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On the basis of the half-Cauchy distribution, we propose the called beta-half-Cauchy distribution
for modeling lifetime data. Various explicit expressions for its moments, generating and quantile
functions, mean deviations, and density function of the order statistics and their moments are
provided. The parameters of the new model are estimated by maximum likelihood, and the
observed information matrix is derived. An application to lifetime real data shows that it can yield
a better fit than three- and two-parameter Birnbaum-Saunders, gamma, and Weibull models.

1. Introduction

The statistics literature is filled with hundreds of continuous univariate distributions (see,
e.g., [1, 2]). Numerous classical distributions have been extensively used over the past decad-
es for modeling data in several areas such as engineering, actuarial, environmental andmedi-
cal sciences, biological studies, demography, economics, finance, and insurance. However, in
many applied areas like lifetime analysis, finance, and insurance, there is a clear need for ex-
tended forms of these distributions, that is, new distributions which are more flexible to
model real data in these areas, since the data can present a high degree of skewness and kur-
tosis. So, we can give additional control over both skewness and kurtosis by adding new para-
meters, and hence, the extended distributions becomemore flexible tomodel real data. Recent
developments focus on new techniques for building meaningful distributions, including the
generator approach pioneered by Eugene et al. [3]. In particular, these authors introduced the
beta normal (BN) distribution, denoted by BN(μ, σ, a, b), where μ ∈ R, σ > 0 and a and b are
positive shape parameters. These parameters control skewness through the relative tail
weights. The BN distribution is symmetric if a = b, and it has negative skewness when a < b
and positive skewness when a > b. For a = b > 1, it has positive excess kurtosis, and for
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a = b < 1, it has negative excess kurtosis et al. [3]. An application of this distribution to dose-
response modeling is presented in Razzaghi [4].

In this paper, we use the generator approach suggested by Eugene et al. [3] to define
a newmodel called the beta-half-Cauchy (BHC) distribution, which extends the half-Cauchy
(HC) model. In addition, we investigate some mathematical properties of the new model,
discuss maximum likelihood estimation of its parameters, and derive the observed informa-
tion matrix. The proposed model is much more flexible than the HC distribution and can be
used effectively for modeling lifetime data.

TheHC distribution is derived from the Cauchy distribution bymirroring the curve on
the origin so that only positive values can be observed. Its cumulative distribution function
(cdf) is

Gφ(t) =
2
π

arctan
(
t

φ

)
, t > 0, (1.1)

where φ > 0 is a scale parameter. The probability density function (pdf) corresponding to
(1.1) is

gφ(t) =
2
πφ

[
1 +

(
t

φ

)2
]−1

, t > 0. (1.2)

For k < 1, the kth moment comes from (1.2) as μ′
k
= φksec(kπ/2). As a heavy-tailed distri-

bution, the HC distribution has been used as an alternative to model dispersal distances [5],
since the former predicts more frequent long-distance dispersal events than the latter. Addi-
tionally, Paradis et al. [6] used the HC distribution tomodel ringing data on two species of tits
(Parus caeruleus and Parus major) in Britain and Ireland.

The paper is outlined as follows. In Section 2, we introduce the BHC distribution and
plot the density and hazard rate functions. Explicit expressions for the density and cumula-
tive functions, moments, moment generating function (mgf), a power series expansion for the
quantile function, mean deviations, order statistics, and Rényi entropy are derived in
Section 3. In Section 4, we discuss maximum likelihood estimation and inference. An ap-
plication in Section 5 shows the usefulness of the new distribution for lifetime data modeling.
Finally, concluding remarks are addressed in Section 6.

2. The BHC Distribution

Consider starting from an arbitrary baseline cumulative function G(t), Eugene et al. [3] de-
monstrated that any parametric family of distributions can be incorporated into larger fami-
lies through an application of the probability integral transform. They defined the beta gener-
alized (beta-G) cumulative distribution by

F(t) = IG(t)(a, b) =
1

B(a, b)

∫G(t)

0
ωa−1(1 −ω)b−1dω, (2.1)

where a > 0 and b > 0 are additional shape parameters whose role is to introduce skewness
and to vary tail weight, B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function, Γ(a) =

∫∞
0 ta−1e−tdt
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is the gamma function, Iy(a, b) = By(a, b)/B(a, b) is the incomplete beta function ratio, and
By(a, b) =

∫y
0 ω

a−1(1−ω)b−1dω is the incomplete beta function. This mechanism for generating
distributions from (2.1) is particularly attractive whenG(t) has a closed-form expression. One
major benefit of the beta-G distribution is its ability of fitting skewed data that cannot be pro-
perly fitted by existing distributions.

The density function corresponding to (2.1) is

f(t) =
g(t)
B(a, b)

G(t)a−1{1 −G(t)}b−1, (2.2)

where g(t) = dG(t)/dt is the baseline density function. The density function f(t)will be most
tractable when both functionsG(t) and g(t) have simple analytic expressions. Except for some
special choices of these functions, f(t) could be too complicated to deal with in full generality.

By using the probability integral transform (2.1), some beta-G distributions have been
proposed in the last few years. In particular, Eugene et al. [3], Nadarajah and Gupta [7],
Nadarajah and Kotz [8], Nadarajah and Kotz [9], Lee et al. [10], and Akinsete et al. [11] de-
fined the BN, beta Fréchet, beta Gumbel, beta exponential, beta Weibull, and beta Pareto dis-
tributions by taking G(t) to be the cdf of the normal, Fréchet, Gumbel, exponential, Weibull,
and Pareto distributions, respectively. More recently, Barreto-Souza et al. [12], Pescim et al.
[13], Silva et al. [14], Paranaı́ba et al. [15], and Cordeiro and Lemonte [16, 17] defined the beta
generalized exponential, beta generalized half-normal, beta modified Weibull, beta Burr XII,
beta Birnbaum-Saunders, and beta Laplace distributions, respectively.

In the same way, we can extend the HC distribution, because it has closed-form cum-
ulative function. By inserting (1.1) and (1.2) in (2.2), the BHC density function (for t > 0)with
three positive parameters φ, a, and b, say BHC(φ, a, b), follows as

f(t) =
2a

φπaB(a, b)

[
1 +

(
t

φ

)2
]−1[

arctan
(
t

φ

)]a−1{
1 − 2

π

[
arctan

(
t

φ

)]}b−1
. (2.3)

Evidently, the density function (2.3) does not involve any complicated function. Also, there is
no functional relationship between the parameters, and they vary freely in the parameter
space. The density function (2.3) extends a few known distributions. The HC distribution
arises as the basic exemplar when a = b = 1. The new model called the exponentiated half-
Cauchy (EHC) distribution is obtained when b = 1. For a and b positive integers, the BHC
density function reduces to the density function of the ath order statistic from the HC distri-
bution in a sample of size a + b − 1. However, (2.3) can also alternatively be extended, when
a and b are real nonintegers, to define fractional HC order statistic distributions.

The cdf and hazard rate function corresponding to (2.3) are

F(t) = I(2/π) arctan(t/φ)(a, b), (2.4)

h(t) =
2a

φπaB(a, b)

[
arctan

(
t/φ

)]a−1 {
1 − (2/π)

[
arctan

(
t/φ

)]}b−1
[
1 +

(
t/φ

)2][1 − I(2/π) arctan(t/φ)(a, b)]
, (2.5)

respectively.
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The BHCdistribution can present several forms depending on the parameter values. In
Figure 1, we illustrate some possible shapes of the density function (2.3) for selected para-
meter values. From Figure 1, we can see how changes in the parameters a and b modify the
form of the density function. It is evident that the BHC distribution is muchmore flexible than
the HC distribution. Plots of the hazard rate function (2.5) for some parameter values are
shown in Figure 2. The new model is easily simulated as follows: if V is a beta random vari-
able with parameters a and b, then T = φ tan(πV/2) has the BHC(φ, a, b) distribution. This
scheme is useful because of the existence of fast generators for beta random variables in sta-
tistical software.

3. Properties

In this section, we study some structural properties of the BHC distribution.

3.1. Expansion for the Density Function

The cdf F(t) and pdf f(t) of the beta-G distribution are usually straightforward to compute
numerically from the baseline functions G(t) and g(t) from (2.1) and (2.2) using statistical
soft-ware with numerical facilities. However, we provide expansions for these functions in
terms of infinite (or finite if both a and b are integers) power series of G(t) that can be useful
when this function does not have a simple expression.

Expansions for the beta-G cumulative function are given by Cordeiro and Lemonte
[16] and follow immediately from (2.1) (for b > 0 real noninteger) as

F(t) =
1

B(a, b)

∞∑
r=0

wrG(t)a+r , (3.1)

wherewr = (−1)r(a+r)−1( b−1r )
. If b is an integer, the index r in (3.1) stops at b−1. If a is an in-

teger, (3.1) gives the beta-G cumulative distribution as a power series of G(t). Otherwise, if a
is a real non-integer, we can expand G(t)a as

G(t)a =
∞∑
r=0

sr(a)G(t)r , (3.2)

where sr(a) =
∑∞

j=r(−1)r+j
( a
j

)(
j
r

)
, and then, F(t) can be expressed from (3.1) and (3.2) as

F(t) =
1

B(a, b)

∞∑
r=0

trG(t)r , (3.3)

where tr =
∑∞

m=0wmsr(a +m). By simple differentiation, it is immediate from (3.1) and (3.3)
that

f(t) =
g(t)
B(a, b)

∞∑
r=0

(a + r)wrG(t)a+r−1,

f(t) =
g(t)
B(a, b)

∞∑
r=0

(r + 1)tr+1G(t)r ,

(3.4)
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Figure 1: Plots of the density function (2.3) for some parameter values; φ = 1.

which hold if a is an integer and a is a real noninteger, respectively. Using the expansion

arctan(x) =
∞∑
i=0

ai
x2i+1

(1 + x2)i+1
, (3.5)

where ai = 22i(i!)2/[(2i + 1)!], Gφ(t) can be expanded as
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Figure 2: Plots of the hazard rate function (2.5) for some parameter values; φ = 1.

Gφ(t) =
(

t

φ2 + t2

) ∞∑
i=0

bi

(
t2

φ2 + t2

)i

, (3.6)

where bi = (2φai)/π .
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By application of an equation fromGradshteyn and Ryzhik [18] for a power series rais-
ed to a positive integer j, we obtain

Gφ(t)j =
(

t

φ2 + t2

)j ∞∑
i=0

cj,i

(
t2

φ2 + t2

)i

, (3.7)

where the coefficients cj,i (for i = 1, 2, . . .) can be determined from the recursive equation
(cj,0 = b

j

0)

cj,i = (ib0)
−1

i∑
m=1

[(
j + 1

)
m − i]bmcj,i−m. (3.8)

The coefficient cj,i follows recursively from cj,0, . . . , cj,i−1 and then from b0, . . . , bi. Here, cj,i can
be written explicitly in terms of the quantities bm although it is not necessary for program-
ming numerically our expansions in any algebraic or numerical software. Now, we can re-
write (3.4) as

f(t) =
∞∑
i,r=0

Ai,r
ta+r+2i−1(

φ2 + t2
)a+r+i , f(t) =

∞∑
i,r=0

Bi,r
tr+2i(

φ2 + t2
)r+i+1 , (3.9)

where

Ai,r =
2φ(a + r)wrca+r−1,i

πB(a, b)
, Bi,r =

2φ(r + 1)tr+1cr,i
πB(a, b)

. (3.10)

Equations (3.9) are the main results of this section.

3.2. Moments

Here and henceforth, let T ∼ BHC(φ, a, b). Then, for a an integer and a a real noninteger, the
moments of T can be expressed from (3.9) as

E(Ts) =
∞∑
i,r=0

Ai,r

∫∞

0

ts+a+r+2i−1(
φ2 + t2

)a+r+i dt, E(Ts) =
∞∑
i,r=0

Bi,r

∫∞

0

ts+r+2i(
φ2 + t2

)r+i+1dt, (3.11)

respectively. For 0 < α < 2ρ, these integrals can be calculated from Prudnikov et al. [19] as

∫∞

0

xα−1

(c2 + x2)ρ
dx = cα−2ρB

(
α, 2ρ − α)2F1

(
α

2
, ρ − α

2
; ρ +

1
2
; 1
)
, (3.12)

where

2F1
(
p, q; c; z

)
=

∞∑
i=0

(
p
)
i

(
q
)
i

(c)i

zi

i!
(3.13)
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is the hypergeometric function and (p)i = p(p + 1) · · · (p + i − 1) is the ascending factorial
(with the convention that (p)0 = 1). The function 2F1(α/2, ρ− (α/2); ρ+ (1/2); 1) is absolutely
convergent, since c − p − q = 1/2 > 0.

Hence, for a a positive integer and s < a, we can express the moments of T as

E(Ts) =
∞∑
i,r=0

Pi,r(s)2F1

(
s + a + r + 2i

2
,
r + a − s

2
+ 1;a + r + i +

1
2
; 1
)
, (3.14)

where Pi,r(s) = φs−r−aB(s + a + r + 2i, r + a − s)Ai,r . The moments of the HC distribution for
s < 1 can be computed from (3.14)with a = b = 1.

On the other hand, for a a positive real noninteger and s < 1, we can obtain

E(Ts) =
∞∑
i,r=0

Qi,r(s)2F1

(
s + 1 + r + 2i

2
,
r + 1 − s

2
+ 1; r + i +

3
2
; 1
)
, (3.15)

where Qi,r(s) = φs−r−1B(s + r + 1 + 2i, r + 1 − s)Bi,r . The moments functions (3.14) and (3.15)
show that the method of moments will not work for this distribution.

3.3. Generating Function

The mgfM(−v) = E{exp(−vT)} of T can be derived from the following result due to Prudni-
kov et al. [19]

Km,n

(
v;φ

)
=
∫∞

0

xm exp(−vx)(
φ2 + x2

)n dx =
(−1)m+n−1

2n−1(n − 1)!
∂m

∂vm

(
∂

v∂v

)n−1
H

(
v;φ

)
, (3.16)

which holds for any v, where

H
(
v;φ

)
= φ−1[sin(φv)ci(φv) − cos

(
φv

)
si
(
φv

)]
, (3.17)

and ci(φv) = − ∫∞
φv t

−1 cos(t)dt and si(φv) = − ∫∞
φv t

−1 sin(t)dt are the cosine integral and sine in-
tegral, respectively.

For a an integer and a a real noninteger, the BHC generating function can be determin-
ed, from (3.9) and (3.16), as linear combinations of K·,·(v;φ) functions

M(−v) =
∞∑
i,r=0

Ai,rKa+r+2i−1,a+r+i
(
v;φ

)
,

M(−v) =
∞∑
i,r=0

Bi,rKr+2i,r+i+1
(
v;φ

)
,

(3.18)

respectively. Equation (3.18) is the main result of this section.
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3.4. Quantile Expansion

The BHC quantile function t = Q(u) is straightforward to be computed from the beta quantile
function QB(u), which is available in most statistical packages, by

t = Q(u) = φ tan
(
πQB(u)

2

)
. (3.19)

Power series methods are at the heart of many aspects of applied mathematics and statistics.
Here, we provide a power series expansion forQ(u) that can be useful to derive some mathe-
matical measures of the new distribution. Further, we propose alternative expressions for the
BHC moments on the basis of this expansion.

First, an expansion for the beta quantile function, say QB(u), can be found in Wolfram
website (http://functions.wolfram.com/06.23.06.0004.01) asQB(u) =

∑∞
i=0 g

′
iu

i/a, where g ′
0 =

0 and g ′
i = qi[aB(a, b)]

i/a (for i ≥ 1) and the quantities qi’s (for i ≥ 2) can be derived from the
cubic recursive equation

qi =
1

[i2 + (a − 2)i + (1 − a)]

×
{
(1 − δi,2)

i−1∑
r=2

qrqi+1−r[r(1 − a)(i − r) − r(r − 1)]

+
i−1∑
r=1

i−r∑
s=1

qrqsqi+1−r−s[r(r − a) + s(a + b − 2)(i + 1 − r − s)]
}
,

(3.20)

where δi,2 = 1 if i = 2 and δi,2 = 0 if i /= 2. For example, q0 = 0, q1 = 1, q2 = (b − 1)/(a + 1), q3 =
[(b−1)(a2 +3ab−a+5b−4)]/[2(a+1)2(a+2)], and so on. We can expandQ(u) (since E0 = 0)
as

Q(u) = φ
∞∑
k=1

EkQB(u)k, (3.21)

where E2k = 0, E2k−1 = (22k − 1)π2k−1[2(2k)!]−1B2k (for k = 1, 2 . . .) and B2k are the Bernoulli
numbers. We have B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, . . . . The beta quantile fun-
ction can be rewritten as QB(u) = u1/a

∑∞
i=0 giu

i/a because g ′
0 = 0, where gi = g ′

i+1 =
qi+1[aB(a, b)]

(i+1)/a for i = 0, 1, . . . . So, g0 = [aB(a, b)]1/a, g1 = [(b−1)/(a+1)][aB(a, b)]2/a, and
so on. Now, we obtain

Q(u) = φ
∞∑
k=1

Ek

(
u1/a

∞∑
i=0

giu
i/a

)k

, (3.22)

and then

Q(u) = φ
∞∑

k=1,i=0

Ekhk,iu
(k+i)/a, (3.23)
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where the constants hk,i can be evaluated recursively using (3.8) from the quantities gi by
hk,0 = gk0 and hk,i = (ig0)

−1 ∑i
m=1[(k + 1) m − i]gmhk,i−m, for i = 1, 2, . . . . Further,

Q(u) = φ
∞∑
p=1

Npu
p/a, (3.24)

whereNp =
∑p

k=1 Ekhk,p−k for p = 1, 2, . . . . The power series (3.24) for the BHC quantile can be
used to obtain some mathematical properties of this distribution. For example, the sth mom-
ent of T (for a a real noninteger) can be expressed as

E(Ts) =
∫∞

0
xsf(x)dx =

∫1

0
Q(u)sdu. (3.25)

This integral in (0, 1) yields an alternative formula for (3.15) as

E(Ts) = φs
∫1

0

⎛
⎝ ∞∑

p=0

Mpu
(p+1)/a

⎞
⎠

s

du = φs
∞∑
p=0

Ls,p

∫1

0
u(p+s)/adu = aφs

∞∑
p=0

Ls,p(
p + s + a

) , (3.26)

whereMp =Np+1 =
∑p+1

k=1 Ekhk,p+1−k and Ls,p can be computed from (3.8) by (Ls,0 =Ms
0)

Ls,p = (pM0)
−1

p∑
m=1

[
(s + 1)m − p]MmLs,p−m. (3.27)

3.5. Mean Deviations

The amount of scatter in a population is evidently measured to some extent by the totality of
deviations from the mean and median. We can derive the BHC mean deviations about the
mean μ = E(T) and about the medianM(M = Q(1/2)) from the relations

δ1 = 2μF
(
μ
) − 2H

(
μ
)
, δ2 = E(T) − 2H(M), (3.28)

respectively, where μ can be computed from (3.14)with s = 1 for a > 1, F(μ) and F(M) are cal-
culated from (2.4) andH(s) =

∫s
0 tf(t)dt. After some algebra from (3.24),H(s) takes the form

H(s) = φ
∫F(s)

0

⎛
⎝ ∞∑

p=1

Npu
p/a

⎞
⎠du = aφ

∞∑
p=1

NpF(s)p/a+1(
a + p

) . (3.29)

An application of the mean deviations is to the Lorenz and Bonferroni curves that are
important in fields like economics, reliability, demography, insurance, andmedicine. They are
defined for a given probability π by L(π) = H(q)/μ and B(π) = H(q)/(πμ), respectively,
where q = Q(π) comes from (3.24). In economics, if π = F(q) is the proportion of units whose
income is lower than or equal to q, L(π) gives the proportion of total income volume
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accumulated by the set of units with an income lower than or equal to q. The Lorenz curve is
increasing, and convex and given the mean income, the density function of T can be obtained
from the curvature of L(π). In a similar manner, the Bonferroni curve B(π) gives the ratio bet-
ween the mean income of this group and the mean income of the population. In summary,
L(π) yields fractions of the total income, while the values of B(π) refer to relative income
levels. The curves L(π) and B(π) for the BHC distribution as functions of π are readily cal-
culated from (3.29). They are plotted for selected parameter values in Figure 3.

3.6. Order Statistics and Moments

Order statistics make their appearance in many areas of statistical theory and practice. The
density function fi:n(t) of the ith order statistic, say Ti:n, for i = 1, 2, . . . , n, from data values
T1, . . . , Tn having the beta-G distribution can be obtained from (2.2) as

fi:n(t) =
g(t)G(t)a−1{1 −G(t)}b−1
B(a, b)B(i, n − i + 1)

n−i∑
j=0

(−1)j
(
n − i
j

)
F(t)i+j−1. (3.30)

From (3.3), (3.7), and (3.8), we can write

F(t)i+j−1 =
1

B(a, b)i+j−1

∞∑
r=0

di+j−1,rG(t)r , (3.31)

where di+j−1,r = (rt0)
−1 ∑r


=1[(i + j)
 − r]t
di+j−1,r−
 and di+j−1,0 = t
i+j−1
0 .

Inserting this equation in (3.30), fi:n(t) can be further reduced to

fi:n(t) = g(t)
∞∑
k=0

Mi:n(k)G(t)k, (3.32)

where

Mi:n(k) =
n−i∑
j=0

(−1)j
(
n−i
j

)

B(a, b)i+jB(i, n − i + 1)

∞∑
r,m=0

(−1)m
(
b − 1

m

)
di+j−1,rsk(a + r +m − 1). (3.33)

If b is an integer, the indexm in the above quantity stops at b − 1.
Using (3.7), we obtain

fi:n(t) = gφ(t)
∞∑

k,p=0

ck,pMi:n(k)
t2p+k(

φ2 + t2
)p+k , (3.34)

where ck,p is given by (3.8). By (3.34), we can derive some mathematical properties of Ti:n.
For example, the sth moment of Ti:n follows immediately as

E
(
Tsi:n

)
=

2
π

∞∑
k,p=0

φs−k+2B
(
2p + k + s + 1, k − s − 1

)
ck,pMi:n(k)

× 2F1

(
2p + k + s + 1

2
,
k − s − 1

2
; p + k +

1
2
; 1
)
.

(3.35)
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Figure 3: Plots of L(π) and B(π) with φ = 1 and μ = 1.

L-moments are summary statistics for probability distributions and data samples [20].
They have the advantage that they exist whenever the mean of the distribution exists, even
though some higher moments may not exist, and are relatively robust to the effects of outliers.
The L-moments can be expressed as linear combinations of the ordered data values

λr =
r−1∑
j=0

(−1)r−1−j
(
r − 1

j

)(
r − 1 + j

j

)
ηj ,

(3.36)

where ηj = E{TF(T)j} = (j+1)−1E(Tj+1:j+1). In particular, λ1 = η0, λ2 = 2η1−η0, λ3 = 6η2−6η1+
η0, and λ4 = 20η3 − 30η2 + 12η1 − η0. The L-moments of the BHC distribution can be obtained
from the results of this section.

3.7. Entropy

The entropy of a random variable T with density function f(t) is a measure of variation of the
uncertainty. Rényi entropy is defined by IR(ρ) = (1−ρ)−1 log{∫ f(t)ρdt}, where ρ > 0 and ρ /= 1.
If a random variable T has a BHC distribution, we have

f(t)ρ = L
(
ρ
)[

1 +
(
t

φ

)2
]−ρ

Gφ(t)(a−1)ρ
{
1 −Gφ(t)

}(b−1)ρ
, (3.37)

where L(ρ) = 2ρ[πφB(a, b)]−ρ. By expanding the binomial term, we obtain

f(t)ρ = L
(
ρ
)[

1 +
(
t

φ

)2
]−ρ ∞∑

j=0

RjGφ(t)(a−1)ρ+j , (3.38)
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where Rj = (−1)j
(

(b−1)ρ
j

)
. By (3.2), we can write

f(t)ρ = L
(
ρ
)[

1 +
(
t

φ

)2
]−ρ ∞∑

r=0

Nr

(
ρ
)[
arctan

(
t

φ

)]r
, (3.39)

where

Nr

(
ρ
)
=

∞∑
j=0

Mjsr
(
(a − 1)ρ + j

)( 2
π

)r

, (3.40)

and sr((a − 1)ρ + j) is defined after (3.2). We obtain

[
arctan

(
t

φ

)]r
= φr

∞∑
k=0

fr,k
t2k+r(

φ2 + t2
)k+r , (3.41)

where fr,0 = ar0, fr,k = (ia0)
−1 ∑k

m=1[(r + 1) m−k]amfr,k−m, and ak = 22k(k!)2/[(2k + 1)!]. Thus,

∫∞

0
f(t)ρdt = L

(
ρ
) ∞∑
r,k=0

φ2ρ+rNr

(
ρ
)
fr,k

∫∞

0

t2k+r(
φ2 + t2

)k+r+ρ dt. (3.42)

Finally, the Rénvy entropy can be determined from

∫∞

0

t2k+r(
φ2 + t2

)k+r+ρ dt =
B
(
2k + r + 1, r + 2ρ − 1

)
φr+2ρ−1

2F1

(
2k + r + 1

2
, ρ +

r − 1
2

; k + r + ρ +
1
2
; 1
)
.

(3.43)

4. Estimation and Inference

The estimation of the model parameters is investigated by the method of maximum likeli-
hood. Let t = (t1, . . . , tn)

� be a random sample of size n from the BHC distribution with un-
known parameter vector θ = (φ, a, b)�. The total log-likelihood function for θ can be written
as


(θ) = na log
(
2
π

)
− n log(φ) − n log{B(a, b)} − n∑

i=1

log(ẇi)

+ (a − 1)
n∑
i=1

log(żi) + (b − 1)
n∑
i=1

log
(
ḋi
)
,

(4.1)
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where v̇i = v̇i(φ) = ti/φ, ẇi = ẇi(φ) = 1+ v̇2
i , żi = żi(φ) = arctan(v̇i) and ḋi = ḋi(φ) = 1−2żi/π ,

for i = 1, . . . , n. The maximization of the log-likelihood over three parameters looks easy in
practice. The components of the score vector Uθ = (Uφ,Ua,Ub)

� are

Uφ = −n
φ
+

2
φ3

n∑
i=1

t2i
ẇi

− (a − 1)
φ2

n∑
i=1

ti
ẇiżi

+
2(b − 1)
πφ2

n∑
i=1

ti

ẇiḋi
,

Ua = n log
(
2
π

)
+ n

{
ψ(a + b) − ψ(a)} + n∑

i=1

log(żi),

Ub = n
{
ψ(a + b) − ψ(b)} + n∑

i=1

log
(
ḋi
)
,

(4.2)

where ψ(·) is the digamma function. Themaximum likelihood estimates (MLEs) θ̂ = (φ̂, â, b̂)�

of θ = (φ, a, b)� are the simultaneous solutions of the equations Uφ = Ua = Ub = 0. They can
be solved numerically using iterative methods such as a Newton-Raphson type algorithm.

The normal approximation of the estimate θ̂ can be used for constructing approximate
confidence intervals and for testing hypotheses on the parameters φ, a, and b. Under standard

regularity conditions, we have
√
n(θ̂ − θ) A∼ N3(0,K−1

θ ), where A∼ means approximately dis-
tributed and Kθ is the unit expected information matrix. The asymptotic result Kθ =
limn→∞n−1Jn(θ) holds, where Jn(θ) is the observed information matrix. The average matrix
evaluated at θ̂, say n−1Jn(θ̂), can estimate Kθ. The elements of the observed information
matrix Jn(θ) = −∂2
(θ)/∂θ∂θ� = −{Uij}, for i, j = φ, a and b are

Uφφ =
n

φ2
− 6
φ4

n∑
i=1

t2i
ẇi

+
4
φ6

n∑
i=1

t4i
ẇ2
i

+
2(a − 1)
φ3

n∑
i=1

ti
ẇiżi

[
1 − t2i

φ2ẇi
− ti
2φẇiżi

]

− 4(b − 1)
πφ3

n∑
i=1

ti

ẇiḋi

[
1 − t2i

φ2ẇi
+

ti

πφẇiḋi

]
,

Uφa = − 1
φ2

n∑
i=1

ti
ẇiżi

, Uφb =
2

πφ2

n∑
i=1

ti

ẇiḋi
,

Uaa = n
{
ψ ′(a + b) − ψ ′(a)

}
, Uab = nψ ′(a + b), Ubb = n

{
ψ ′(a + b) − ψ ′(b)

}
,

(4.3)

where ψ ′(·) is the trigamma function. Thus, the multivariate normal N3(0, Jn(θ̂)
−1) distribu-

tion can be used to construct approximate confidence intervals φ̂±zη/2×[v̂ar(φ̂)]1/2, â±zη/2×
[v̂ar(â)]1/2 and b̂ ± zη/2 × [v̂ar(b̂)]1/2 for the parameters φ, a, and b, respectively, where var(·)
is the diagonal element of Jn(θ̂)

−1 corresponding to each parameter and zη/2 is the quantile
100(1 − η/2)% of the standard normal distribution.

We can easily check if the fit using the BHC model is statistically “superior” to “a fit
using the HC model for a given data set by computing the likelihood ratio (LR) statistic w =
2{
(φ̂, â, b̂)−
(φ̃, 1, 1)}, where φ̂, â, and b̂ are the unrestrictedMLEs and φ̃ is the restricted esti-
mate. The statistic w is asymptotically distributed, under the null model, as χ2

2. Further, the
LR test rejects the null hypothesis if w > ξη, where ξη denotes the upper 100η% point of the
χ2
2 distribution.
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Table 1: MLEs (standard errors in parentheses) and the measures AIC, BIC, and HQIC.

Distribution Estimates Statistic
φ a b AIC BIC HQIC

BHC 56.6890 3.7238 2.7033 785.58 792.41 788.30
(23.1921) (1.1825) (0.6056)

EHC 20.9790 4.1938 806.53 811.08 808.34
(11.6134) (2.3670)

HC 75.8253 822.32 824.60 823.23
(10.3629)

5. Application

Here, we present an application of the BHC distribution to a real data set.Wewill compare the
fits of the BHC, EHC, and HC distributions. We also consider for the sake of comparison the
two-parameter Birnbaum-Saunders (BS), gamma, and Weibull models, and the three-para-
meter BS andWeibull models. The BHC distributionmay be an interesting alternative to these
distributions for modeling positive real data sets. The cdf’s of the exponentiated BS (ExpBS),
exponentiated Weibull (ExpWeibull), and gamma models are (for t > 0)

F(t) = Φ

⎛
⎝ 1
α

⎡
⎣
√
t

β
−
√
β

t

⎤
⎦
⎞
⎠

γ

, F(t) =
(
1 − e−βt

α
)γ
, F(t) =

ζ
(
α, βt

)
Γ(α)

, (5.1)

respectively, where α > 0, β > 0, and γ > 0. Here, Φ(·) is the cdf of the standard normal distri-
bution and ζ(·, ·) is the ordinary incomplete gamma function. If γ = 1, we have the two-para-
meter BS and Weibull models. All the computations were done using the Ox matrix pro-
gramming language [21] which is freely distributed for academic purposes at http://
www.doornik.com./ The maximization was performed by the BFGS method with anal-
ytical derivatives. For further details about this method, the reader is referred to Nocedal
andWright [22] and Press et al. [23]. We will consider the data set originally due to Bjerkedal
[24], which has also been analyzed by Gupta et al. [25]. The data represent the survival times
of guinea pigs injected with different doses of tubercle bacilli.

Table 1 lists the MLEs (and the corresponding standard errors in parentheses) of the
model parameters and the following statistics: AIC (Akaike information criterion), BIC (Bay-
esian information criterion), and HQIC (Hannan-Quinn information criterion). These results
show that the BHC distribution has the lowest AIC, BIC, and HQIC values in relation to their
submodels, and so, it could be chosen as the best model. The LR statistics for testing the
hypothesesH0: EHC againstH1: BHC andH0: HC againstH1: BHC are 22.9462 and 40.7366,
respectively, and all yield P values < 0.001. Thus, we can reject the null hypotheses in all cases
in favor of the BHC distribution at any usual significance level; that is, the BHC model is sig-
nificantly better than the EHC and HC distributions. In order to assess if the model is appro-
priate, plots of the estimated density functions are given in Figure 4. They also indicate that
the BHC model provides a better fit than the other models.

Now, we apply formal goodness-of-fit tests in order to verify which distribution fits
better to these data. We consider the Cramér-vonMises (W∗) and Anderson-Darling (A∗) sta-
tistics described in detail in Chen and Balakrishnan [26]. In general, the smaller the values of
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Figure 4: Estimated densities of the BHC, EHC and HC models.

Table 2: Goodness-of-fit tests.

Distribution Statistic
W∗ A∗

BHC 0.10682 0.60255
EHC 0.13318 0.79202
HC 0.13099 0.72207

these statistics, the better the fit to the data. Let H(x;θ) be the cdf, where the form of H is
known but θ (a k-dimensional parameter vector, say) is unknown. To obtain the statisticsW∗

andA∗, we can proceed as follows: (i) compute vi = H(xi; θ̂), where the xi’s are in ascending
order, and then yi = Φ−1(vi), where Φ(·) is the standard normal cdf and Φ−1(·) its inverse;
(ii) compute ui = Φ{(yi − y)/sy}, where y = n−1

∑n
i=1 yi and s

2
y = (n − 1)−1

∑n
i=1(yi − y)2; (iii)

calculateW2 =
∑n

i=1{ui − (2i− 1)/(2n)}2 + 1/(12n) andA2 = −n− (1/n)
∑n

i=1{(2i− 1) log(ui) +
(2n + 1 − 2i) log(1 − ui)}, and thenW∗ = W2 (1 + 0.5/n) and A∗ = A2 (1 + 0.75/n + 2.25/n2).
The values of the statisticsW∗ andA∗ for the models are listed in Table 2, thus indicating that
the BHC model should be chosen to fit the current data.

The MLEs (standard errors in parentheses) of the model parameters of the ExpBS,
ExpWeibull, BS, gamma, andWeibull models and the statisticsW∗ andA∗ are listed in Table 3.
On the basis of these statistics, the ExpWeibull model yields a better fit than the ones of the
other distributions. Overall, by comparing the figures in Tables 2 and 3, we conclude that the
BHC model outperforms all the models considered in Table 3. So, the proposed distribution
can yield a better fit than the classical three- and two-parameter BS, gamma, and Weibull
models and therefore may be an interesting alternative to these distributions for modeling
positive real data sets. These results illustrate the potentiality of the new distribution and the
necessity of additional shape parameters.
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Table 3:MLEs (standard errors in parentheses) and the measuresW∗ and A∗.

Distribution Estimates Statistic
α β γ W∗ A∗

ExpBS 0.5845 131.3672 0.3984 0.18182 0.98014
(0.9407) (377.8605) (2.2449)

ExpWeibull 0.4611 0.4744 22.4424 0.14017 0.76577
(0.1709) (0.5344) (30.1960)

BS 0.7600 77.5348 0.18824 1.01205
(0.0633) (6.4508)

Gamma 2.0815 0.0209 0.33952 1.85891
(0.3305) (0.0037)

Weibull 1.3932 0.0014 0.43476 2.39383
(0.1184) (0.0009)

6. Concluding Remarks

We introduce a new lifetime model, called the beta half-Cauchy (BHC) distribution, that ex-
tends the half-Cauchy (HC) distribution, and study some of its general structural properties.
We provide a mathematical treatment of the new distribution including expansions for the
density function, moments, generating function, order statistics, quantile function, Rényi en-
tropy, mean deviations, and Lorentz and Bonferroni curves. The model parameters are esti-
mated by maximum likelihood. Our formulas related to the BHCmodel are manageable, and
with the use of modern computer resources with analytic and numerical capabilities, may
turn into adequate tools comprising the arsenal of applied statisticians. The usefulness of the
proposedmodel is illustrated in an application to real data using likelihood ratio statistics and
formal goodness-of-fit tests. The newmodel provides consistently better fit than other models
available in the literature. We hope that the proposed model may attract wider applications
in survival analysis for modeling positive real data sets.

Acknowledgments

The authors gratefully acknowledge grants from CNPq and FAPESP (Brazil). The authors
thank an anonymous referee for some comments which improved the original version of the
paper.

References

[1] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, vol. 1, Wiley Publish-
ing, New York, NY, USA, 2nd edition, 1994.

[2] N. Johnson, S. Kotz, andN. Balakrishnan,Continuous Univariate Distributions, vol. 2, Wiley Publishing,
New York, NY, USA, 2nd edition, 1995.

[3] N. Eugene, C. Lee, and F. Famoye, “β-normal distribution and its applications,”Communications in Sta-
tistics. Theory and Methods, vol. 31, no. 4, pp. 497–512, 2002.

[4] M. Razzaghi, “β-normal distribution in dose-response modeling and risk assessment for quantitative
responses,” Environmental and Ecological Science, vol. 16, no. 1, pp. 21–36, 2009.

[5] M. W. Shaw, “Simulation of population expansion and spatial pattern when individual dispersal dis-
tributions do not decline exponentially with distance,” Proceedings of the Royal Society B, vol. 259, no.
1356, pp. 243–248, 1995.



18 Journal of Probability and Statistics

[6] E. Paradis, S. R. Baillie, and W. J. Sutherland, “Modeling large-scale dispersal distances,” Ecological
Modelling, vol. 151, no. 2-3, pp. 279–292, 2002.
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