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We present a method of optimal hedging and pricing of equity-linked life insurance products
in an incomplete discrete-time financial market. A pure endowment life insurance contract with
guarantee is used as an example. The financial market incompleteness is caused by the assumption
that the underlying risky asset price ratios are distributed in a compact interval, generalizing the
assumptions of multinomial incomplete market models. For a range of initial hedging capitals for
the embedded financial option, we numerically solve an optimal hedging problem and determine
a risk-return profile of each optimal non-self-financing hedging strategy. The fair price of the
insurance contract is determined according to the insurer’s risk-return preferences. Illustrative
numerical results of testing our algorithm on hypothetical insurance contracts are documented.
A discussion and a test of a hedging strategy recalibration technique for long-term contracts are
presented.

1. Introduction

Equity-linked life insurance provides the insured with the opportunity of participating
in the growth potential of an equity-based financial market index such as the S&P 500
index. In addition, equity-linked insurance with guarantee provides downside protection
with a guaranteed minimum return. The combination of equity participation and downside
protection significantly improves the desirability of the insurance contract.

From the perspective of the insurance issuer, such insurance contracts create two
sources of risk. One source of risk is mortality risk. Mortality risk is related to the likelihood
of an insurance-type event such as client’s death prior to contract maturity or client’s survival
to contract maturity. The equity-linked component of the insurance contract, which is related
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to the behavior of the underlying risky asset, creates the second source of risk, a financial risk.
A fair price of an equity-linked life insurance contract should account for both sources of risk.

The pricing and hedging of equity-linked life insurance contracts are an active area of
research. In their pioneering work, Brennan and Schwartz [1, 2] provided an initial impetus
to combining actuarial and financial risk management approaches by showing that the
payable benefit for equity-linked insurance contract could be viewed as a known guarantee
amount and the pay-off of an embedded call option. This approach has been developed by
many authors, see, for example, [3, 4]. These authors develop their models under the major
assumption of financial market completeness.

Several authors consider an incomplete insurance market, where incompleteness is
caused by mortality risk, an additional risk factor independent of the financial risk, while
the financial market itself is described by a complete market model. In [5], the author
applies risk-minimization approach developed in [6, 7] to determine non-self-financing
hedging strategies for equity-linked pure endowment contracts. The financial market itself
is described by the complete discrete binomial model.

In a series of papers by Melnikov et al. [8–10], the methods of quantile hedging as
well as efficient hedging developed in [11], [12], respectively, are applied to pricing and
hedging of various unit-linked and equity-linked life insurance contracts. Here the financial
market itself is described by the complete single- or multidimensional Black-Scholes model
or by a jump-diffusion model with the unique equivalent risk-neutral measure. Klusik and
Palmowski in their recent work [13] rely on methods of quantile hedging as well as on their
original results to find optimal self-financing hedging strategies for more complex payoffs in
the framework of the Black-Scholes financial market with reduced initial hedging capital.

Incomplete financial markets in the context of equity-linked life insurance have been
studied in [14]. Here financial market incompleteness is caused by the dynamics of the
underlying risky asset which follows a continuous time stochastic process with jumps.
In [15], a stochastic programming model is developed to account for various sources of
financial market incompleteness, such as jumps in the underlying asset stochastic process
and heteroscedasticity of the process for the underlying asset.

In the present paper, we consider an equity-linked life insurance contract in the
framework of an incomplete discrete-time financial market originally developed in [16]. The
market incompleteness is caused by the behavior of the underlying risky asset. The risky
asset price ratios at every time point are assumed to be distributed over a bounded interval,
in contrast to a complete binomial model where they have a two-point distribution. This
market model is a natural extension of the incomplete multinomial market models previously
developed in the literature (see, e.g., [17]). In [18–20], an algorithmic approach to optimal
hedging of various contingent claims (path independent as well as path dependent) was
developed. The algorithm uses an available initial hedging capital to produce a non-self-
financing hedging strategy which is optimal with respect to a chosen risk criterion. This
approach presents a more flexible alternative to other methods for hedging in incomplete
markets, such as local risk minimization (see, e.g., [21] and the references therein). In [22]
comparative numerical results that illustrate better performance of our alternative strategies
compared to local quadratic and local linear risk minimization strategies are presented.

We further extend our previous work to develop a technique for both optimal hedging
and pricing of equity-linked life insurance products in an incomplete discrete-time financial
market environment. In this paper, we use a pure endowment contract with guarantee as
an example to illustrate our methodology. Our method is extensible to more sophisticated
equity-linked products.
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In our approach, the pricing of a pure endowment contract with guarantee begins with
determining a range of admissible initial hedging capital values. For each of the chosen initial
capital values, we identify a non-self-financing hedging strategy which optimizes an insurer
relevant risk criterion and determine a risk-return profile of the optimal strategy.

The insurance company chooses the risk-return profile that agrees with their prefer-
ences. Based on the initial hedging capital associated with the preferred risk-return profile
and using the customer’s survival probability, the insurer determines the fair price of the
contract.

Our numerical algorithm is applied to two hypothetical pure endowment contracts
with guarantee where the underlying risky asset is the S&P 500 index.

As an illustration of our algorithm flexibility, we show how our optimal hedging
strategy can be recalibrated during the lifetime of a long-term contract in order to take into
account themost recent market data. Numerical simulations show that a recalibrated hedging
strategy has improved risk-return characteristics.

The remainder of this paper is organized as follows. In Section 2, we set up a problem
of pricing and optimal hedging of an equity-linked pure endowment insurance contract and
relate it to the problem of optimal hedging in an incomplete market. A detailed development
of our incomplete market model and our algorithmic approach to optimal hedging is
presented in Section 3. We discuss application of our approach to equity-linked life insurance
products in Section 4. Numerical results of application of our algorithm to two pure
endowment life insurance contracts with guarantee are presented in Section 5. Section 6 is
devoted to a discussion and a test of our recalibration technique.

2. Problem Setting

Let (Ω, F,P, Fi) denote a filtered probability space, where Ω is a sample space, P is a
probability measure on the σ-algebra F of subsets of Ω, and (Fi)i=0,1,...,n is a filtration, an
increasing sequence of σ-algebras F0 ⊆ F1 ⊆ · · · ⊆ Fn. Here Fi corresponds to the discrete-
time moment ti, 0 = t0 < t1 < · · · < tn = T(T > 0), F0 = {∅,Ω}, and Fn = F.

Let S = (Si)i=0,1,...,n denote a discrete-time strictly positive risky asset price process,
adapted to the filtration (Fi)i=0,1,...,n (Si is Fi-measurable for all 0 ≤ i ≤ n). Let Bi =
B0(1 + r)

i, B0 > 0 be a deterministic riskless asset (bond) process with constant interest rate r.
Without loss of generality we will assume that B0 = 1.

We consider a financial market consisting of the risky asset and bond that can be traded
at times 0 = t0 < t1 < · · · < tn = T(T > 0). Suppose the following additional assumption holds.

(A1) The risky asset price ratios (jumps) ψi = Si/Si−1 are distributed over a bound-
ed interval [D,U] for all 1 ≤ i ≤ n, where D < 1 + r < U.

No further assumptions are made regarding the risky asset price jump distribution.
This discrete-timemarket model is incomplete. In fact, it represents a natural extension

of the incomplete multinomial discrete-time model (see, e.g., [17]) which in turn generalizes
the famous complete binomial model [23]. More details about ourmarket model will be given
in Section 3.

Let us denote byH a European-type contingent claim on the underlying asset S, with
maturity T = tn (meaning thatH is a Fn-measurable random variable).

By T(x)we denote the remaining lifetime of a person who is currently x years old. We
assume that T(x) is a random variable defined on a probability space ( ˜Ω, ˜F, ˜P).
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Traditionally, it is assumed that financial and mortality factors are independent (see,
e.g., [24]). Wewill adopt this point of view as well. Hence, wewill assume that the probability
spaces (Ω, F,P) and ( ˜Ω, ˜F, ˜P) are independent.

We consider a single-premium equity-linked life insurance contract where the insured
person receives the amountH provided that he/she is alive at maturity T (a pure endowment
equity-linked life insurance contract). The pay-off (benefit) at maturity of such insurance
contract is as follows:

̂H = H · I{T(x)>T}. (2.1)

Here I{T(x)>T} is the indicator function of the event {T(x) > T}. This function takes the value
of 1 if the insured person survives beyond the contract maturity and 0 in the opposite case.

We will take the position of an insurance company that issues a pure endowment
life insurance contract and needs to determine a fair price of such contract. In addition
to determining an appropriate contract price, an insurance company is looking to find an
optimal way to invest in a hedging strategy to protect their position in the contract in
accordance with their risk preferences.

Since our financial market is incomplete, there exists an infinite set of equivalent risk-
neutral probability measures on (Ω, F). Let P∗ be some equivalent risk-neutral measure; that
is, P∗ is a probability measure, which is equivalent to P and such that the discounted risky
asset price process Z = (Zi)i=0,1,...,n, Zi = Si/Bi is a P∗-martingale.

Then the time-zero no-arbitrage price TUx of the life insurance contract associated
with P∗ is

TUx = E∗ × ˜E
(

̂H(1 + r)−n
)

= E∗ × ˜E(H(1 + r)−n · I{T(x)>T}
)

,

(2.2)

where E∗ × ˜E denotes the expectation with respect to the product measure P∗ × ˜P. Further,
using the independence of P∗ and ˜P, we obtain

TUx = E∗(H(1 + r)−n
)

Tpx, (2.3)

where Tpx = ˜P(T(x) > T) is the survival probability; that is, the probability that an insured
person of age x survives beyond time T .

In the case of a complete financial market, the measure P∗ is unique, and therefore the
quantity E∗(H(1 + r)−n) occurring in (2.3) is a unique no-arbitrage price of the contingent
claim H. This quantity represents a perfect initial hedging capital that can be used to
construct a self-financing hedging strategy (based on risky assets and bonds)which perfectly
replicates the contingent claim H. However, the presence of a mortality factor makes the
market incomplete, since only the reduced quantity E∗(H(1 + r)−n)Tpx is available to the
hedger. There are a variety of approaches (see, e.g., [13, 25] and the references therein) that
build optimal self-financing hedging strategies based on the reduced initial capital in the
framework of a complete financial market.

In our setting, the financial market under consideration is incomplete. Market incom-
pleteness results in the fact that the measure P∗ is not unique and therefore the quantity
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E∗(H(1 + r)−n) is no longer a unique no-arbitrage price of the contingent claim H. A perfect
hedge with a self-financing strategy is not possible even if the mortality factor is not present.
In our approach to hedging, we consider non-self-financing hedging strategies (based on
risky assets and bonds) that are funded by the available initial hedging capital. We introduce
optimization criteria meaningful to the investor and numerically solve the appropriate
optimization problems. Our approach to pricing is based on the analysis of the risk-return
characteristics of the optimal hedging strategies.

3. Pricing and Hedging of Contingent Claims in a Discrete-Time
Incomplete Market

In this section, we give an overview of the discrete-time incomplete market model and our
algorithmic approach to optimal hedging of contingent claims (see [18–20]). We will return
to optimal hedging and pricing of equity-linked life insurance contracts in Section 4.

3.1. No-Arbitrage Prices

Let us consider the financial market model introduced in Section 2 under assumption (A1).
Additionally, we will assume that the following holds.

(A2) A European contingent claimH has a convex continuous pay-off function f .

In our incomplete financial market model, there exists an infinite set of equivalent risk-
neutral measures on (Ω, F). At each time ti, each equivalent risk-neutral measureP∗ produces
the no-arbitrage price E∗(H(1 + r)−(n−i)) for a European contingent claim H with the pay-off
function f . These no-arbitrage contingent claim prices at each time ti form an open interval:

(

Y i

(

f,D,U
)

, Y i

(

f,D,U
)

)

, i = 0, . . . , n − 1, (3.1)

where parameters D and U determine the support of the risky asset price ratio distribution
(see assumption (A1)). The explicit formulas for the upper and lower bounds of the no-
arbitrage price interval for the case whereH is a European call option were first obtained in
[26]. Further, these formulas have been generalized to the case of a European option with a
convex pay-off function in [27], see also [16, 17, 28–30].

We will need the following definition.

Definition 3.1. Consider the financial market described in Section 2. Replace assumption (A1)
with the framework of the Cox-Ross-Rubinstein (CRR) complete financial market binomial
model with parameters D and U (D < 1 + r < U) (i.e., the risky asset price ratio ψi = Si/Si−1
at any time ti (i = 1, . . . , n) takes one of the two possible values: D or U). Suppose the
contingent claimH with the pay-off function f and the initial risky asset price S0 is evaluated
in the framework of the above CRR model. One will define CRRi(f,D,U) as the unique CRR
contingent claim price at time ti.

Example 3.2. Suppose H is a European type path-independent option with the pay-off fun-
ction f that depends only on the terminal risky asset value. Then in the framework of the
Cox-Ross-Rubinstein binomial model, we have

CRRi
(

f,D,U
)

= gi(D,U, Si), (3.2)
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where

gi(D,U, x) = (1 + r)−(n−i)
n−i
∑

j=0

(

n − i
j

)

Pj(1 − P)n−i−jf
(

xUjDn−i−j
)

, (3.3)

P =
(1 + r) − D

U − D
. (3.4)

We have the following proposition.

Proposition 3.3. LetH be a European contingent claim with the pay-off function f . Suppose assump-
tions (A1) and (A2) hold.

Then the upper bound at time ti of the no-arbitrage price interval forH is given by the following
formula:

Y i

(

f,D,U
)

= CRRi
(

f,D,U
)

(0 ≤ i ≤ n − 1), (3.5)

where [D,U] is a support of the risky asset price ratio distribution and the notation CRRi(f, ·, ·) is
given in Definition 3.1. The lower bound at time ti of the no-arbitrage price interval does not depend
on parameters D andU and is given by the following formula:

Y i

(

f,D,U
) ≡ Y i

(

f
)

= (1 + r)−(n−i)f
(

Si(1 + r)n−i
)

. (3.6)

Example 3.4. SupposeH is a European type-option with the pay-off function f that depends
only on the terminal risky asset value. Then the upper bound Y i(f,D,U) is given by formulas
(3.2), (3.3), and (3.4), where D = D and U = U.

Each no-arbitrage price of a contingent claim at time ti is associated with a point within
the no-arbitrage price interval (Y i(f), Y i(f,D,U)) (i = 0, . . . , n − 1). In turn, any point within
this interval can be explicitly expressed in terms of the additional model parameters d and
u (D < d < (1 + r) < u < U). We have the following proposition which follows from the
convexity assumption (A2) (see, e.g., [20]).

Proposition 3.5. Suppose assumptions (A1) and (A2) hold. Let yi be an arbitrary point within the
no-arbitrage price interval (Y i(f), Y i(f,D,U)) (i = 0, . . . , n − 1).

Then there exists at least one pair of numbers (d, u) (D < d < (1 + r) < u < U) such that yi
can be represented in the following form:

yi = CRRi
(

f, d, u
)

, (3.7)

where the notation CRRi(f, ·, ·) is explained in Definition 3.1.

Example 3.6. In the case where H is a European-type path-independent option with the
pay-off function f , an arbitrary point within the no-arbitrage price interval (Y i(f), Y i(f,D,
U)) (i = 0, . . . , n − 1) is given by formulas (3.2), (3.3), and (3.4), where D = d and U = u.
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Remark 3.7. For each point yi within the no-arbitrage price interval
(

Y i

(

f
)

, Y i

(

f,D,U
)

)

, (3.8)

there is an infinite number of pairs (d, u) such that (3.7) is satisfied.

3.2. Optimal Hedging

For the remainder of the paper, we will focus on the case where a convex payoff function
f of a European contingent claim H depends on the terminal risky asset value, but not on
the risky asset price path. The case of a path-dependent H was developed in [20], and this
extension is not required for our application to an equity-linked pure endowment insurance
contract.

Our goal is to hedge a European contingent claimH with a dynamic hedging portfolio
consisting of risky assets and bonds. A hedging portfolio (or, equivalently, a hedging
strategy) ϕ is determined by a pair of Fi-measurable discrete-time stochastic processes
(ξi, ηi)i=0,1,...,n−1, where ξi is a number of risky asset units held over the time interval [ti, ti+1)
and ηi is the number of bonds held over the time interval [ti, ti+1).

We take a position of a contingent claim seller who possesses an initial capital C0

at time t = 0 and would like to build a hedging strategy consistent with this available
initial capital. We will always assume that the amount C0 falls within the no-arbitrage
contingent claim price interval (Y 0(f), Y 0(f,D,U)) (corresponding to t = 0). It follows from
Proposition 3.5 and Example 3.6 that C0 can be calculated as a unique time zero price of the
contingent claim H in the framework of the CRR complete binomial market model with
parameters d and u (D < d < (1 + r) < u < U):

C0 = g0(d, u, S0), (3.9)

where g0 is given by (3.3)with i = 0, D = d, and U = u. We recall (see Remark 3.7) that in our
incomplete market model there is an infinite number of (d, u) pairs that determine the value
C0.

Definition 3.8. Let C0 be a point within the interval (Y 0(f), Y 0(f,D,U)). The infinite set of
pairs (d, u) (D < d < (1 + r) < u < U) that satisfy formula (3.9) is called the admissible
parameter set associated with C0. We will denote this set by Σ.

In [16], the idea of utilizing formulas for hedging strategies from the appropriate
complete binomial model was first introduced. Further, it was successfully developed in
[18–20]. Specifically, A. V. Nagaev and S. A. Nagaev in [16] suggest the following approach
to hedging in our incomplete market model. For a given initial capital C0 and for any
pair (d, u) in the admissible parameter set Σ, the hedger uses the amount C0 to set up the
hedging portfolio (ξ0(d, u), η0(d, u)). This portfolio will be rebalanced at every hedging time
ti, i = 1, . . . , n − 1 according to the following formulas:

ξi(d, u) =
gi+1(d, u, Siu) − gi+1(d, u, Sid)

Si(u − d) ,

ηi(d, u) =
ugi+1(d, u, Sid) − dgi+1(d, u, Siu)

(1 + r)Bi(u − d)

(3.10)

(here gi is given by (3.3)with D = d and U = u) creating a hedging strategy ϕ(d, u).
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In the framework of the CRR complete binomial model with parameters d and u,
formulas (3.10) define a unique self-financing hedging strategy that perfectly replicates the
contingent claimH. The same formulas play a different role in the framework of the present
incompletemodel. It follows fromRemark 3.7 that for each initial capitalC0 there is an infinite
set of hedging strategies ϕ(d, u) given by formulas (3.10) that are parameterized by the pairs
(d, u) in the admissible parameter set Σ. Moreover, these strategies are non-self-financing, as
will be now explained.

Let us fix a (d, u)-pair in Σ and consider the associated hedging strategy (3.10) (i =
0, . . . , n − 1). It was shown in [18] that at every hedging time ti (i = 1, . . . , n) the hedging
strategy produces a nonzero local residual amount δi, a difference between the liquidation
value at time ti of the time ti−1 hedging portfolio and the set-up cost of the hedging portfolio
held from ti to ti+1. The local residual amount depends on the parameters (d, u) and has the
following explicit form:

δi(d, u) =
u − ψi
u − d gi(d, u, Si−1d) +

ψi − d
u − d gi(d, u, Si−1u) − gi

(

d, u, Si−1ψi
)

, i = 1, . . . , n

(3.11)

(we recall that ψi = Si/Si−1 is a risky asset price ratio at time ti).
The local residual amounts δi(d, u) are in general nonzero. More precisely, the sign of

δi(d, u) depends on the risky asset price ratio ψi:

(i) δi(d, u) > 0 if d < ψi < u,

(ii) δi(d, u) = 0 if ψi = d or ψi = u,

(iii) δi(d, u) < 0 if D < ψi < d or u < ψi < U.

The nonzero local residuals imply the fact that for each (d, u) pair in Σ, formulas (3.10)
define a non-self-financing hedging strategy ϕ(d, u) that is created starting with the initial
capital C0. In order to maintain the hedging strategy ϕ(d, u), at each time step i = 1, . . . , n,
the investor will either withdraw the local residual δi(d, u) from the liquidated proceeds
when δi(d, u) is positive or add the amount when δi(d, u) is negative. Let us notice that such
portfolio adjustment made at maturity time tn = T guarantees that the hedging portfolio
value at termination time matches the liabilityH.

Let us define the discounted local residual amount at time ti denoted by ˜δi(d, u) as
follows:

˜δi(d, u) = δi(d, u)(1 + r)−i, i = 1, . . . , n. (3.12)

The discounted local residuals ˜δi(d, u) produce the accumulated residual amount Δn(d, u):

Δn(d, u) = ˜δ1(d, u) + ˜δ2(d, u) + · · · + ˜δn(d, u). (3.13)

In order to choose the “best” hedging strategy out of the infinite set of admissible
hedging strategies, we need to introduce some optimization criteria. There are a variety of
optimization criteria that are meaningful to the investor and could be expressed in terms of
local residuals as well as the accumulated residual amount. We introduce two criteria that
will be used in this paper in Section 3.3.
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Since the residuals can be explicitly expressed in terms of the model parameters (d, u)
(for a given risky asset price path), the optimization problem involving these criteria can
be reduced to the problem of choosing a pair of optimal parameters (d∗, u∗) out of the
admissible parameter set Σ. This optimal parameter pair will define an optimal hedging
strategy ϕ(d∗, u∗).

We develop a numerical optimal hedging algorithm for a variety of contingent claims
and underlying assets in [18–20]. Let us notice that the admissible parameter set Σ by
construction is associated with the given initial capital C0. Our algorithm uses the initial
hedging capital C0 as an input parameter (e.g., C0 could be the current market price of the
contingent claim). This separates our approach from the approaches of other authors (see,
e.g., [6, 7, 31]) who solve a pricing problem together with an optimal hedging problem. One
of the advantages of our approach is the possibility for a hedger to use an available initial
capital and still achieve optimal hedging results. The only constraint on the initial hedging
capital C0 is that it must fall within the no-arbitrage price interval described in Section 3.1.

Remark 3.9. The boundary parameters D,U play a purely theoretical role in our setting. As
long as one imposes a no-arbitrage assumption on the initial hedging capital C0, one can
successfully set up and maintain a non-self-financing hedging strategy without knowing the
parameters D andU.

3.3. Optimization Criteria and Optimal Hedging Problems

We will now describe our optimization criteria in more detail. As explained in Section 3.2,
local residuals δi(d, u) represent actual incremental cash flows in maintaining the hedging
strategy. One measure of the risk associated with a particular hedging strategy ϕ(d, u) is
based on the outstanding balance of a savings account generated by the cash deposits or loans
δi(d, u) created by portfolio adjustments at each rebalancing time. The outstanding balance
Oi(d, u) in a savings account at time ti associated with the hedging strategy ϕ(d, u) is given
by the accumulated local residual amounts to time i:

Oi(d, u) =
i

∑

j=1

δj(d, u)(1 + r)i−j , i = 1, . . . , n. (3.14)

Let us notice that Oi(d, u) is a Fi-measurable random variable for every i = 1, . . . , n.

Definition 3.10. Theminimum value of the sequence {Oi}ni=1 denoted byM(d, u)will be called
the minimum outstanding balance (MOB) associated with the hedging strategy ϕ(d, u):

M(d, u) = min
1≤i≤n

Oi(d, u). (3.15)

We notice that M(d, u) is a Fn-measurable random variable associated with the strategy ϕ(d,
u). The quantity M(d, u) is the largest outstanding loan (if negative) or the lowest balance
amount (if positive) produced by the given strategy.

We consider the following risk optimization problem based on the MOB:

max
(d,u)∈Σ

E(M(d, u)), (3.16)

where the expectation is taken with respect to the physical measure P.
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Remark 3.11. The quantity E(M(d, u)) provides a measure of risk associated with the
hedging strategy ϕ(d, u). This quantity measures the amount of funds required to maintain
the hedging strategy ϕ(d, u) (if negative). A positive value of E(M(d, u)) indicates that
the investor does not need to add additional funds to maintain the hedging strategy
ϕ(d, u), but rather the strategy produces a positive cash flow. Therefore, as the value of
E(M(d, u)) increases, the risk of needing additional incremental funding to maintain the
hedging portfolio decreases. The optimal value E(M(d∗, u∗)) represents the lowest risk value
associated with the set of admissible model parameters Σ, which in turn is determined by the
initial hedging capital C0.

We will now proceed to the second optimization criterion used in this paper. The
return on the investmentC0 in our incomplete market model can bemeasured as the expected
accumulated residual amount E(Δn(d, u)) produced by a non-self-financing hedging strategy
ϕ(d, u)with the initial hedging capital C0, where Δn(d, u) is defined by (3.13).

We consider the following return optimization problem:

max
(d,u)∈Σ

E(Δn(d, u)), (3.17)

where the expectation is taken with respect to the physical measure P.

Remark 3.12. Throughout the paper we use the notation (d∗, u∗) for the optimal parameter
pair with respect to the optimization criterion which is currently under consideration. The
optimal value E(Δn(d∗, u∗)) represents the largest return value associated with the set of
admissible model parameters Σ, which in turn is determined by the initial hedging capital
C0.

In our past work, the return characteristic E(Δn(d, u)) has been studied extensively.
In [22] we point out the connection between the accumulated residual Δn(d, u) produced by
a non-self-financing hedging strategy and the cumulative cost of hedge associated with that
strategy (see, e.g., [6, 7, 31]). Here we consider this characteristic to illustrate the flexibility of
our algorithm.

Remark 3.13. Comparing (3.13) with (3.14), one can easily see that the accumulated residual
amountΔn(d, u) produced by a hedging strategy ϕ(d, u) is related to the outstanding balance
at maturity as follows:

Δn(d, u) = On(d, u)(1 + r)−n. (3.18)

Now we can describe our optimal hedging algorithm in detail.

3.4. Optimal Hedging Algorithm Design

The algorithm input parameters are the initial hedging capital C0, the contingent claim
maturity time T and pay-off function f , the initial value of the underlying risky asset S0,
the risk-free interest rate r, the number of hedging times n, and the set of historical values of
the underlying risky asset.

The algorithm is designed as follows.
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(a) Construct Admissible Parameter Set Σ

The admissible parameter set Σ (see Definition 3.8) is determined numerically using contour
construction software, based on (3.9). We determine a discretized set ̂Σ which numerically
approximates the admissible parameter set Σ and consists of a finite number of (d, u) pairs.

(b) Simulate Future Paths for Underlying Risky Asset

The algorithm can easily incorporate various techniques for simulating risky asset paths. In
this paper, we consider bootstrap sampling from a set of historical risky asset value jumps.
(see Remark 3.14). The risky asset price paths are constructed from the sampled jumps and
the given risky asset initial value.

(c) Calculate Local Residuals

For each (d, u) pair in the discretized admissible parameter set ̂Σ, and for each simulated
path, construct local residual sequence δi(d, u), i = 1, . . . , n, using (3.11).

(d) Approximate the Optimization Criterion Value for Each (d, u) Pair

For each (d, u) pair in the discretized admissible parameter set ̂Σ, approximate the value of
the optimization criterion by computing an appropriate statistic on the simulated paths.

(e) Determine Numerical Solution of the Optimization Problem

An approximate solution to the chosen optimization problem is found by choosing the largest
(or the smallest) approximating value of the optimization criterion over admissible (d, u)
pairs. This value corresponds to the optimal parameter pair (d∗, u∗) and therefore the optimal
hedging strategy ϕ(d∗, u∗).

Our optimal hedging algorithm can be easily adjusted to accommodate any
optimization criterion based on local residuals δi(d, u) or the accumulated residual Δn(d, u)
produced by a hedging strategy. In this paper, we will use the two optimization criteria
described in Section 3.3.

Using the optimal parameter pair (d∗, u∗), it is possible to evaluate additional charac-
teristics of the optimal hedging strategy ϕ(d∗, u∗) based on the local residuals δi(d∗, u∗), i =
1, . . . , n, produced by ϕ(d∗, u∗), by calculating appropriate statistics on the simulated paths. In
the case where risk is chosen as the main criterion, the algorithm calculates the return value
associated with ϕ(d∗, u∗) as an additional characteristic of the chosen hedging strategy. In
the case where return is chosen as the main criterion, the algorithm calculates the risk value
associated with ϕ(d∗, u∗). This way the user obtains the risk-return profile of the optimal
hedging strategy.

Remark 3.14. Bootstrap sampling techniques are used in a wide range of financial applications
(see, e.g., [32] and the references therein). The mathematical foundations for bootstrap
resampling methods can be found in [33]. In this paper, we make the assumption of
independent and identically distributed stock price jumps that justifies our use of bootstrap
resampling. Models that account for dependence of the jumps can be easily incorporated into
the algorithm and have been studied in previous works of the authors [19].
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4. Application to Optimal Hedging and Pricing of
Equity-Linked Life Insurance Products

In this section, we extend our approach developed in Section 3 to optimal hedging and
pricing of pure endowment life insurance contracts with guarantee.

An equity-linked pure endowment contract with guarantee is described by its pay-off
(benefit) at maturity as follows:

̂H = max{ST , kS0} · I{T(x)>T}. (4.1)

Here St is an underlying risky asset (e.g., stock index) value at time t, T is the contract
maturity time, k (0 < k ≤ 1) is a fixed coefficient equal to a percentage of the initial value of
the underlying risky asset that is guaranteed to the living insured at maturity. At maturity, the
insured person will receive the largest of the two: the guarantee amount kS0 or the terminal
value ST of the underlying risky asset (provided he/she is alive at maturity).

Let us take the position of an insurance company that on a certain date is trying to
determine a fair price of a pure endowment contract with guarantee with maturity time T .
Following the approach originating from [1], we rewrite (4.1) as follows:

̂H = (kS0 +max{ST − kS0, 0}) · I{T(x)>T}. (4.2)

One can see from (4.2) that the considered life insurance contract contains the embedded
European call option on the underlying asset S, with maturity time T and strike price kS0,
with the pay-off function at maturity f(ST ) = max{ST − kS0, 0}.

Following the approach described in Section 2, we arrive at the following formula for
a (nonunique) no-arbitrage price TUx of the contract at time zero:

TUx = TpxkS0e
−rT + TpxC0(S, T). (4.3)

Here C0(S, T) stands for a no-arbitrage time t = 0 price of the embedded European call option
described above. We recall that this price cannot be uniquely determined in an incomplete
financial market. On the other hand, the portion TpxC0(S, T) of the contract price TUx may
be used by the insurance company to hedge against financial risk involved in the equity-
linked life insurance contract.

We assume that the insurance company is willing to invest the amount TpxC0(S, T) in
a hedging strategy which optimizes a given criterion, as described in Section 3. The amount
TpxC0(S, T) is interpreted as the initial hedging capital C0:

C0 = TpxC0(S, T). (4.4)

It is important for the insurer to determine a reasonable range of C0 values. Intuitively,
the larger the initial hedging capital C0, the better the quality of the hedging strategy
associated with C0 and therefore the lower financial risk. On the other hand, the lower the C0

values, the lower the contract price TUx, the more attractive the contract is to a customer.
As explained in Section 3.1, the amount C0 can vary within the open interval of no-

arbitrage prices for the embedded call option. Therefore theoretically it can be made as low
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as the lower bound of this interval, a highly desirable choice from the customer perspective.
The upper bound of the no-arbitrage price interval (as is shown in [18]) represents the initial
capital for a minimum cost super hedge. This amount, although highly desirable from the
insurer perspective, cannot be considered as a realistic choice.

In our approach, we create a grid of no-arbitrage values for C0, where the lowest C0

value is the lower bound Y 0(f) given by (3.6) with i = 0 and f(ST ) = max(ST − kS0, 0). The
largest C0 value in the grid equals αBS0(S, T), where BS0(S, T) is the time zero Black-Scholes
price of the above-described embedded call option and α is a constant that can be determined
by the user (empirically, if α is chosen from the interval [1, 1.2], one obtains a reasonable range
of C0 values).

Each calculated C0 value in the grid is used as an input parameter (initial hedging
capital) for the optimal hedging algorithm described in Section 3.4. For each C0 value, based
on the chosen optimization criterion, this algorithm determines an optimal pair of model
parameters (d∗, u∗)within the admissible parameter set Σ and calculates the optimal hedging
strategy ϕ(d∗, u∗). The algorithm also calculates the optimal value of the chosen optimization
criterion and provides the risk-return profile of the optimal strategy.

Analyzing risk-return profiles of the optimal hedging strategies, the insurance
company chooses the C0 value which delivers the most acceptable results based on their risk-
return preferences. Once the C0 value is chosen, the insurer is able to price pure endowment
contracts with guarantee for their customers.

Using (4.4), let us rewrite formula (4.3) as follows:

TUx = TpxkS0e
−rT + C0. (4.5)

Based on the customer’s age, the survival probability Tpx is determined using the available
mortality data (see, e.g., [34]) and the contract price TUx is calculated using (4.5) with the
chosen C0 value.

5. Illustrative Numerical Results

We have applied our method described in Section 4 to the optimal hedging and pricing of
pure endowment life insurance contracts with guarantee, using the S&P 500 Index as the
underlying risky asset. In this section, we give a description of the numerical results of our
simulations.

5.1. Simulations for Risk Optimization

We take a position of an insurer who on March 19, 2010, needs to price and hedge two
hypothetical pure endowment life insurance contracts with guarantee. The first contract
matures in 10 years (T = 10), and the second contract matures in 20 years (T = 20). In both
cases the underlying risky asset is the S&P 500 Index and the starting date is March 19, 2010.
The S&P 500 Index starting value is 1159.90 (S0 = 1159.9). The guarantee amount in each
contract equals 100% of the risky asset value as of the starting date of the contract (k = 1).

We consider two risk-free interest rate r values: 2% and 4%. For each combination of
parameters (r, T), three or four initial hedging capital C0 values are computed as described in
Section 4 (we use the value α = 1.1). These values are presented in Table 1, column “Hedging
capital C0”.
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Table 1: Illustrative numerical results for two pure endowment contracts with guarantee.

Case Rate Maturity Hedging capital Risk Risk interval Return
r T C0 M∗ Δ

1 0.02 10 206.94 −1.83 (−4.25, 2.96) 43.22
2 0.02 10 258.67 2.53 (0.32, 5.49) 78.88
3 0.02 10 323.34 4.62 (3.18, 7.33) 124.92
4 0.02 10 355.67 5.43 (3.32, 7.79) 153.06
5 0.02 20 378.32 1.84 (0.58, 3.95) 114.62
6 0.02 20 442.19 2.61 (1.17, 4.69) 161.54
7 0.02 20 491.32 3.15 (2.23, 4.92) 191.72
8 0.02 20 540.45 3.51 (2.49, 5.04) 222.07
9 0.04 10 373.38 6.15 (3.38, 8.92) 195.05
10 0.04 10 434.16 7.18 (4.79, 10.76) 234.51
11 0.04 10 477.58 7.86 (5.38, 11.07) 256.19
12 0.04 20 629.13 3.44 (3.04, 4.40) 234.49
13 0.04 20 669.29 3.54 (3.09, 4.86) 256.75
14 0.04 20 736.22 3.69 (3.49, 4.93) 288.23

Each initial hedging capital C0 is used as an input parameter for the optimal hedging
algorithm (see Section 3.4). In this simulation, we numerically solve the theoretical optimiza-
tion problem (3.16) choosing the expected minimum outstanding balance as the optimization
criterion.

In step (b) of the hedging algorithm, two hundred representative S&P 500 Index value
paths are simulated. In this study, we use bootstrap sampling from a set of historical quarterly
index value jumps. Our hedging strategies, computed using (3.10), are rebalanced quarterly.

Having calculated local residuals in step (c) of the algorithm, we need to approximate
the expected MOB value in step (d). For each (d, u) pair in the discretized admissible
parameter set ̂Σ, and for each simulated path, we use (3.15) to compute the values M(d, u).
These values are averaged over the simulated paths. The average value (denoted by M(d,u))
numerically approximates the expectation E(M(d, u)):

M(d,u) ≈ E(M(d, u)). (5.1)

In step (e), we determine an approximate solution M∗ to the optimization problem
(3.16):

M∗ ≈ max
(d,u)∈Σ

E(M(d, u)). (5.2)

To do so, we choose the largest approximating value M(d,u) over admissible (d, u) pairs:

M∗ = max
(d,u)∈̂Σ

M(d,u). (5.3)

This value corresponds to the optimal parameter pair (d∗, u∗) and therefore the optimal
hedging strategy ϕ(d∗, u∗).
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As an additional characteristic of the optimal hedging strategy ϕ(d∗, u∗), we determine
an approximate return (denoted byΔ) associatedwith the optimal hedging strategy ϕ(d∗, u∗):

Δ ≈ E(Δn(d∗, u∗)). (5.4)

For the optimal pair (d∗, u∗), we calculate the accumulated residualΔn(d∗, u∗) given by (3.13)
on each simulated path. An approximate return Δ is found by averaging the accumulated
residual values over the simulated paths.

The pair (M∗,Δ) describes the risk-return profile of the chosen optimal hedging strat-
egy.

5.2. Numerical Results for Risk Optimization

Numerical results of our simulations described in Section 5.1 are presented in Table 1.
For each set of input parameters, in column “Risk” we report the value of M∗ (see

(5.2)). Let us consider risk values M∗ that differ only by the amount of the initial hedging
capital C0 with the rest of the input parameters fixed. For example, in cases 1 through 4 the
initial hedging capital C0 increases from 206.94 to 355.67 while r and T are unchanged. As the
initial hedging capital increases, the values ofM∗ also increase from −1.83 to 5.43, respectively.
LargerM∗ values correspond to lower risk for the investor (see Remark 3.11 for more detail).

A nonparametric estimator of the confidence interval for M∗ is presented in column
“Risk Interval.” The left endpoint of the interval is the estimate of the lower quartile of the
minimum outstanding balance M(d∗, u∗) values (corresponding to the optimal parameter
pair (d∗, u∗)). The right endpoint is the estimate of the upper quartile of M(d∗, u∗) values. It
is interesting to note that even the lower quartile value forM(d∗, u∗) is positive in most of the
cases presented.

In column “Return” we report the approximate expected accumulated residual Δ
(see (5.4)) associated with each optimal hedging strategy ϕ(d∗, u∗). Let us return to cases
1 through 4 discussed above. As the risk associated with the hedging strategy decreases (M∗

values increase from −1.83 to 5.43), the return from the strategy increases (Δ values increase
from 43.22 to 153.06).

Figure 1 illustrates the behavior of M(d,u) (see (5.1)) as (d, u) pairs vary over the
admissible parameter set ̂Σ for each case presented in Table 1. The vertical axis of the figure
is marked with the case numbers. Each set of circles (located on horizontal lines) represents
the set of all possible values of the optimization criterion M(d,u) produced by the hedging
strategies ϕ(d, u), when (d, u) pairs change within the appropriate parameter set ̂Σ. In case 1
at the bottom of the figure, allM(d,u) values are negative, but the largest value of −1.83 selected
by the algorithm is a vast improvement over the lowest possible value of approximately −20.
Application of the algorithm in case 2 produces similar results with M(d∗,u∗) = M∗ = 2.53 as
compared to the lowest possible value of M(d,u) of approximately −12. The values of M(d,u)

are not as widely spread in cases 14, 13, and 12, but in all cases the algorithm produces a
positive optimal value ofM(d,u) as compared to a slightly negative possible value without the
optimization.

On the basis of the simulation results presented in Table 1, the insurance company can
price pure endowment life insurance contracts with guarantee in accordance with their risk-
return preferences. Suppose the insurance company would like to price a 10-year contract
assuming the risk-free interest rate of 2%. Suppose, analyzing cases 1 through 4 in Table 1,
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Figure 1: Range of approximate expected minimum outstanding balance M(d,u) values for all cases.

they find that the risk-return profile of the optimal hedging strategy in case 3 is satisfactory.
The corresponding value of the initial hedging capital is 323.34.

Suppose a 50-year-old person is interested in purchasing a 10-year life insurance
contract. The survival probability 10p50 is determined using [34]: 10p50 = 0.9338. Using (4.5)
with T = 10, x = 50, r = 0.02, k = 1, S0 = 1159.90, and C0 = 323.34, the insurer calculates
the contract price: 10U50 = 1214.90. The same contract will cost a 60-year-old person 1147.21
since the survival probability in this case is only 10p60 = 0.8676. A 40-year-old person will
have to pay 1245.52 for the same contract since his/her survival probability is 10p40 = 0.9711.

If the insurance company needs to price a 20-year contract assuming the risk-free
interest rate of 2%, they will analyze cases 5 through 8. Suppose the risk-return profile of the
optimal hedging strategy in case 6 is satisfactory. The corresponding initial hedging capital is
442.19.

Reasoning along similar lines as in the previous case, the insurance company prices the
20-year life insurance contracts for 40-, 50-, and 60-year-old customers. The contract prices are
1151.02, 1075.46, and 913.63, respectively.

5.3. Simulations for Return Optimization

Let us consider the same two hypothetical life insurance contracts described before in
Section 5.1. With the same set of input parameters and the same initial hedging capitals
(cases 1 through 14 in Table 1), we will apply our optimal hedging algorithm described in
Section 3.4, where the expected accumulated residual produced by a hedging strategy is
chosen as the main optimization criterion.

Steps (a) through (c) of the algorithm are the same as in Section 5.1. In step (d), the
expected accumulated residual amount E(Δn(d, u)) is approximated. For each (d, u) pair
in the discretized admissible parameter set ̂Σ, and for each simulated path, we compute
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the accumulated residual Δn(d, u) using (3.13). For each (d, u) pair in ̂Σ, the accumulated
residualΔn(d, u) is averaged over the simulated paths. This average value (denoted byΔ(d,u))
numerically approximates the expectation E(Δn(d, u)):

Δ(d,u) ≈ E(Δn(d, u)). (5.5)

In step (e), we determine an approximate solution Δ∗ to the optimization problem
(3.17):

Δ∗ ≈ max
(d,u)∈Σ

E(Δn(d, u)). (5.6)

The value Δ∗ is the largest approximating value Δ(d,u) over admissible (d, u) pairs:

Δ∗ = max
(d,u)∈̂Σ

Δ(d,u). (5.7)

This value corresponds to the optimal parameter pair (d∗, u∗) and therefore the optimal hedg-
ing strategy ϕ(d∗, u∗).

As an additional characteristic of the optimal hedging strategy ϕ(d∗, u∗), we determine
an approximate risk (denoted by M) associated with ϕ(d∗, u∗):

M = M(d∗,u∗), (5.8)

whereM(d∗,u∗) is the numerical approximation of the expectation E(M(d∗, u∗)) (see (5.1)). For
the optimal pair (d∗, u∗), we calculate the minimum outstanding balance M(d∗, u∗) given by
(3.15) on each simulated path. The approximate riskM is found by averagingM(d∗, u∗) over
the simulated paths.

The pair (Δ∗,M) will describe the risk-return profile of the chosen optimal hedging
strategy.

5.4. Numerical Results for Return Optimization

Numerical results for applying the algorithm with the alternative optimization criterion are
generated for each of the fourteen cases described in Table 1 and are presented in Table 2.

In column “Return” we report the optimal value of the expected accumulated residual
Δ∗. The “Risk” column presents the corresponding risk value M associated with the optimal
hedging strategy ϕ(d∗, u∗).

Analogous to Figure 1 that depicts the behavior of the risk M(d,u), Figure 2 illustrates
the behavior of the return Δ(d,u) (see (5.5)) as (d, u) pairs vary over the admissible parameter
set ̂Σ for each case presented in Table 1.

Comparing the results presented in Table 2 with those presented in Table 1, we can see
the risk versus return tradeoff. Since the return characteristic is optimized in results contained
in Table 2, the value ofΔ∗ in Table 2 is larger than the value ofΔ presented in Table 1 for each
case. The optimal return can be as much as 20% larger than the value reported in Table 1, as
seen in case 3, or as small as 0.5% larger, as seen in case 12.
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Table 2: Risk-return profile for return optimization.

Case Return Risk
Δ∗ M

1 51.872 −4.654
2 94.611 0.762
3 161.106 −0.438
4 160.947 2.845
5 128.366 0.978
6 165.268 1.767
7 194.585 2.437
8 229.673 3.489
9 199.127 6.094
10 241.652 4.420
11 263.344 7.773
12 235.642 2.705
13 260.138 2.893
14 291.412 2.645

Figure 3 depicts two return values for each of the 14 considered cases: the optimal
returnΔ∗ (marked with the bold dot) and the return valueΔ associated with the optimal risk
(marked with the unfilled dot).

While the return is larger in each case, the risk M is also larger. Compare the value
M∗ = −1.83 in case 1, in Table 1, to M = −4.654, in Table 2. Each value represents the
numerical approximation of the expected minimum outstanding balance produced by the
corresponding hedging strategy. The larger negative value of this characteristic indicates
the larger risk. For this particular case, we can see that while the return associated with
the hedging strategy that optimizes return is approximately 20% larger, the risk is more
than 250% larger. Similarly, in case 3, M∗ = 4.62 in Table 1, where risk is optimized. The
corresponding risk value in Table 2 is M = −0.438 which indicates a larger risk involved in
producing the improved return.

In Figure 4, two risk values are presented for each of the 14 cases: the optimal risk M∗

(marked with the bold dot) and the risk valueM associated with the optimal return (marked
with the unfilled dot).

In summary, the results in Tables 1 and 2 provide an interesting comparison between
risk and return. Since the algorithm can optimize either risk or return, the user is able to
determine the criterion that is most relevant. Examining results of applying the algorithm
with each optimization criterion provides a method for evaluating the risk versus return
trade-off.

Pricing of pure endowment contracts with guarantee on the basis of the return
optimization will require analyzing the results presented in Table 2. Having chosen the
satisfactory risk-return profile of the optimal hedging strategy, the insurer identifies the
corresponding hedging capital. Then the survival probability of an insured person is
determined and the contract price is calculated using (4.5).

6. Hedging Strategy Recalibration

In contrast to classical equity option valuations, which typically arise over a short time
horizon (e.g., 6 months to 2 years), the time to expiration of a financial option embedded in
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Figure 3: Optimal return Δ∗ versus the return value Δ associated with the optimal risk for all cases.

an equity-linked insurance contract can be 10 years or longer. This raises the possibility that
the financial market conditions may change significantly over the lifetime of the insurance
contract. Since model parameters are determined using historical asset value paths, these
original parameter values may not accurately reflect market conditions as the contract
matures. A benefit of our algorithmic approach to hedging a financial risk embedded in
a long-term equity-linked life insurance contract is the ability to recalibrate the model
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parameters at any point during the contact period using the latest financial market data. In
this section, we illustrate the flexibility of our algorithm by using the most recent market data
to adjust the algorithm input parameters to more accurately reflect current market conditions.

Consider a hypothetical long-term European call option embedded in an equity-linked
life insurance contract initiated on March 19, 2000, and maturing on March 19, 2010. Let us
emphasize that we use the past time period for this set of numerical experiments so that the
historical market data is available.

The underlying risky asset is the S&P 500 index, and the value on the starting date
is S0 = 1456.63. The call option is at the money as of the starting date of the contract (the
strike price equals S0), and the maturity time is T = 10. The available initial hedging capital
is C0 = 406.55.

Let us take the position of the option seller who on March 19, 2000, would like to
determine a return-optimal hedging strategy for the lifetime of the option. The hedging
strategy will be rebalanced quarterly.

Wewill explore two possible approaches to this problem. The first approach consists of
using the return maximization hedging algorithm to determine an optimal hedging strategy
for thewhole lifetime of the option (a ten year period 2000–2010). Wewill refer to this hedging
strategy as the “original” strategy.

The second approach consists of using the original hedging strategy only for the first
five years of the option contract life (2000–2005) and then switching to an updated hedging
strategy that takes into account the latest market data for the remaining lifetime of the option
(2005–2010). We will refer to this hedging strategy as the “Recalibrated” strategy.

The two strategies are evaluated by comparing the size of the return produced by each
strategy. In order to do so, we will use the actual S&P 500 Index data available for 2000–2010.

In order to determine the original hedging strategy, we use the return optimization
hedging algorithm with C0 = 406.55. The S&P 500 Index values for the ten-year historical
period 1990–2000 are used as input for simulation of the “future” risky asset paths. The
value of the risk-free interest rate is fixed at r = 0.02. The original optimal hedging strategy
ϕ(d∗, u∗) (associated with the optimal parameter pair (d∗, u∗)) is determined. This strategy is
then applied to the actual S&P 500 Index path for 2000–2010 and the corresponding return
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Table 3: Return values for original and recalibrated strategies (actual S&P 500 Index path for 2005–2010).

Return
Original strategy 128.15
Recalibrated strategy 208.92

Table 4: Return statistics for original and recalibrated strategies (200 simulated S&P 500 Index paths for
2005–2010).

Original strategy Recalibrated strategy
1-4 Min −99.66 Min −107.07
1st Quarter 22.27 1st Quarter 95.79
Median 60.93 Median 120.23
Mean 59.22 Mean 115.71
3rd Quarter 97.843 3rd Quarter 151.23
Max 186.65 Max 254.15

Δn(d∗, u∗) is calculated. We will be interested only in the part of the return accumulated over
the last five years of the contract (2005–2010). This accumulated return equals 128.15 (see
Table 3).

The recalibrated strategy is identical to the original optimal strategy for the first five
years (2000–2005). After five years, the strategy is terminated and the existing hedging
portfolio is liquidated. The amount of new hedging capital available for the rest of the option
life (2005–2010) is determined. It consists of the liquidation value of the hedging portfolio
at the end of five years combined with the outstanding balance (3.14) (as of the end of five
years) in the savings account used to accumulate local residual cash flows.

The optimal hedging algorithm is used again on March 19, 2005, with the new
available hedging capital of C0 = 374.41 and the most recent historical values of the S&P
500 Index (2000–2005) that are used for simulation of the “future” risky asset paths. In
this experiment we use the same value of the risk-free interest rate r = 0.02, although this
parameter could be easily changed if needed to reflect the most recent market conditions.
The new risky asset starting value is S0 = 1189.65 and the new maturity time is T = 5. This
results in a new hedging strategy ϕ(d∗

1, u
∗
1) to be used over the remaining five years of the

option. In summary, the recalibrated strategy is the combination of two five-year strategies.
The strategy ϕ(d∗, u∗) is used over the first five years of the contract, and the strategy ϕ(d∗

1, u
∗
1)

is used for the last five years of the contract.
The recalibrated strategy is applied to the actual S&P 500 Index path for 2000–2010

and the corresponding return is calculated. The return accumulated over the last five years
of the contract (2005–2010) is reported in Table 3. In this simulation, the recalibrated strategy
produces a return that is over one and a half times as large as the return produced by the
original strategy.

The results in Table 3 are produced using only a single asset value path, the S&P 500
Index from 2000 to 2010. A more robust statistical description of the return is presented in
Table 4. These results are created using two hundred simulated S&P 500 Index paths for the
period 2005–2010. The paths are simulated by bootstrap sampling from the actual S&P 500
Index jumps over the 2005–2010 time period. Each of the two hedging strategies (original and
recalibrated) are applied to the two hundred simulated paths. A statistical description of the
results of these simulations are presented in Table 4. We note that the recalibrated strategy has
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mean return values nearly twice as large as those of the original strategy. These simulation
results reconfirm that the recalibrated strategy is an improvement over the original strategy.

In this numerical experiment, the date of the hedging strategy recalibrationwas chosen
in the middle of the option lifetime. A practitioner may use his/her own judgement as well
as available market data to choose the date of the recalibration. The strategy recalibration can
be performed as many times as necessary during the option lifetime.
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[21] H. Föllmer and A. Schied, Stochastic Finance: An Introduction in Discrete Time, vol. 27, Walter de
Gruyter, Berlin, Germany, 2002.

[22] N. Josephy, L. Kimball, and V. Steblovskaya, “Alternative hedging in a discrete-time incomplete
market,” Journal of Risk. In press.



Journal of Probability and Statistics 23

[23] J. Cox, S. Ross, and M. Rubinstein, “Option pricing: A simplified approach,” Journal of Financial Eco-
nomics, vol. 7, pp. 229–263, 1979.

[24] E. Luciano and E. Vigna, “Non-mean-reverting affine processes for stochastic mortality,” in
Proceedings of the 15th International AFIR Colloquium, Zurich, Switzerland, September 2005.

[25] A. V. Melnikov, “Quantile hedging of equity-linked life insurance policies,” Doklady mathematics, vol.
96, no. 5, pp. 428–430, 2004.

[26] H. Levy and A. Levy, “Option valuation: an extension of the binomial model,” Advances in Futures
and Options Research, vol. 5, pp. 46–69, 1991.

[27] M. Schäl, “Martingale measures and hedging for discrete-time financial markets,” Mathematics of
Operations Research, vol. 24, no. 2, pp. 509–528, 1999.

[28] G. Wolczynska, “An explicit formula for option pricing in discrete incomplete markets,” International
Journal of Theoretical and Applied Finance, vol. 1, no. 2, pp. 283–288, 1998.

[29] O. Hammarlid, “On minimizing risk in incomplete markets,” International Journal of Theoretical and
Applied Finance, vol. 1, no. 2, pp. 227–233, 1998.

[30] L. Ruschendorf, “On upper and lower prices in discrete-time models,” Proceedings of the Steklov
Institute of Mathematics, vol. 237, pp. 134–139, 2002.

[31] T. Coleman, Y. Li, and M.-C. Patron, “Discrete hedging under piecewise linear risk minimization,”
Journal of Risk, vol. 5, pp. 39–65, 2003.

[32] D. Ruppert, Statistics and Finance: An Introduction, Springer, New York, NY, USA, 2004.
[33] S. N. Lahiri, Resampling Methods for Dependent Data, Springer Series in Statistics, Springer, New York,

NY, USA, 2003.
[34] E. Arias, B. Rostron, and B. Tejada-Vera, “United States Life Tables, 2005,” National Vital Statistics

Reports, vol. 58, no. 10, pp. 1–40, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


