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We extend the results of Gupta and Liang (1998), derived for location parameters, to obtain
lower confidence bounds for the probability of correctly selecting the t best populations (PCSt)
simultaneously for all t = 1, . . . , k − 1 for the general scale parameter models, where k is the
number of populations involved in the selection problem. The application of the results to the
exponential and normal probability models is discussed. The implementation of the simultaneous
lower confidence bounds for PCSt is illustrated through real-life datasets.

1. Introduction

The population Πi is characterized by an unknown scale parameter θi(> 0), i = 1, . . . , k. Let
Ti be an appropriate statistic for θi, based on a random sample of size n from population Πi,
having the probability density function (pdf) fθi(x) = (1/θi)f(x/θi) with the corresponding
cumulative distribution function (cdf) Fθi(x) = F(x/θi), x > 0, θi > 0, i = 1, . . . , k. F(·)
is an arbitrary continuous cdf with pdf f(·). Let the ordered values of Ti’s and θi’s be
denoted by T[1], . . . , T[k] and θ[1], . . . , θ[k], respectively. Let T(i) be the statistic having a scale
parameter θ[i]. LetΠ(i) denote the population associated with θ[i], the ith smallest of θi’s. Any
other population or sample quantity associated with Π(i) will be denoted by the subscript
(i) attached to it. Throughout, we assume that there is no prior knowledge about which
of Π1, . . . ,Πk is Π(i), i = 1, . . . , k and that θ1, . . . , θk are unknown. Call the populations
Π(k),Π(k−1), . . . ,Π(k−t+1) as the t best populations.

In practice, the interest is to select the populations Π(k),Π(k−1), . . . ,Π(k−t+1), that is,
the populations associated with the largest unknown parameters θ[k], θ[k−1], . . . , θ[k−t+1]. For
this, the natural selection rule “select the populations corresponding to t largest Ti’s, that
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is, T[k], T[k−1], . . . , T[k−t+1] as the t best populations” is used. However, it is possible that
selected populations according to the natural selection rule may not be the best. Therefore,
a question which naturally arises is: what kind of confidence statement can be made about
these selection results? Motivated by this, we make an effort to answer this question.

Let CSt (a correct selection of the t best populations) denote the event that t best
populations are actually selected. Then, the probability of correct selection of the t best
populations (PCSt) is:

PCSt(θ) = P

{
max
1≤i≤k−t

T(i) < min
k−t+1≤j≤k

T(j)

}

=
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=
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θ[j]

)
d

k−t∏
i=i

F

(
y

θ[i]

)
, (1.1b)

where F(·) = 1 − F(·) and θ = (θ1, . . . , θk).
For the k populations differing in their location parameters μ1, . . . , μk, Gupta and Liang

[1] provided a novel idea to construct simultaneous lower confidence bounds for the PCSt
for all t = 1, . . . , k − 1. Their result was applied to the selection of the t best means of normal
populations. For other references under location set up, one may refer to the papers cited
therein.

For other relevant references, one may refer to Gupta et al. [2], Gupta and
Panchpakesan [3], Mukhopadhyay and Solanky [4], and the review papers by Gupta and
Panchapakesan [5, 6], Khamnei and Kumar [7], and the references cited therein.

In this article, we use the methodology and results of Gupta and Liang [1] to derive
simultaneous lower confidence bounds for the PCSt for all t = 1, . . . , k − 1 under the general
scale parameter models. Section 2 deals with obtaining such intervals. The application of the
results to the exponential and normal probability models is discussed in Section 3. In the case
of an exponential distribution, Type-II censored data is also considered. In Section 4, we have
given some numerical examples, based on real life data sets, to illustrate the procedure of
finding out simultaneous lower confidence bounds for the probability of correctly selecting
the t best populations (PCSt).

2. Simultaneous Lower Confidence Bounds for PCSt

Most of the results in this Section are as a simple consequence of the results obtained by
Gupta and Liang [1].

From (1.1a), the PCSt(θ) can be expressed as

PCSt(θ) =
k∑

j=k−t+1
Ptj(θ), (2.1)
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where for each j = k − t + 1, . . . , k,

Ptj(θ) =
∫ k−t∏

i=1

F
(
yΔtji(1)

) j−1∏
m=k−t+1

F
(
yΔtjm(2)

) k∏
l=j+1

F
(
yΔtjl(3)

)
dF
(
y
)
, (2.2)

where Δtji(1) = θ[j]/θ[i] ≥ 1 for 1 ≤ i ≤ k − t < j; Δtjm(2) = θ[j]/θ[m] ≥ 1 for k − t + 1 ≤ m < j

and Δtjl(3) = θ[j]/θ[l] ≤ 1 for k − t + 1 ≤ j < l ≤ k. Here,
∏t

s ≡ 1 if t < s. Note that
for each j(k − t + 1 ≤ j ≤ k), Ptj(θ) is increasing in Δtji(1), and decreasing in Δtjm(2) and
Δtjl(3), respectively. Thus, if we develop simultaneous lower confidence bounds for Δtji(1),
1 ≤ i ≤ k − t and upper confidence bounds for Δtjm(2) and Δtjl(3), k − t + 1 ≤ m ≤ j ≤ l ≤ k,
m/= j, l /= j for all t = 1, . . . , k − 1, then, simultaneous lower confidence bounds for PCSt(θ) for
all t = 1, . . . , k − 1 can be established.

Also, from (1.1b), the PCSt(θ) can be expressed as

PCSt(θ) =
k−t∑
i=1

Qti(θ), (2.3)

where for each i = 1, . . . , k − t,

Qti(θ) =
∫ i−1∏

m=1

F(zδtim(1))
k−t∏
l=i+1

F(zδtil(2))
k∏

j=k−t+1
F
(
zδtij(3)

)
dF(z) (2.4)

and δtim(1) = θ[i]/θ[m] ≥ 1 for 1 ≤ m < i ≤ k − t; δtil(2) = θ[i]/θ[l] ≤ 1 for 1 ≤ i < l ≤ k − t;
and δtij(3) = θ[i]/θ[j] ≤ 1 for i ≤ k − t < j ≤ k. Note that for each i = 1, . . . , k − t, Qti(θ)
is increasing in δtim(1), δtil(2), and decreasing in δtij(3), respectively. Thus, if simultaneous
lower confidence bounds for δtim(1) and δtil(2), 1 ≤ m ≤ i ≤ l ≤ k − t, m/= i, l /= i and upper
confidence bounds for δtil(3), i ≤ k − t < j ≤ k can be obtained, and, thereafter, by using
(2.3) and (2.4), we can obtain simultaneous lower confidence bounds for the PCSt(θ) for all
t = 1, . . . , k − 1.

We use the results of Gupta and Liang [1] to construct simultaneous lower confidence
bounds for all Δtji(1), δtim(1), δtil(2), and upper confidence bounds for all Δtjm(2), Δtjl(3),
and δtil(3) for all t = 1, . . . , k − 1.

For each P ∗(0 < P ∗ < 1), let c(k, n, P ∗) be the value such that

Pθ
−

{[
max1≤i≤k(Ti/θi)
min1≤j≤k

(
Tj/θj

)
]
≤ c(k, n, P ∗)

}
= P ∗. (2.5)
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Note that since Ti has a distribution function F(y/θi), i = 1, . . . , k, the value of c = c(k, n, P ∗)
is independent of the parameter θ. Let

E =

{
max1≤i≤k(Ti/θi)
min1≤j≤k

(
Tj/θj

) ≤ c

}
,

E1 =

{(
T[i]

cT[j]
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θ[j]
≤
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cT[i]
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)
, ∀1 ≤ j < i ≤ k

}
,

E2 =

{(
T[i]

cT[j]

)
≤ θ[i]

θ[j]
≤
(

cT[i]

T[j]

)−
, ∀1 ≤ i < j ≤ k

}
,

(2.6)

where y+ = max(1, y) and y− = min(1, y).

Lemma 2.1. (a) E ⊂ E1 ∩ E2 and, therefore,
(b) Pθ{E1 ∩ E2} ≥ Pθ{E} = P ∗ for all θ.

Proof. Part (a) follows on the lines of Lemma 2.1 of Gupta and Liang [1] by noting that
θ[i]/θ[j] ≥ 1 as j < i and θ[i]/θ[j] ≤ 1 for i < j, we have E ⊂ E1 and E ⊂ E2. Therefore,
E ⊂ E1 ∩ E2.

Part (b) follows immediately from part (a) and (2.5).
For each t = 1, . . . , k − 1 and j = k − t + 1, . . . , k, let

Δ̂tji(1) =
(

T[j]

cT[i]

)+

for 1 ≤ i ≤ k − t;

Δ̂tjm(2) =
(
cT[j]

T[m]

)
for k − t + 1 ≤ m < j;

Δ̂tjl(3) =
(
cT[j]

T[l]

)−
for j < l ≤ k.

(2.7)

Also, for each t = 1, . . . , k − 1 and i = 1, . . . , k − t, let

δ̂tim(1) =
(

T[i]

cT[m]

)+

for 1 ≤ m ≤ i − 1;

δ̂til(2) =
(

T[i]

cT[l]

)
for i + 1 ≤ l ≤ k − t;

δ̂tij(3) =

(
cT[i]

T[j]

)−
for k − t + 1 ≤ j ≤ k.

(2.8)

The following Lemma is a direct result of Lemma 2.1.
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Lemma 2.2. With probability at least P ∗, the following (A1) and (A2) hold simultaneously.
(A1) For each t = 1, . . . , k − 1 and each j = k − t + 1, . . . , k,

Δtji(1) ≥ Δ̂tji(1), ∀i = 1, . . . , k − t;

Δtjm(2) ≤ Δ̂tjm(2), ∀k − t + 1 ≤ m < j;

Δtjl(3) ≤ Δ̂tjl(3), ∀j < l ≤ k.

(2.9)

(A2) For each t = 1, . . . , k − 1 and each i = 1, . . . , k − t,

δtim(1) ≥ δ̂tim(1), ∀1 ≤ m ≤ i − 1;

δtil(2) ≥ δ̂til(2), ∀i + 1 ≤ l ≤ k − t;

δtij(3) ≤ δ̂tij(3), ∀k − t + 1 ≤ j ≤ k.

(2.10)

Now, for each t = 1, . . . , k − 1 and each j = k − t + 1, . . . , k, define

P̂tj =
∫ k−t∏
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F
(
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F
(
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) k∏
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F
(
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)
dF
(
y
)
, (2.11)

and for each t = 1, . . . , k − 1, define

P̂t =
k∑

j=k−t+1
P̂tj . (2.12)

Also, for each t = 1, . . . , k − 1 and each i = 1, . . . , k − t, define

Q̂ti =
∫ i−1∏

m=1

F
(
zδ̂tim(1)

) k−t∏
l=i+1

F
(
zδ̂til(2)

) k∏
j=k−t+1

F
(
zδ̂tij(3)

)
dF(z), (2.13)

Q̂t =
k−t∑
i=1

Q̂ti. (2.14)

Define

PtL = max
(
P̂t, Q̂t

)
. (2.15)

The authors propose PtL = max(P̂t, Q̂t) as an estimator of a lower confidence bound of the PCSt(θ) for
each t = 1, . . . , k − 1. The authors have the following theorem.
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Theorem 2.3. Pθ
−
{PCSt(θ) ≥ PtL for all t = 1, . . . , k − 1} ≥ P ∗ for all θ.

Proof. Note that Ptj(θ) is increasing in Δtji(1) and decreasing in Δtjm(2) andΔtjl(3). Also,
Qti(θ) is increasing in δtim(1), δtil(2) and decreasing in δtij(3). Then, by using (2.2), (2.4),
(2.11), (2.13), and Lemma 2.2, we have

Pθ

{
Ptj(θ) ≥ P̂tj , ∀j = k − t + 1, ..., k, and Qti(θ) ≥ Q̂ti, ∀i = 1, . . . , k − t, t = 1, . . . , k − 1

}
≥ P ∗.

(2.16)

Then, by (2.1), (2.3), (2.12), (2.14), and (2.16), we have

P ∗ ≤ P
{
PCSt(θ) ≥ P̂t,PCSt(θ) ≥ Q̂t, ∀t = 1, . . . , k − 1

}

= Pθ(PCSt(θ) ≥ PtL ∀t = 1, . . . , k − 1}.
(2.17)

This proves the theorem.

3. Applications to Exponential and Normal Distributions

3.1. Exponential Distribution

(i) Complete Data

Let Xij , j = 1, . . . , n denote a random sample of size n from the two-parameter exponential
population Πi having pdf f(x) = (1/θi) exp{−(x − μi)/θi}, i = 1, . . . , k. Let Mi = min1≤j≤n Xij

and Yi =
∑n

j=1(Xij − Mi). Here, (Mi, Yi) is a sufficient statistic for (μi, θi), i = 1, . . . , k. Yi/θi
has a standardized gamma distribution with shape parameter θ = n − 1, i = 1, . . . , k. Then,
based on statistics Y1, . . . , Yk by applying the natural selection rule for each t = 1, . . . , k−1, the
associated PCSt is

PCSt(θ) =
k∑

j=k−t+1
Ptj(θ)

=
k−t∑
i=1

Qti(θ),

(3.1)

where

Ptj(θ) =
∫ k−t∏

i=1

F
(
yΔtji(1)

) j−1∏
m=k−t+1

F
(
yΔtjm(2)

) k∏
l=j+1

F
(
yΔtjl(3)

)
dF
(
y
)
,

Qti(θ) =
∫ i−1∏

m=1

F(zδtim(1))
k−t∏
l=i+1

F(zδtil(2))
k∏

j=k−t+1
F
(
zδtij(3)

)
dF(z),

(3.2)

and F(·) is the distribution function of the standardized gamma distribution with shape
parameter θ = n − 1.
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For each P ∗ (0 < P ∗ < 1), let c = c(k, P ∗, n) be the P ∗ quantile of the distribution of the
random variable Z defined as Z = {max1≤i≤k(Yi/θi)}/{min1≤i≤k(Yi/θi)}, the extreme quotient
of independent and identically distributed random variables Yi.

Given k, n, P ∗ the value of c can be obtained from the tables of Hartley’s ratio Z with
2(n − 1) degrees of freedom refer to Pearson and Hartley [8].

For each t = 1, . . . , k − 1 and each j = k − t + 1, . . . , k, let

P̂tj =
∫ k−t∏

i=1

F
(
yΔ̂tji(1)

) j−1∏
m=k−t+1

F
(
yΔ̂tjm(2)

) k∏
l=j+1

−
F
(
yΔ̂tjl(3)

)
dF
(
y
)
, (3.3)

and for each t = 1, . . . , k − 1 and each i = 1, . . . , k − t, let

Q̂ti =
∫ i−1∏

m=1

F
(
zδ̂tim(1)

) k−t∏
l=i+1

F
(
zδ̂til(2)

) k∏
j=k−t+1

F
(
zδ̂tij(3)

)
dF(z), (3.4)

where Δ̂tji(1), Δ̂tjm(2), and Δ̂tjl(3) are defined as (2.7) and δ̂tim(1), δ̂til(2), and δ̂tij(3) are
defined in (2.8) with c chosen from Pearson and Hartley’s tables.

For each t = 1, . . . , k − 1, let

P̂t =
k∑

j=k−t+1
P̂tj ,

Q̂t =
k−t∑
i=1

Q̂ti.

(3.5)

Then, by Theorem 2.3, we can conclude the following.

Theorem 3.1. Pθ{PCSt(θ) ≥ max(P̂t, Q̂t) for all t = 1, . . . , k − 1} ≥ P ∗ for all θ.

(ii) Type-II Censored Data

From each population Πi, i = 1, . . . , k, we take a sample of n items. Let Xi[1], . . . , Xi[n] denote
the order statistic representing the failure times of n items from population Πi, i = 1, . . . , k.
Let r be a fixed integer such that 1 ≤ r ≤ n. Under Type-II censoring, the first r failures
from each populationΠi are to be observed. The observations from populationΠi cease after
observing Xi[r]. The (n− r) items whose failure times are not observable beyond Xi[r] become
the censored observations. Type-II censoring was investigated by Epstein and Sobel [9]. The
sufficient statistic for θi, when location parameters are known, is

Ui =
r∑

j=1

Xi[j] + (n − r)Xi[r], i = 1, . . . , k. (3.6)

Ui is called the total time on test (TTOT) statistic. It is easy to verify that Ui/θi has
standardized gamma distribution with shape parameter r, i = 1, . . . , k. Again, the results of
complete data can be applied simply by taking ϑ = r.
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Table 1

π1: 999 112 242 991 111 1 587 389 38 25 357

π2: 25 21 13 87 2 20 7 24 99 8 99

π3: 24 18 31 51 90 52 73 8 36 48 7

π4: 52 164 19 53 15 43 340 133 111 231 378

3.2. Normal Distribution

Let Πi denote the normal population with mean μi and variance θi (both unknown), i =
1, . . . , k. The sufficient statistic for θi based on a random sampleXi1, . . . , Xin of size n fromΠi is

Yi
∗ = (1/(n−1))∑n

j=1 (Xij −Xi)
2
, whereXi = (1/n)

∑n
j=1 Xij , i = 1, . . . , k. It can be verified that

{(n−1)Yi
∗}/(2θi) is a standardized gamma variate with shape parameter (n−1)/2, i = 1, . . . , k.

Once again, the above results of exponential distribution can be used with ϑ = (n − 1)/2.
To illustrate the implementation of the simultaneous lower confidence bounds for the

probability of correctly selecting the t best populations (PCSt), we consider the following
examples.

4. Examples

Example 4.1. Hill et al. [10] considered data on survival days of patients with inoperable lung
cancer, who were subjected to a test chemotherapeutic agent. The patients are divided into
the following four categories depending on the histological type of their tumor: squamous,
small, adeno, and large denoted by π1, π2, π3, and π4, respectively, in this article. The data are
a part of a larger data set collected by the Veterans Administrative Lung Cancer Study Group
in the USA.

We consider a random sample of eleven survival times from each group, and they are
given in Table 1.

Using the standard results of reliability (refer to Lawless [11]), one can check the
validity of the two-parameter exponential model for Table 1. In this example, the populations
with larger survival times (i.e., larger Yi’s) are desirable.

For Table 1 data set:

Y1 = 3841, Y2 = 383, Y3 = 361, Y4 = 1374. (4.1)

Hence, according to natural selection rule, the populations π1, π2, and π4 are selected as the t
(t = 1, 2, 3) best populations, that is, for t = 1, population π1 which has largest survival time
is the best; for t = 2, populations π1 and π4 which have the two largest survival times are the
best; and for t = 3, populations π1, π2, and π4 which have the three largest survival times are
the best. However, it i,s possible that selected populations according to the natural selection
rule may not be the best. Therefore, we wish to find out a confidence statement that can be
made about the probability of correctly selecting the t best populations (PCSt) simultaneously
for all t = 1, 2, 3.

Here, k = 4, n = 11, and, by taking P ∗ = 0.95, we get, from the tables of Pearson and
Hartley [8], c = c(k, n, P ∗) = 3.29.
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Table 2

T 1 2 3

P̂t 0.407125 0.143943 0.088946

Q̂t 0.551725 0.33380 0.174162

Max(P̂t,Q̂t) 0.551725 0.33380 0.174162

Table 3

T 1 2

P̂t 0.424471 0.164871

Q̂t 0.163855 0.248274

max(P̂t,Q̂t) 0.424471 0.248274

Table 4

π1: 1.54 0.66 1.70 1.82 2.75 0.66 0.55 0.18 10.6 10.63 0.71

π2: 1.99 2.15 1.08 0.93 0.82 0.49 2.80 3.82 0.02 3.72 3.57

π3: 3.17 0.80 1.13 1.08 2.12 1.56 1.34 2.10 7.21 3.83 5.13

Then, P̂t and Q̂t computed for the above data set using (3.5) are given in Table 2.
From Table 2, we have, with at least a 95% confidence coefficient, that simultaneously

PCS1(θ) ≥ 0.551725, PCS2(θ) ≥ 0.33380, and PCS3(θ) ≥ 0.174162.

Example 4.2. Nelson [12] considered the data which represent times to breakdown in minutes
of an insulating fluid subjected to high voltage stress. The times in their observed order were
divided into three groups. After analyzing the data, it was shown to follow an exponential
distribution. We consider the following data based on a random sample of size 11 each from
the three groups and the observations are in Table 4.

For the above data set:

Y1 = 20.82, Y2 = 21.17, Y3 = 20.67. (4.2)

Hence, according to natural selection rule, the populations π1, π2 are selected as the t (t =
1, 2) best populations, that is, for t = 1, population π1 which has largest survival time is the
best; and for t = 2, populations π1 and π2 which have the two largest survival times are the
best. However, it is possible that selected populations according to the natural selection rule
may not be the best. Therefore, we wish to find out a confidence statement that can be made
about the probability of correctly selecting the t best populations (PCSt) simultaneously for
all t = 1, 2.

Here, k = 3, n = 11, and, by taking P ∗ = 0.95, we get, from the tables of Pearson and
Hartley [8], c = c(k, n, P ∗) = 2.95.

Then, P̂t and Q̂t computed for the above data set using (3.5) are given in Table 3.
From Table 3, we have, with at least a 95% confidence coefficient, that simultaneously

PCS1(θ) ≥ 0.424471 and PCS2(θ) ≥ 0.248274.
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Table 5

π1: 413 100 169 447 201 118 67

π2: 10 14 20 44 29 26 23

π3: 11 4 80 54 63 18 24

π4: 22 3 46 22 30 23 14

Example 4.3. Proschan [13] considered the data on intervals between failures (in hours) of
the air-conditioning system of a fleet of 13 Boeing 720 jet air planes. After analyzing the data,
he found that the failure distributions of the air-conditioning system for each of the planes
was well approximated as exponential. We consider the following data based on four random
samples of size seven each, and the observations in the samples are mentioned in Table 5.

For the above data set:

Y1 = 1046, Y2 = 96, Y3 = 226, Y4 = 139. (4.3)

Hence, according to natural selection rule, the populations π1, π3, and π4 are selected as the t
(t = 1, 2, 3) best populations.

Here, k = 4, n = 7 and, by taking P ∗ = 0.99, we get, from the tables of Pearson and
Hartley [8], c = c(k, n, P ∗) = 6.90.

Proceeding on the lines similar to Examples 4.1 and 4.2, we have, with at least a 99%
confidence coefficient, that simultaneously PCS1(θ) ≥ 0.360517, PCS2(θ) ≥ 0.217558, and
PCS3(θ) ≥ 0.154598.
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