(o) Each buffer is, on the average, close to being half full,

(B) 1/p; (starvation frequency of machine i—blockage frequency of machine i) =
const for all i = 2,... M-1.
If either (o) or (B) or both are violated, the line is improvable (under constraints)
in the appropriate sense (WF, WIP, or WF and WIP).

. Identify parameters p; and N,. The p,’s can be obtained from the up-time records. The

N;’s can be evaluated as the capacity of buffers, conveyors, accumulators, and so on.
If only the p;’s are assignable (i.e., the N;’s are fixed) and (o) is not satisfied, using the
p;’s and N;’s identified and Theorem 3.2, calculate p i, ..., p o

N",,_, if the p,’s and N,’s are assignable, or Procedure 3.1 to redistribute the WIP if
only the N,’s are assignable.

. If both (o) and (B) are satisfied, the system can be improved only by relaxing the

constraints. To accomplish this



THEORY OF IMPROVABILITY 111

(o) Using Definition 1.4 and Theorem 4.1, find the bottleneck machine; improve its
performance in isolation (i.e., increase the corresponding p,) by any means
available.

(B) Choose an appropriate €, and using (4.2), determine N~ so that the WIP is
e-adapted to py, ..., py,. Increase or decrease N~ appropriately, and determine
N1, ..., Ny, vsing either Theorem 3.5 or Procedure 3.1.

7. Implement any of the recommendations 4-6 and, if necessary, go back to step 2.

Although these recommendations represent quite an arbitrary way of utilization of the
improvability indicators, they have proven to be quite useful in a number of practical
applications.

6. CONCLUSIONS

In this paper, we described the laws which govern the behavior of serial production lines
defined by assumptions (i)—(vi). According to these laws,

(o) A production system is well designed if each buffer is, on the average, half full.

(B) A production'system is well designed if all intermediate machines have weighted (by
the inverse of the isolation production rate) differences between the frequencies of
blockage and starvation as small as possible.

(y) In a well-designed system the maximal WIP is adapted to the machines’ isolation
production rates.

If these indicators are violated, the system performance can be improved by, first,
redistributing WIP and WF and, second, by eliminating the bottleneck machines and
buffers. The methods and guidelines for these continuous improvement measures are
described.

APPENDIX A. PROOFS FOR SECTION 2

The logic of the proof of Lemma 2.1 and Theorem 2.1 is as follows:
First, if the distribution of the last buffer occupancy, X,,_; (-), is known, the production
rate can be calculated immediately as

PR = (1 — X3;_1(0)) pyr-

Second, X,(:),i = 1, ..., M — 1, can be evaluated, under Numerical Fact 2.1, with accuracy
@(8) if the conditional probabilities p/ = Prob{m, produces a part | m, is not blocked} and
ﬁl,? = Prob{m, produces a part | m; is not starved}, i = 1, ..., M, are known (Lemma A.7).
Third, these conditional probabilities are O(d) close to p,f and pf-Z i =1,...,M, the limits
of the sequences p(s) and p°(s), s = 0, 1, ..., generated by the recursive procedure (2.1)
(Lemma A.10). Finally, these limits do exist (Lemma 2.1).
To prove Lemma 2.1, we need the following facts:
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Lemma A.1 Function Q (x,y,N),0<x<1,0<y<1,Ne Z,, defined in (2.2), has
the following properties:

(a) monotonically decreasing in x,
(b) monotonically increasing in y,

(c) monotonically decreasing in N,
(d) takes values in (0, 1).

Proof For x # y, re-write Q (x, y, N) as follows:

1—x 1—x
Q(x,y,N)= S r
1 =2 1=y
ya 1 —ao" ( y)a
1l -« 1—a 1l -«

Substituting the expression for o we obtain:

1—x

Ly, N) =
Q. N) -—nyd-x

o
(1 =—x0—x0—-y)

l+a+a+ - +a" "+

1-x
= Al
l+o+0?+ -+ "+ (1 —xa (A.D
_ 1—x
B x(1 — )
L4atoltto¥ e+ V) v
y

Statement (a) (or (b) or (c)) follows from this expression since the numerator is
monotonically decreasing in x, (constant in y and N), and the denominator is monotoni-
cally increasing in x (decreasing in y and increasing in N). Statement (d) follows from this
expression since the numerator is in (0,1) and the denominator is a positive number greater
than 1.

For x = y, expression (A.1) holds again, since in this case o = 1. Therefore, properties
(a)-(d) hold in this case as well.

Lemma A2 Consider p{(s) and p%s), i = 1, ..., M, defined by recursive procedure (2.1).
Ifforallj=2,..., M, pjf(s) < pf(s — 1), then forallj=1,.... M -1, p?(s +1) > pj?(s).

Proof By induction: For j = M — 1, using Lemma A.1, from (2.1) and the assumptions
of Lemma A.2, we obtain:

Py G+ 1) = py i [1 = Q(pyspl, (), Ny ]

> Pyt (1= Q (o Py (s = 1), Ny |

= py_,®).
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Forj =M -2, M - 3,...,2, 1, we write

PG+ =pl =0, +1).p/).N)]
> pi 1= Q(p),, ). p/ (). N)]

> p[L= QP ©).p/ s = D.N)]

= pj (s).
LM — 1,pl(s + 1)>p/(s), thenforallj = 2, ..., M,

Lemma A3 Ifforall j
pi(s + D< p/(s.

Proof Similar to that of Lemma A.2.

Lemma A4 Sequences pjf (s) and p f (s), s = 1,2,3, ..., are monotonically decreasing and
increasing, respectively.

Proof By induction: For s = 1, due to Lemma A.1, we have

pl () =p;[1 = Q(ply (D, p (. N)1<p,=p/ (0, 2=j=M.
Assume that for s > 0,
pl<plis—1, 2=j=M.
Then by Lemma A.2,
pjs+1)>ph(s), 1sj=M-1
So, by Lemma A.3

pis+ 1) <pl(s), 2=j=M.

Proof of Lemma 2.1 Since the sequences pjf (s) and p J’-’ (s), 1 < j < M, are monotonic
(Lemma A.4) and bounded from above and below (Lemma A.1) they are convergent.
The proof of Theorem 2.1 requires the following lemmas:

Lemma A.5  Serial production line (i)—(vi) with M = 2 has production rate

PR=p,[1 = Q(p,ps N)]1=p;[1 = Q(pppy, Ny 1

which is a monotonically increasing function of p,, p,, and N;.

Proof Let X (j, s) denote the probability that the buffer contains j parts at time moment
s. This is a closed irreducible Markov chain, which therefore converges to a unique
equilibrium distribution. Let

X(j)=limX(j,s), O=<j=N,

s—00
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This equilibrium distribution must satisfy the following equilibrium equation of the
Markov transition equation:

X(0)

(I = pNX(0) + (1 = pp pX(1)

X(1) = pXO0) + [pypy + (1 = p) (1 = pIX(1) + (1 = p)) p, X(2)

X(g) = p(1 = p)X(j =D +[pypy+ (1 = p)A — p)IX()
(A2)
+ (A = pppX(j + D), 2=j=N -1
XN = pi(1 = ppX(N, — 1) + [1 = py + py prlX(N)).
Solving equation (A.2), we obtain
X(j) = X(0) ( ) o, 1=j=N, (A.3)
1—p,
where o0 = p;(1 —pz)/p2(1 —pyp- Since X(0) + X(1) +---+ X(N,) = 1.
a o? a™
XO0) |1+ + + -+ =1
l=p, 1-p 1—p,
and
l1-p
X (0) = 2 :
o+ +a'+1l—p,
After some algebra this simplifies to
d-p)d-o
Aol s,
1-=LoM
X(0) = D) (A4)
1 —p, P =p
N, +1—p/ b

For the line produce a part during a cycle, the second machine must be operational and not
starved. Therefore, the production rate, PR, can be calculated as follows:
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PR = p)(1 = X(0)) = p,[1 = Q (p1, P2 N 1, (A.5)

where Q (x, y, N) is defined by (2.2).
From (A.3) and (A.4), after simplifying, we have:

( 1
1 —_
s
NG P ¥ p
X (V) =< 1 —p—(;) (A.6)
1
1 —
| N, + 1 —p P1 = D

Since the first machine produces a part if it is operational and not blocked,

PR =p(1 = (1 = pp)X(Ny) = py[1 = Q (P2 p1> NI (A7)

The monotonicity of the production rate in p, (or p, or N;) follows directly from (A.5)
(or (A.7)) and Lemma A.1.

Introduce the following conditional probabilities:

p! = Prob{m; produces | m; is not blocked},

p> = Prob{m, produces | m; is not starved}. (A.8)

These probabilities play a crucial role in the proof of Theorem 2.1 Specifically, we show
below (Lemma A.7) that if 5/ and p%, are known, then the stationary probability
distribution of buffer occupancy, X; (), can be calculated with the error O(3). Further,
Lemma A.10 shows that 5/and p/,, can be calculated from the steady state of recursive
procedure (2.1) with the error O(3). Therefore, since the production rate can be calculated
from PR = (1 — X,,_1(0))p,,, the claim of Theorem 2.1 will follow.

LemMa A.6  The conditional probabilities p{ p?, take the following forms:

(@ pl=pi [l =X O] +0®),  i=2,...M,
(b)ﬁ? =p;[1- ij= i+1 (Hrj;il+1 Pr) a- p) Xi,”.,j—l N oo Nj—l)]
+0@©®),i=1,..,M-1,
where X;  ; (h, ...h)) is the steady-state probability that consecutive buffers i,..., j in
production line (i)—(vi) contain h,, ..., h; parts, respectively, and 8 is defined in (2.5).

Proof The probability that machine i is blocked can be expressed as follows:

M j—1
Prob{m; is blocked} = >, ( I1 p,> A =p) X 1 (Nyow Ny (A9)

j=itl \ r=itl
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Since machine i is not starved when buffer i — 1 contains one or more parts, using the
conditional probability formula and the definition of 8, we write:

Prob{m; is blocked | m; is not starved} =

—1 -~
% JH p, | A —=p) RS i-1,..j-1 (& Niy ..y Ni_y)
4 )

I

J=it1 N =il 1 _Xi-1 (0) (A 10)
M j-1 X, Ny ...N_)—X;_ i1 (O,N; ... N;_))
= > ( I1 p,) (1 —p}.) s 1 /ll_X 1,(.)..,1 1 ; ,’
j=it1 \ r=i+l —1(0)
s (T Xijor W o Nie) = X \O) X oy N, o N2 )
= 2 < I1 Pr> 1 —=p) s ] ll—Xl 5 | J=1
j=itl \r=i+1 i—1(0)
+0@).

M j=1
=3 ( 1 p,> 1 =p) X, BN Ny + O9).

j=it1 \ r=i+1
From here and equation (A.9) we obtain
Prob{m; is blocked | m; is not starved} =Prob{m; is blocked} + O (8).

Using repeatedly the conditional probability formula, the definition of 5/, and equation
(A.10), we obtain

Il

p { Prob{m; produces | m; is not blocked }

Prob{m; is up, not blocked, and not starved | m; is not blocked}

Prob{m,; is up, not blocked, and not starved}
Prob{m; is not blocked}

Prob{m; is up not blocked | m; is not starved}
Prob{m; is not blocked }

Prob{m; is not starved}

o Prob{m; is up | m; is not blocked or starved}

Prob{m; is not blocked | m; is not starved}
Prob{m; is not blocked }

= Pi(l =X 0))
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1 — Prob{m; is blocked | m; is not starved}

=p(1—-X_ (0
pi( i1 (0) 1 — Prob{m, is blocked}

pi(1 =X, (0) + O ().

This proves statement (a) of the lemma. Statement (b) is proved analogously.

Consider now (M — 1) two machine, one buffer lines I:,-, i= 1, ..., M -1, where the first
machine is defined by j/, the second by 5 2,, , and the buffer is of capacity N,. Let X,(-)
be the equilibrium probability distribution of buffer occupancy of line L,. Along with these
M —1 lines, consider the line (i)-(vi) with M machines. Let X; (), as before, be the
equilibrium probability distribution of buffer occupancy of buffer i. Then, we have

Lemma A.7 The following property holds:

X)) -X()|~00®), i=1,..M-1,  j=0,.,N,

where 8 is defined by (2.5).

Proof Consider line (i)-(vi) with M machines. Let K, = [k; ....k; _, Kipps kpg 1% 1< i
SM-1,0<k; <N, j # i be an (M- 2)-dimensional vector. Let Yih, K), 1 <i<M-
1, denote the probability that there are h; parts in buffer i and k;, parts in buffer j, Vj # i.
Since line (i)-(vi) can be described by an ergodic Markov chain with states Y; (h;, K;), in
the steady state we write:

Y; (0, K) = > Y, (0, K;) Prob{m; does not produce | 0, K;} Prob {K; — K;| 0 — 0}
K,

+ > Y, (1, K;) Prob {m; does not produce, m, , , produces | 1, K;} Prob {K; = K;| 1 - 0}.
Kl

where Prob{m; does not produce | &;, K;} denotes the conditional probability that machine
i does not produce a part during a cycle, given that buffer i contains A; parts and buffer j
contains k; parts, Vj # i, and Prob{K — K,| h;,— h} denotes the condmonal probability of
the transmon from the state where buffer j, j ¢ i, contains k parts to the state Where buffer
J contains k; parts, given that the number of parts in buffer i changes from h; to h,
Summation over all K; € RM2 yields

X, (0) = X Y, (0, K;) Prob{m; does not producel|0, K;} ¥, Prob {K; — K| 0 — 0} +
K, K,

ZYi (1, K')) Prob{m; does not produce, m,  , produces| 1, K;} z Prob {K;, — K;| 1 = 0}.

K; K;

Since ) Prob {K; = K| 0 — 0} =1,
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X, (0) =Y Y, (0, K;) Prob {m, does not produce| 0, K} (A.11)
K|

+ Z Y; (1, K;)Prob {m; does not produce, m;+ produces| 1, K;- }.
7

Consider now the first term on the right hand side of equation (A.11):

Y Y, (0, K;)Prob {m, does not produce| 0, K}
X

i

= Y Y, (0, K;) Prob {m; does not produce| 0, K;} (A.12)
K,iucl’;tlllat

+ Y, (0, K,) Prob {m; does not produce| 0, K}.
K, such that
i-1=0

When buffer i — 1 contains at least one part, machine i is not starved, and when buffer i
contains zero parts machine i is not blocked. Therefore, the probability in the first term on
the right hand side of equation (A.12) is equal to 1 — p,. When buffer i — 1 contains zero
parts, machine i is starved, and the probability in the second term on the right hand side
of equation (A.12) is equal to one. Consequently,

Z Y; (0, K;)Prob {m, does not produce| 0, K}
T

=1 -p)IX;0)- X;_,,0,0] +X,,,0,0)
=X, 00 -p)+ Xi 1 0, 0) p,. (A.13)

Using (2.5), this can be rewritten as

Y ¥, (0, K;)Prob {m; does not produce| 0, K; }

K!

i

Il

X0)1 = p) + X, _1(0) X, (0)p; + 0 ()

= XO = p; (A =X, ()] +0).
By Lemma A.6, we finally obtain:

Y ¥, (0, K;)Prob {m; does not produce| 0, K} = X, (0) (1 — p/+ 0 (3)).

K
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Analysis of the second term on the right-hand side of equation (A.11) proceeds
analogously and results in

X0) =X, (0 (1 —p/+0@)+ X, (LU —-pHpt,..

Similar arguments can be used to obtain equations for X,(j), j=1, ..., N,. As a result,
we obtain the following set of equations:

X(0) = (1= pl+0@)X©0) + (1 —pHp L, X(1)
X(1) = piX0) + [pipl, + A = pHad = php) + 0@ X(1)
+ (1-p)p s X2 (A.14)
XG) = plQA =pl) X =D+ pipla + A=pH A = pl) + O®NX)
+A=phplaX(+1) 2sjsN -1
XN) = pld—=pl XN, — D)+ [1—-pb +plpl, + 0@ XN).

These equations can be written in matrix form as

X,=(A+AAX,, X, =I[X[0),..XN)" (A.15)
where
1-p/ 1 -pHpt,
pl plpla+a-pha-ph))
A= !;{(1 _I;?ﬂ)

Loplph +(=ph) A-ph) (1-pD)ph,
l;]ip(l"ﬁ?ﬂ) 1"1;?+1+l;?+11;{

(A.16)

and A A is a diagonal matrix with diagonal elements all of the order O(3), and therefore
14 All - 63) |

As it follows from equation (A.2) of Lemma A.5, the equilibrium distribution of parts
X.(-) of line L, is described by X, = AX,, where A is given in equation (A.16). Since A is
the state transition matrix of an ergodic Markov chain, A = 1 is an eigenvalue of
multiplicity 1 of A. Therefore, using the perturbation theory (see, for instance, [23]) we
obtain:
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| X, (j)H)—X,(j)|~0B), 1=i=M-1, 0=<j=N\,

Lemma A.7 showed that if the conditional probabilities p/and p 2 are known, then they
may be used to estimate the probability distributions to buffer occupancy X; (-) of line
(i)-(vi). Our next goal is to show how p/and p ¥, the steady-state values determined via
recursive procedure (2.1), can be used to determine p/ and p 4. Before we do so, we will
need a few preliminary results.

As it follows from Lemma 2.1, the steady state equation of recursive procedure (2.1),
that is,

pl=p (1 —0@ . Pl N_)I 2=i=M,

pi=pill-Q@l.phN)  1=i=M-—1, (A.17)

f =
1

i =p, Py =P

has at least one solution P,,, = [Pl Db D5 oo D5 17, We prove below that this
solution is, in fact, unique. To accomplish this we introduce (M — 1) two machine one
buffer serial production lines, L;, i =1, ..., M — 1, where the first machine has the isolation
production rate p7, the second p?, ;, and the buffer capacity is N,. The following properties
hold:

Lemma A.8 Let PR, be the production rate of line L, i = 1, ..., M — 1, and let PR,, = p},.
Then PR, =pfip”,-/p,-, i=1,..., M. Moreover, PR,=const, Vi=1, ..., M.

Proof From Lemma A.5 and eq. (A.17),for 1 <i<M -1,

PR; = P:f[l -0 (Pi+1,Pifv N)l=p;[1 -0 (Pi+1’P,f’ N)] p_ =T
i=1,..,.M—-1,
and
f b f
PRM=p,{4= PMPM= PMPM.
Pum Pu
This proves the first statement of the lemma. Moreover,
pipt p?
PRi=‘Lpfl= ;' pill-0 (pif—l’p?’ Nyl =Pli7[1 -0 (pzf—l’pli)’ Ni_D1=PR,,

1=2,...,M.

LemMa A.9  The equilibrium equation (A.17) of recursive procedure (2.1) has a unique
solution.
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Proof By contradiction: Assume that along with the solution P, = Lpl, ... i

pY. ....p )" 10 eq. (A.17), there exists another solution denoted by P,., = [p{, .... pis
Y ..., pb)". Suppose that p? > p%. Then, by Lemma A.8.
PR,> PR, 1<i=<M. (A.18)

Since E,(pl, p% N,)>PR,(p,, p2 N,), by Lemma A.5 p2> p’. Therefore, by Lemma
All,

ph=p,[1 = Q(py, p5 N1 <p, [1 — Q(py, p5 NI = p}

Now proceed inductively. Assume p Jb~ > pf and ﬁjf < p]f. The base case (j = 2) has already
been established. By eq. (A.18), PR,(p/, p %, N) > PR(p%,p",, . N). Since p/ < p/, by
I_,e;mma A5 p%, >p%,. Using Lemma A.1, and the assumptions that p/ <p’ and
p j+1 >Pj +1>

phoi =Pl = Q(pLp b NI < piii[l — Q(ph pliy . NI = plyy.

Thus the inductive hypothesis is established, anhd therefore ﬁj’ > pf and 15{ < pf, 2<j<
M. In particular, p’, < p’,, so by Lemma A.8, PR ,, < PR,,, which contradicts eq. (A.18).
We therefore conclude that p4 < p l{.

Assuming that p4 < p%, and proceeding analogously, yields p§ > p%. Therefore, p, = ph.

The equality of the remaining components of Pagg =P,4, Will be shown by induction.
Note that p{ =p, =p{, and that p’ = pf. Assume that p=p? and p/=p/. Let f(x)=p;
(1 - Q(x, p’, N))) - p’ By Lemma A.1, Q(x, y, N) is a monotonic function of x, so f(x) is
also a monotonic function of x. Therefore, f{x) can have at most one root. By the inductive
hypothesis, p4=p’ and p’;=p”, and therefore both p% and p%,, must be roots of f(x),
which proves p%, =p¥%,. It may now be calculated that p/,, = p;,,(1-Q @}, p%:,
N)) =p;,(1 = O( P}, p51s N))) = P, which establishes the inductive hypothesis.

Lemma A.7 showed that if the conditional probabilities p and p% i=1, ..., M, are
known, then it is possible to determine, approximately, the steady-state buffer occupancy
probability distributions X,(:), i =1, ..., M — 1. The task of determining the values of these
conditional probabilities, however, remains. Lemma A.10 shows that they are given,
approximately, by recursive procedure (2.1).

Lemma A.10 The following relationships hold:

Ipf = pil~0@),
Ip% = P51~ 0@),
i=1,....M,

where p,[and pY are given in (2.3) and & is defined in (2.5).
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Proof Let X, (-) be the equilibrium probability distribution of buffer occupancy of line Z,,
i=1,..., M—1, as described earlier, and let X,(-) be the equilibrium probability
distribution of buffer occupancy for buffer i of line (i) —(vi). Let the conditional
probabilities p/ and p% i=1, ..., M, be as defined in eq. (A.8). Then, by Lemma A.6, p’
can be expressed in terms of X,_;(0) as

pl=pl = X_,0) +00), i=2 ..M
By Lemma A.7, this can be approximated with the distribution of parts on line Z; by
pi=pl = X_(0)+0B), i=2, ..M
Using Lemma A.5, this can be rewritten as
pi=pil = Q(Ply. P Nie) +0®)  i=2,.., M. (A.19)

Analogously, by Lemma A.6,

M Jj—1
I;bi=pi[1 -2 H p, | A =p)X;

J=it+] r=i+1

ANy oy N1+ O(3)

vees

M J—1
=pll = (1 —p )X, N) — 2 H pr | A =ppXi 1N o, N;] + O(d).

J=i+2 \ r=i+1

Using (2.5), this can be approximated by
ﬁlz? =pll = A = pir DX; (V)

M J—1
- X (Ni)z H pr ) A=) X1, j— 1Wigys - Ni D] + 03).

JFit2 \ r=i+l

By Lemma A.7, this may be rewritten as

I;? =p;1 -0~ Pi+1)Xi(Ni)

M Jj—1
XNy X I o ) = p) Xivr, o joiWNigys ooy NiZp] + O(3).

J=i+2 \ r=i+1
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Rearranging, using Lemma A.6, we obtain
pi=pill = (1 = p) XN) = ZN)(pisy = Pia)] + O0)
=pill = (1 = PR N + O).
Using Lemma A.5, this may be written as
pi = pill = Q(pisr, PL NI + 0). (A20)

By Lemma A.9, the equilibrium eq. (A.17) has a unique solution pJ p% i=1, ...
Equations (A.19) and (A.20) show that the conditional probabilities p7, p% i=1, ...
solve eq. (A.17) with error O(). Therefore, we conclude that

Il — pl1~ 0(),
P} — P~ 0(),
i=1,...M.

Proof of Theorem 2.1 Using Lemma A.7, the production rate may be calculated as
PR = (1 = X3 1(0)py; = (1 = Xpy—1(0))py, + O(3).

Using Lemma A.5, this may be expressed as

PR = [1 = Q(Phr—1, Pres Nys—D)Ipag + O).

By Lemma A.10, we obtain

PR = (1 = Q(p’y—1s Pres Nas—1)) Pas + O3).

By Lemma A.9, we may finally conclude that

PR = p’, + 0(3).

Proof of Theorem 2.2 Let p jf and pj?, 1 £ j £ M, denote the steady state of recursive
procedure (2.1) applied to the original line. Let 13{ = p’,’w_j and 13'; = p-,f4_j. Observe that 1}’
and ﬁjb solve the equilibrium equations of recursive procedure (2.1) for the reversed line.
By Lemma A.9, the equilibrium equations possess a unique solution, so p7 and ﬁf must be
the limiting values obtained by recursive procedure (2.1) for the reversed line. Therefore,
PR, Ppps - P1s Nogets -» N) = plyy = ph. By Lemma A 8, ph =p4, which completes the
proof.
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Proof of Theorem 2.3 Let PR( p,, p,, N;) denote the production rate of serial production
line (i)—(vi) with M =2. Then the following three facts hold:

(o) Function PR(p,, p,, N;) is monotonically increasing in p,, p,, and N, (Lemma A.5).

(B) Function Q(x, y, N), introduced in (2.2), is monotonically decreasing in x and N, and
monotonically increasing in y (Lemma A.1).

) PR(P, pivi, N)=pip i=1,...,M—1, where p/and p? are defined in (2.1)~(2.3)
(Lemma A.8).

Consider two serial production lines (i)—(vi), the first of which is described by
parameters p;, i=1,...,M,and N, i=1, ..., M — 1, and the second by parameters p, > p,,
i=1,...,M,and N; >N, i=1,....M—1. Let p/,, p*., P/, p*, i=1, ..., M, denote the
steady state of recursive procedure (2.1) for the first and second lines, respectively. We
prove Theorem 2.3 by contradiction.

Assume

Pt <Pir (A21)
Then, using (),

PR(p1, p5, N\) < PR(p{, p5, N)).

Since, by (o), PR(p;, p,, N;) is a monotonically increasing function of each of its
arguments, and by construction pf > pf, N, > N, it follows that p% < p5. Therefore, using
(2.1) and the monotonicity property (),

ph = pall = Q(py, p5 N1 > pyll — Q(py, p 5, NI = pi.

Now proceed inductively. Assume p? < p’ and p/> p/. The base case (i = 2) has already
been established. From (y) and (A.21), PR(p} p%, |, N)) < PR(p] p%, ., N; ). Since p/> p/
and N, > N/ it follows from (o) that p?, , <p?, ,. Equation (2.1) and the monotonicity
property (B) then yield

I;if+1 =pii(1 = O PY: I;[;H’ N)) > pip(1 — Q(P{,Pf‘ﬂs N)) = p{+1-

The inductive hypothesis is therefore established, and p2<p? p/>pf i=2,..,M. In
particular, p4, > p4,, which contradicts the assumption (A.21). Therefore, p4, > p/, and,

using (2.4), PR, (P15 ---» Pags N1 --., Npy_1) 1s @ monotomically increasing function of its
arguments.

APPENDIX B. PROOFS FOR SECTION 3

Define function f(x, y) as follows:

fN(x’ )’) = [1 - Q(x, y’N)][l - Q()& .X,N)].
where Q(x, y, N) is given in (2.2).
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Lemma B.1  Function fyx,y) can be represented as follows:

g1 — a”>]2

Inx )= [

where

Proof From eq. (2.2), we obtain

-0y =1- 1202

1 -2V
y
X
a+x(1—a)——aN
- 1—-%a"
_ (x) 1-o
y l—;—caN

By Lemma A.S,

X(l - Q(y7x’N)) = }’(1 - Q(x’ y’N)),

and therefore

v y) =1[1—- 0@y, N)I[1 = Q(y,x,N)]

=1 - Q(x,y. NP 2
X

_(x) PRAT
y Y N
X
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g 11— T2
1 — o P
Lemma B.2  Under the constraint xy = p = const, function fy (X)), achieves its

maximum value if and only if x = y. Furthermore, fy(\/p\/p) = [N/(N+1 —\/p)]>.
Proof Define g = \/)Ty,p = xy,and a = x( 1 —y)/y(1—x). Thenx = g\/p, and

y = \/;/g. Suppose x < y, which implies 0 < g < 1. Then

Vi)
N \/‘_’a—g\/;?) |

8

Observe that a is a monotonically increasing function of g. Using Lemma B.1, f}, (x,y) can

be expressed as
1-o")\
navir) - (2222)

=exp2[ln(g) + In(1 — o) — In(1 — og*)].

Using the series expansion

In(1 —x) = — , lxl <1,

I Mg

- =

i=1

function f), (g\/_, \/;/g) may be expressed, for 0 <g <1, as

o Nyi %0 N _2\i
VY - e fne -3 94 S (“l.g)]

g i=1 l i=1

= exp2 |In(g) + >
i=1

= (o g2)i — aN)i]

l

= exp2 |In(g) + > ila’w & - 1)]. (B.1)
- i=1

Since each term in the exponent of eq. (B.1) is a monotonically increasing function of g,

it can be concluded that fy(g\/p,\/p/ &) is a monotonically increasing function of g for
O<g<l.
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Now suppose y < x. Define g = 1/ g and observe 0 < g < 1. Because of the symmetry of
its definition, fi(x.y) = fi( ¥ 0. So filg\/PN/Plg) = W\ 8. 8 /D)= fila\/ P,

\/;/ ). By the previous arguments, this function is monotonically increasing in g for
0<g<1, and therefore monotonically decreasing in g for 1<g<o. Thus,

fN(g\/;,\/,z—)/g), 0 <g <, attains its maximum at g = 1, which corresponds to
X = y = '\/;.

Define ¢; = "\ /p!p?. |, and PR = PR,

Lemma B.3  The following is true:

N;+1
;= PR

N; + PR
The equality takes place if and only if p/ = p%. .
Proof Using Lemma A.8,

o
v

2 _ b
C; —P{Piﬂ

_ (PRPi) <PRPi+1>
P? Pjir+1
_ PR? PiPi+1
pi(1 = QP4 1, PLND) iy (1 — Q(PL Pl NY)

PR?

- I, (1’{’ Pli)+1).
By Lemma B.2, and the definition of ¢,

N, T
fopb )= [———’——]
fN,(P{’PzH) N+l-ci

with equality if and only if pJ = p%,,, so
2
5 PR

¢ = N 72 >
[Ni + 1 - Ci:l

PR(N; + 1 — ¢
>t v

C:

1 Nl ’
PR\ PR(N,+ 1)
el1+—)=—"—
' N; N;
PR(N, + 1)
R

C;i = .
N, + PR
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LemMa B.4  The total workforce, p ™, necessary to achieve the production rate value PR,

is bounded by
2
p' = N+ 1 PRM.
N; + PR

The equality holds if and only ifp{ = pf’ﬂ i =1,..,.M — 1.
Proof By Lemma A.8,

PRM:(M) (W) (za;;p;)
P p; Pu

PRMp" = p! ®w{p5) - (pfi-1 P Pir

Since, by Lemma A8, pll’ = pl, = PR, we obtain

2 2 2
«_ €16 Oy
PRY2

Using Lemma B.3 we obtain, with equality if and only if p,-f = pf-’H, i=1,...M—-1,

- ( N+ 1 )2
iz

‘e N, + PR
p = PRI 2
ML PR(N + 1) |’
e H M PRM.
N, + PR

Jj=1
Lemma B.4 provides a lower bound on the workforce necessary to achieve a desired

production rate. We now show that this bound is achievable.

Lemma B.5:  The condition p,f = p,-il, i=1,...,.,M — 1, is achieved if and only if
the workforce is distributed as

N, +1 N; + 1 )
p; = PR, 2=j=M-—1, (B.2)
J N;_, + PR N; + PR
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Ny, + 1
= 2X—— | PR
Ny, + PR

where PR is the production rate of the line.

Proof Suppose pf=pt ,i = 1,..., M — 1. Then, by Lemmas A.5 and A.8,

PR = p/ (1 = Q(phi P NY)

pl (1 =0 (pl,pl, N))

1-p/
Ni+1_pif

pl(1— )

p/N,

1

N,+1-p/”

Solving this equation for p,-f, and recalling the assumption that p/ = p.?,, we obtain

fept = (2L ) er (B.3)
Pi = Pin1 N, + PR . .

Using Lemma A8, for i = 2,..,. M — 1,

fpb
PR = pi pi
Di
~ (Ni_1+1 ><N5+1 )PR2
~ \N_,+PR/\ N, +PR) p,’
which can be rearranged into
N_, +1 N, + 1 .
D = PR, i=2,.,M—-1 B.4)
N;,_, + PR N; + PR

The expressions for p, = p” and p,, = p%, are obtained from equation (B.3).

Now suppose that the workforce is distributed as in eq. (B.2). We next show that this
implies that p/ = p%,,,i = 1,.., M — 1. By Lemma A.9, there is a unique solution
to the equilibrium equation (A.17) or recursive procedure (2.1) We claim that the solution
is

N;+1
b i .
= = PR, =Dyl = PR, =1,...M— 1. B.5
P =P Pi=pin ( N, PR) i (B.5)



130 D. JACOBS AND S. M. MEERKOV

Since eq. (A.17) has exactly one solution, we only need to show that eq. (B.5) is indeed
a solution. Consider, for i = 2, ..., M, using eq. (B.4),

pi(1=0Q(pLy,p N_y) =PR<N""1+1 )( N +1 )(1_1_—,,?__ )
l AR N;_, + PR N; + PR N,‘—x"'l_P?
Ni_; t1 N+ 1 N,
PR\ ——— ,
N;,_,+ PR N; + PR N_, +1-p
_ PR( N_;+1 )( N; +1 ) 1 N_,
Ni.y+ PR/ \ N;+PR) p}| N_,+1
-1

Py
N+1
- PR
N+ PR

pl.

The proof for pl,’ i=1,...,M — 1, is similar.

Lemma B.6  The minimum workforce pfm.,, required to achieve production rate PR is
given by

L M N+
Pmin = H < . PRM
j=

. \N,+ PR

Moreover, this production rate is achieved if and only if p* is distributed among
P Pw 1l pi=p", so that pf = plii,i=1,... M — 1

Proof By Lemma B.4,

and equality is achieved if and only if p/ = p , i = 1,..,M — 1. By Lemma B.5,
lower bound is attainable with the workforce distribution as specified in eq. (B.2).

LemMa B.7  The minimum workforce p *,,;, necessary to achieve the production rate PR
is a monotonically increasing function of PR.

Proof From Lemma B.6, p . is given by
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Consider one term of the product,

T—<Nf+1>2PRM i=1.,M—-1
i Nj+PR , J=1 .., .

Differentiation of 7; with respect to PR yields

dT (N, + 1)’ (N} — PR
OPR (N; + PR)*

> 0.

Since p ., is the product of positive, monotonically increasing functions of PR, the
lemma follows.

Proof of Theorem 3.1 Suppose the line is unimprovable, but that there exists an i such
that p/ # p%,,. Then by Lemma B.6, p“ >p .. Then by Lemma B.7, workforce p~
optimally distributed can achieve a larger production rate, which is a contradiction.

Proof of Corollary 3.1 By Lemmas A.7 and A.10, the distribution of parts in buffer i
can be approximated with error 0 (8) by the distribution of parts in the buffer of the two
machine line L = {p/, N, p%.,}. From Lemma A.5 applied to line L, Prob{m; is
starved} = Q(p p%.., N,) and Prob{m, is blocked} = Q (p%, ., p% N). Since p/ = p’.,,
the result of part (a) follows. From eq. (A.3) of Lemma A.5, when applied to line L,

. _ Xi0) .
X, (j) = ——, 1<j=N, (B.6)
1 = p;
and so, using eq. (A.4),
N;
Elh] = 2 jX ()
j=0

Il
i M=
T
P
-

| | —
R,
N
N
Z|
1
=
R
X,
~

N,-(N,.+1)
2(N;+1-pl)

from which the result of part (b) of the corollary follows.
Proof of Theorem 3.2 It was established in Lemma B.5 that (3.1) is satisfied if and only

if
| N +1 )PR,,
Py = N1+PR* est?

est
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<N‘+1 )(NH )PR* i=2,..,M—1 B.7
N, +PR.,)\ N, +pPR.) Ter T ’ (B.7)

Ny, +1
=\ 3, 7 PR;,) PRer
M-1 est

p;

where PR, = p/ is defined in (3.4). Therefore, for a line satisfying (3.1),

M . M—1 N +1 2
=Hm=@&ﬁﬂl<————>
i=1 est

= \N,+PR

This may be rearranged as

2
) L 1M1t (N 4 PR
PR, = (pHm]] <—> : (B.8)

Define function f(.) by

2
* lM_l Nl+ M
fx) = (p @ I1 ( x)“

i=1
and observe that
PR, = f (PR,). (B.9)

We next show that x(n + 1) = flx (n)) is a contraction on [0, 1], from which it follows
that (B.9) has exactly one solution and that recursive procedure (3.5) always converges to
this solution. Using the relationship

diil_y 0] | ¥ Y(x)
dx [[q ( )][l;l ’(x):l

where y',- (x) = dy; (x)/ dx, calculate

- 2
dfix) 2 \| MY N, +x U S N+x LA |
—d__(p) )| T\ v N+1 N+
| =1 i i=1 i =1 NiT X
2
RN R AT Y EESAE!
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Since p* < 1and (N, + x)/(N; + 1) <1 for x € [0, 1], using the assumption 3, X' 1/N;,
= M/2 we obtain

‘@ <1, x € [0, 1].

dx

The Mean Value Theorem guarantees that for all x,y € [0, 1], there exists a ¢ € [x, y] such
that

d
£ — fiy) = —{;C)(x .
X

and therefore |[f(x) — fiy)l < Ix — yl. This implies that x(n + 1) = f(x(n)) is a contraction
on [0, 1], which establishes Theorem 3.2.

Proof of Theorem 3.4 Define

_ *lM_l N, +x AE"
SNy, o NyX) = (p )ME N1 (B.10)
and
f'x)= max AN,,...,Ny_,, %). (B.11)

Ny Ny
2'1;4[—1 N, = N*

The values N ,..., N y,_, which solve (B.11) can be determined by the Lagrange multiplier
technique. The Lagrange function is:

F(Ny, ..., Nyt N) = fIiNy, ooy Ny, X) + AN, + - + Ny, — NO)

2
*lM_l Ni+x A_l *
=(p"m]] . + AN, + -+ Ny,_, —N").
i=1

N+ 1

L

Therefore, the optimality condition

2

OF(Ny... Ny N ot 2 Y| M1 N+ 2 | 1—x

— L M (Pl = NiDn ol Tr=0

AN, M| 2 AN+ (N, + 1)(N; + %)
i=1..,M-1,
is satisfied if and only if N; = N, Vij. Thus (B.11) is solved by
._ N ,
N, =—— i=1,..,M—1. (B.12)

M-1
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Consider now recursive procedure (3.5):
x(n+ 1) =fIN,, ..., Nyy_1,x(n)),

and recall that, according to Theorem 3.2, lim,,_,.. x(n) = PRes[(p;‘, coos Pyp Nis oo sNyg 1),

where p ; i = 1,..., M, are defined by (3.7). Define the recursive procedure (3.5) for two
sequences of N,’s, the optimal one and any other:

X (n+1)=f(Ny, ... Nyy_ 1o x"(0)), (B.13)

X+ 1) =fiN,,..., Nyy_, , X'(n)), (B.14)

where N is defined by (B.12) and N}, i = 1,.... M — 1, is any sequence satisfying
3 ﬁ”:_,l N; =N *. Assume that the initial conditions for (B.13) and (B.14) are the same:

x(0) =x"'(0) € [0, 1].
‘We show below that

(@. x () =x'"(),Yn>0,ie.
PR, (py,...;Pw Nys ... Ny ) = PR, 01, ... Dips Ny oo, Ny )

and
@®).p/=pl, i=2,...M-1.
This would prove Theorem 3.4.
Fact (o) is proved by induction. For n = 1, the result x'(1) = x' (1) follows

immediately from the fact that the sequence N ,* i = 1,... M — 1, solves (B.11). Now
assume that x “(n) = x'(n). Because

2
AWy Ny 2\ e N T
dx _(p)M<M>[E N, +1 ENi+x >0

(B.15)

that is, f (N, ..., Nyy—1, X) is a monotonically increasing function of x, and since the
sequence N, i = 1,..., M — 1, solves (B.11),

X+ 1) =fW, s Ny_yo x ()
=f(N|, ..., Ny X' (1))
=f(Ny, ..oy Ny _p, ¥ (n)

=x(n+1).
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Statement () follows from (B.12) and the fact that the unique solution to the
equilibrium equation (A.17) of recursive procedure (2.1), when the workforce is
distributed according to (3.7), is given in eq. (B.5) by

N+ 1

b=, = PR f=pb = 4
)41 Pu ’ pi Pi+1 <N1+PR

)PR, i=1...,M—1. (B.16)
Proof of Corollary 3.2 By Lemma A.10,
pl=pl+0G), pl=pr+0®), i=1,..,M,

where pJ p? are the limiting values obtained from recursive procedure (2.1), and p/ p?
are the conditional probabilities defined in (A.8). Using Lemma A.6 and eq. (A.9), these
may be rewritten as

p,{= p; [1 — Prob { m; is starved}] + O(3),
p?=p,[1 — Prob {m;isblocked}] +0(), i=2,...,M— 1.
By condition (3.8), p/ = p%i = 2,..,M — 1, and we may therefore conclude that

| Prob{m; is starved} — Prob { m; is blocked} | ~ O(d).

Proof of Theorem 3.5 Similar to the proof of Theorem 3.4. Eq. (3.10) follows directly
from (B.12) and (3.7).

Proof of Theorem 3.6 Using the identity
a b
b al

PR, = min {p/, pi},

\/;’ \/;I

\/— pf}
2 :

min{a, b} = \/ab min 0<a, 0<b,

in

we obtain

PRESI pl pl mln

[ ——

By Lemma A.8, this can be written as

PR,, = mm PReS, p; min
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Squaring both sides, we obtain

b
Pif Pi
o

i i

p; min

PR, = min
1

APPENDIX C. PROOFS FOR SECTION 4

Proof of Theorem 4.1 Consider a line (i)—(vi) with (3.1) satisfied. Let the workforce
distribution be denoted by p; = p.,i = 1, ..., M. Suppose that the workforce distribution

is modified by p, = gp;andp, = (l/g)p;, 1 =i=Mand 1 =< j = M. Observe that the total
workforce p* does not depend on g, but that the line is unimprovable when g = 1.
Therefore, the production rate achieves its maximum value when g = 1. Letting PR =
PR( g), we observe

dPR(1)
=0 (C.1)
og
Using the chain rule,
a2
dPR(1) 9 PR(1)d(gp) oPR(1) \g dPR(1) dPR(1)
g dp; o8 ap; a8 ap; d p;

Since i and j were chosen arbitrarily, we therefore conclude, from eq. (C.1) and (C.2), that

d PR(1) d PR(1) .
Di = Dj ) Vi, j.
op; 9p;
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