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In this work, a class of multidimensional stochastic hybrid dynamic models is studied. The system
under investigation is a first-order linear nonhomogeneous system of Itô-Doob type stochastic
differential equations with switching coefficients. The switching of the system is governed by
a discrete dynamic which is monitored by a non-homogeneous Poisson process. Closed-form
solutions of the systems are obtained. Furthermore, themajor part of the work is devoted to finding
closed-form probability density functions of the solution processes of linear homogeneous and
Ornstein-Uhlenbeck type systems with jumps.

1. Introduction

The study of stochastic hybrid systems exhibiting both continuous and discrete dynamics
has been an area of great interest over the years. The properties of various types of
stochastic hybrid systems have been studied extensively. Davis [1, 2] introduced a piecewise-
deterministic Markov process, where transitions between discrete modes are triggered by
random events and deterministic conditions for hitting the boundary, while the continuous-
state process between jumps for the model is governed by a deterministic differential
equation. Hespanha [3] proposed a model where transitions between modes are triggered
by stochastic events much like transitions between states of a continuous-time Markov
chains. Hu et al. [4] proposed a stochastic hybrid system where the deterministic differential
equations for the evolution of the continuous-state process are replaced by Itô-Doob type
stochastic differential equations [5, 6]. However, in this proposed model, the transitions
are only triggered by hitting the boundaries. Siu and Ladde [7] studied a stochastic hybrid
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dynamic process where the transitions of its discrete time state are governed by either a non-
homogeneous Poisson process or triggered by hitting the boundaries, while the continuous
state is governed by a stochastic diffusion. A study of a stochastic hybrid system whose
continuous time component is stochastic and altered by transitions of a finite-state Markov
chain can be found in Chandra and Ladde [8], Korzeniowski and Ladde [9], and Ladde [10].
Yin et al. [11] provided an algorithm of the numerical solutions for a class of jump diffusions
with regime switching. Mao and Yuan [12] and Yin and Zhu [13] summarize a wide range of
properties of stochastic differential equations with Markovian switching coefficients. In view
of applications, stochastic hybrid systems have been employed to diverse fields of studies,
such as communication networks [3, 14], air traffic management [15, 16], and insurance risk
models [17].

In this work, we attempt to solve two fundamental problems in the stochastic
modeling of dynamic processes described by Itô-Doob type stochastic differential equations
with jumps. First, we find closed-form solutions of the stochastic hybrid systems. By using
the closed-form solutions, we determine the closed-form probability density functions of
solution processes of special cases of the general systems. The presented method provides
an accessible way of obtaining the probability density functions without solving the Fokker-
Planck partial differential equations [18] or approximating their solutions.

The rest of the paper is organized as follows. In Section 2, closed-form solution
processes of the multidimensional systems are obtained through utilizing the result of
A. G. Ladde and G. S. Ladde [19] piecewisely on the intervals between jumps. The problem
of finding the closed-form probability density functions is investigated in a systematic and
coherent way. In Section 3 the probability density function of the solution process of one-
dimensional linear homogeneous system of Itô-Doob type stochastic differential equations
is derived. This is an extension of the geometric Brownian motion processes [20]. Then, by
using the concept of modal matrix, the probability density function of the solution process
of n-dimensional linear homogeneous systems is obtained in Section 4. The probability
distribution of the solution process of the system with continuous dynamic consisting of
only drift part and additive noise, namely, a Ornstein-Uhlenbeck system [18], is extended
to hybrid system in Section 5. Some concluding remarks are given in Section 6.

2. Model Formulation

In this section, we develop a conceptual stochastic model for dynamic processes in chemical,
biological, engineering, medical, physical, and social science [19, 21, 22] that are under the
influence of discrete time events. The continuous time dynamic of the stochastic model
between jumps follows a first-order linear non-homogeneous system of Itô-Doob type
stochastic differential equations. At random times, governed by a non-homogeneous Poisson
process, the coefficients of the continuous time dynamic are switched, and the process is
multiplied by a random factor which results in a discontinuous jump.

Let x(t) be a real n-dimensional process.Ak and B
j

k are n×nmatrices for any k ∈ N∪{0}
and j = 1, 2, . . . , q. Let Cr

k be n-dimensional vectors for any k ∈ N ∪ {0} and r = 1, 2, . . . , p.
Let the continuous dynamic of the process x(t) be determined by the following system of
stochastic differential equations:

dx(t) = AN(t)x(t)dt +
q∑

j=1

B
j

N(t)x(t)dwj(t) +
p∑

r=1

Cr
N(t)dwr(t), t ≥ t0, x(t0) = x0 > 0, (2.1)
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wherew(t) = (w1(t), . . . , wq(t)) andw(t) = (w1(t), . . . , wp(t)) are independent q-dimensional
and p-dimensional standard Wiener processes, and N(t) is a non-homogeneous Poisson
process with intensity λ(t). Here, we denote x = (x1, x2, . . . , xn) > 0 as xi > 0 for all
i = 1, 2, . . . , n. When Cr

k = 0 for all k and r, system (2.1) reduces to a first-order linear
homogeneous system of Itô-Doob type stochastic differential equations, given below

dx(t) = AN(t)x(t)dt +
q∑

j=1

B
j

N(t)x(t)dwj(t), t ≥ t0, x(t0) = x0 > 0. (2.2)

Here, Ak and B
j

k
are such that solution process x(t) of (2.2) is nonnegative.

To obtain solution process of system (2.1), we first consider the solution process of the
initial-value system when A, Bj , and Cr ’s are fixed over time, that is, the solution process on
a subinterval between jumps. Under the condition that the matricesA,B1, B2, . . . , Bq pairwise
commute, the solution can be explicitly obtained; see A. G. Ladde and G. S. Ladde [19] or
Movellan [23]. We state the result in the following lemma.

Lemma 2.1. Let x(t) ≡ x(t, t0, x0) be the solution of the following initial value problem (IVP):

dx(t) = Ax(t)dt +
q∑

j=1

Bjx(t)dwj(t) +
p∑

r=1

Crdwr(t), t ≥ t0, x(t0) = x0, (2.3)

then the x(t) is expressed by

x(t) ≡ x(t, t0, x0) = exp

⎡

⎣

⎛

⎝A − 1
2

q∑

j=1

(
Bj

)2

⎞

⎠(t − t0) +
q∑

j=1

Bj(wj(t) −wj(t0)
)
⎤

⎦x0

+
p∑

r=1

∫ t

t0

exp

⎡

⎣

⎛

⎝A − 1
2

q∑

j=1

(
Bj

)2

⎞

⎠(t − s) +
q∑

j=1

Bj(wj(t) −wj(s)
)
⎤

⎦Crdwr(s)

(2.4)

provided that ABj = BjA and BjBj ′ = Bj ′Bj for all j, j ′ = 1, 2, . . . , q.

Let x(t, Tk, xk) be the solution to system (2.3) with t0 := Tk, x0 := xk, A := Ak, Bj :=
B
j

k
, and Cr := Cr

k
. Now, we consider the following system of two interconnected stochastic

dynamics:

dx(t) = Ak−1x(t)dt +
q∑

k=1

B
j

k−1x(t)dwj(t) +
p∑

r=1

Cr
k−1dwr(t), Tk−1 ≤ t < Tk, x(Tk−1) = xk−1,

xk = zkx
(
T−
k , Tk−1, xk−1

)
,

(2.5)

where zk, k = 1, 2, 3, . . ., are iid positive random variables with z0 = 1, and x(T−
k
, Tk−1, xk−1) =

limt→ T−
k
x(t, Tk−1, xk−1). Here, we assume that N(t), w(t), w(t), and zk are independent.
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By applying Lemma 2.1, piecewisely, on each interval between jumps, we then obtain
the solution process of system (2.5). The result is given in the following proposition.

Proposition 2.2. If AkB
j

k
= B

j

k
Ak and B

j

k
B
j ′

k
= B

j ′

k
B
j

i for all k ∈ N ∪ {0} and j, j ′ = 1, 2, . . . , q, then
the solution to the system (2.5) is given by

x(t) =

(
N(t)∏

k=1

zk

)
exp

⎡

⎣

⎛

⎝AN(t) − 1
2

q∑

j=1

(
B
j

N(t)

)2

⎞

⎠(
t − TN(t)

)
+

q∑

j=1

B
j

N(t)

(
wj(t) −wj

(
TN(t)

))
⎤

⎦

×
N(t)∏

k=1

exp

⎡

⎣

⎛

⎝Ak−1 − 1
2

q∑

j=1

(
B
j

k−1
)2

⎞

⎠(Tk − Tk−1) +
q∑

j=1

B
j

k−1
(
wj(Tk) −wj(Tk−1)

)
⎤

⎦x0

+
N(t)∑

i=1

(
N(t)∏

k=i

zk

)
exp

⎡

⎣

⎛

⎝AN(t) − 1
2

q∑

j=1

(
B
j

N(t)

)2

⎞

⎠(
t − TN(t)

)

+
q∑

j=1

B
j

N(t)

(
wj(t) −wj

(
TN(t)

))
⎤

⎦

×
N(t)∏

k=i+1

exp

⎡

⎣

⎛

⎝Ak−1 − 1
2

q∑

j=1

(
B
j

k−1
)2

⎞

⎠(Tk − Tk−1) +
q∑

j=1

B
j

k−1
(
wj(Tk) −wj(Tk−1)

)
⎤

⎦

×
⎡

⎣
p∑

r=1

∫Ti

Ti−1
exp

⎡

⎣

⎛

⎝Ai−1 − 1
2

q∑

j=1

(
B
j

i−1
)2

⎞

⎠(Ti − s)

+
q∑

j=1

B
j

i−1
(
wj(Ti) −wj(s)

)
⎤

⎦Cr
i−1dwr(s)

⎤

⎦

+
p∑

r=1

∫ t

TN(t)

exp

⎡

⎣

⎛

⎝AN(t)− 1
2

q∑

j=1

(
B
j

N(t)

)2

⎞

⎠(t−s)+
q∑

j=1

B
j

N(t)

(
wj(t)−wj(s)

)
⎤

⎦Cr
N(t)dwr(s).

(2.6)

Proof. By applying the result of (2.4) on the subintervals [Tk−1, Tk), for k = 1, . . . ,N(t), and
[TN(t), t), we have the solution to system (2.5) as the following piecewise function:

x(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(s, t0, x0) x(t0) = x0, t0 ≤ s < T1,

x(s, T1, x1) x(T1) = x1, T1 ≤ s < T2,

· · ·
x(s, Ti, xi) x(Ti) = xk, Tk ≤ s < Tk+1,

· · ·
x
(
s, TN(t), xN(t)

)
x
(
TN(t)

)
= xN(t), TN(t) ≤ s < t,

(2.7)
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where x(s, Tk, xk) is a solution process in (2.4) with t0 := Tk, x0 := xk, A := Ak, Bj := B
j

k, and
Cr := Cr

k
, then, we have

x(t)

= x
(
t, TN(t), xN(t)

)

= exp

⎡

⎣

⎛

⎝AN(t) − 1
2

q∑

j=1

(
B
j

N(t)

)2

⎞

⎠(
t − TN(t)

)
+

q∑

j=1

B
j

N(t)

(
wj(t) −wj

(
TN(t)

))
⎤

⎦xN(t)

+
p∑

r=1

∫ t

TN(t)

exp

⎡

⎣

⎛

⎝AN(t) − 1
2

q∑

j=1

(
B
j

N(t)

)2

⎞

⎠(t − s) +
q∑

j=1

B
j

N(t)

(
wj(t) −wj(s)

)
⎤

⎦Cr
N(t)dwr(s)

= zN(t) exp

⎡

⎣

⎛

⎝AN(t) − 1
2

q∑

j=1

(
B
j

N(t)

)2

⎞

⎠(
t − TN(t)

)
+

q∑

j=1

B
j

N(t)

(
wj(t) −wj

(
TN(t)

))
⎤

⎦

×
⎡

⎣exp

⎡

⎣

⎛

⎝AN(t)−1 − 1
2

q∑

j=1

(
B
j

N(t)−1
)2

⎞

⎠(
TN(t) − TN(t)−1

)

+
q∑

j=1

B
j

N(t)−1
(
wj

(
TN(t)

) −wj

(
TN(t)−1

))
⎤

⎦xN(t)−1

+
p∑

r=1

∫TN(t)

TN(t)−1
exp

⎡

⎣

⎛

⎝AN(t)−1 − 1
2

q∑

j=1

(
B
j

N(t)−1
)2

⎞

⎠(
TN(t) − s

)

+
q∑

j=1

B
j

N(t)−1
(
wj

(
TN(t)

) −wj(s)
)
⎤

⎦Cr
N(t)−1dwr(s)

⎤

⎦

+
p∑

r=1

∫ t

TN(t)

exp

⎡

⎣

⎛

⎝AN(t) − 1
2

q∑

j=1

(
B
j

N(t)

)2

⎞

⎠(t − s) +
q∑

j=1

B
j

N(t)

(
wj(t) −wj(s)

)
⎤

⎦Cr
N(t)dwr(s).

(2.8)

Next, substitute xN(t)−1 = zN(t)−1x(T−
N(t)−1, TN(t)−2, xN(t)−2) = zN(t)−1x(TN(t)−1, TN(t)−2, xN(t)−2).

The term x(T−
N(t)−1, TN(t)−2, xN(t)−2) can be replaced by x(TN(t)−1, TN(t)−2, xN(t)−2) because the

solution process is continuous between jumps. Repeating the substitution gives the desired
result.

In the following, we present two important particular by-products of Proposition 2.2.
When Cr

k
= 0 for all k and r, system (2.5) reduces to the following first-order linear

homogeneous system of Itô-Doob type stochastic differential equations with jumps:

dx(t) = Ak−1x(t)dt +
q∑

k=1

B
j

k−1x(t)dwj(t), Tk−1 ≤ t < Tk, x(Tk−1) = xk−1,

xk = zkx
(
T−
k , Tk−1, xk−1

)
.

(2.9)
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The solution of the above system is given in the following corollary. The result follows
from Proposition 2.2 by letting Cr

k
be zero for all k and r.

Corollary 2.3. IfAkB
j

k
= B

j

k
Ak and B

j

k
B
j ′

k
= B

j ′

k
B
j

i for all k ∈ N∪{0} and j, j ′ = 1, 2, . . . , q, then the
solution of system (2.9) is given by

x(t) =

(
N(t)∏

k=1

zk

)
exp

⎡

⎣

⎛

⎝AN(t) − 1
2

q∑

j=1

(
B
j

N(t)

)2

⎞

⎠(
t − TN(t)

)
+

q∑

j=1

B
j

N(t)

(
wj(t) −wj

(
TN(t)

))
⎤

⎦

×
N(t)∏

k=1

exp

⎡

⎣

⎛

⎝Ak−1 − 1
2

q∑

j=1

(
B
j

k−1
)2

⎞

⎠(Tk − Tk−1) +
q∑

j=1

B
j

k−1
(
wj(Tk) −wj(Tk−1)

)
⎤

⎦x0.

(2.10)

In the case when B
j

k
are zeros for all j and k, system (2.5) becomes a linear systemwith

additive noise. The continuous dynamics between jumps are now governed by Ornstein-
Uhlenbeck equations as follows:

dx(t) = Ak−1x(t)dt +
p∑

r=1

Cr
k−1dwr(t), Tk−1 ≤ t < Tk, x(Tk−1) = xk−1,

xk = zkx
(
T−
k , Tk−1, xk−1

)
.

(2.11)

Denote Ck = (C1
k
, C2

k
, . . . , C

p

k
) for all k, then the above system can be rewritten as

dx(t) = Ak−1x(t)dt + Ck−1dw(t), Tk−1 ≤ t < Tk, x(Tk−1) = xk−1,

xk = zkx
(
T−
k , Tk−1, xk−1

)
,

(2.12)

where Ck’s are n × p matrices, and w(t) is a p-dimensional standard Wiener process.

Corollary 2.4. The solution of system (2.11) is given by

x(t) =

(
N(t)∏

k=1

zk

)
exp

[
AN(t)

(
t − TN(t)

)]N(t)∏

k=1

exp[Ak−1(Tk − Tk−1)]x0

+
N(t)∑

i=1

(
N(t)∏

k=i

zk

)
exp

[
AN(t)

(
t − TN(t)

)]N(t)∏

k=i+1

exp[Ak−1(Tk − Tk−1)]

×
[

p∑

r=1

∫Ti

Ti−1
exp[Ai−1(Ti − s)]Cr

i−1dwr(s)

]

+
p∑

r=1

∫ t

TN(t)

exp
[
AN(t)(t − s)

]
Cr

N(t)dwr(s).

(2.13)
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3. Probability Distribution of One-Dimensional Linear
Homogeneous Models

In this section, we will derive the probability density function of the solution process of the
scalar version of system (2.9). Now, x(t) takes values in R+, and in this case, Ak and Bk are
scalars for all k in the system (2.9) and the solution process (2.10). Some auxiliary results are
presented below. The following lemma provides the joint density function of the jump times
given the number of jumps due to the non-homogeneous Poisson process N(t). The proof of
this result can be found in many textbooks, for example, see Cox and Lewis [24] or Crowder
et al. [25].

Lemma 3.1. For a non-homogeneous Poisson process N(t) with intensity λ(t), the joint density
function of the jump times T1, T2, . . . , Tl conditioned on N(t) = l is given by

fT1,T2,...,Tl |N(t)=l(t1, t2, . . . , tl) =
l!
∏l

k=1λ(tk)
(∫ t

0 λ(u)du
)l
. (3.1)

Next lemma gives the conditional probability density function of x(t) given the
number of jumps and the jump times.

Lemma 3.2. Given that N(t) = l, and T1 = t1, . . . , Tl = tl, x(t) has a probability density function as

fx(t)|N(t)=l,t1,...,tl(x) =
1
x

∫∞

−∞
h∗l(lnx − s)φ

(
s;μ, σ

)
ds, x > 0, (3.2)

where h∗l is the lth convolution of the common probability density function h of ln zk, for k =
1, 2, . . . , l, and φ(·;μ, σ) denotes the normal density function with mean μ and variance σ.

Proof. Given that N(t) = l, and T1 = t1, . . ., Tl = tl, from (2.10), we have

lnx(t) =
l∑

k=1

ln zk + lnx0 +

[(
Al −

B2
l

2

)
(t − tl) + Bl(w(t) −w(tl))

]

+
l∑

k=1

[(
Ak−1 −

B2
k−1
2

)
(tk − tk−1) + Bk−1(w(tk) −w(tk−1))

]

= V + S,

(3.3)

where we denote V =
∑l

k=1 ln zk and S as the sum of last three terms in (3.3).
Since h is the common probability density function of ln zk, V as the sum of l iid

random variables has the probability density function as the lth convolution h∗l(v). We
further note that S is the sum of l + 1 independent normal variables due to the independent
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increment property of Wiener process. Then S is normally distributed with mean and
variance as

μ ≡ μ(t, t1, . . . , tl) = lnx0 +

(
Al −

B2
l

2

)
(t − tl) +

l∑

k=1

(
Ak−1 −

B2
k−1
2

)
(tk − tk−1),

σ ≡ σ(t, t1, . . . , tl) = B2
l (t − tl) +

l∑

k=1

B2
k−1(tk − tk−1).

(3.4)

Since zk andw(t) are independent, then V and S are also independent. Using transformation
method [26] on lnx(t) = V + S, we can obtain the conditional probability density function of
lnx(t) as

flnx(t)|N(t)=l,t1,...,tl(x) =
∫∞

−∞
h∗l(x − s)φ

(
s;μ, σ

)
ds. (3.5)

If follows that

fx(t)|N(t)=l,t1,...,tl(x) = flnx(t)|N(t)=l,t1,...,tl(lnx)
1
x

=
1
x

∫∞

−∞
h∗l(lnx − s)φ

(
s;μ, σ

)
ds, x > 0.

(3.6)

Having obtained the conditional probability density function of x(t), we can derive
the marginal probability distribution of the solution process in the one-dimensional case as
follows.

Proposition 3.3. The probability density function of the scalar version of the solution process x(t) to
the system (2.5) is given by

fx(t)(x) =
∞∑

l=0

[∫ t

0
· · ·

∫ t3

0

∫ t2

0

∫∞

−∞
h∗l(lnx − s)φ

(
s;μ, σ

)
ds

l∏

k=1

λ(tk)dt1dt2 · · ·dtl

× 1
x
exp

[
−
∫ t

0
λ(u)du

]]
.

(3.7)

Proof. From (3.1) and (3.2), the joint density function of x(t), T1, . . ., Tl given the condition
N(t) = l is given by

fx(t),T1,...,Tl |N(t)=l(x, t1, . . . , tl) = fx(t)|N(t)=l,t1,...,tl(x)fT1,T2,...,Tl |N(t)=l(t1, t2, . . . , tl)

=
1
x

∫∞

−∞
h∗l(lnx − s)φ

(
s;μ, σ

)
ds

l!
∏l

k=1λ(tk)
(∫ t

0 λ(u)du
)l
.

(3.8)
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Integrating with respect to t1, t2, . . ., and tl gives the probability density function of x(t) given
that N(t) = l as

fx(t)|N(t)=l(x) =
∫ t

0
· · ·

∫ t3

0

∫ t2

0

∫∞

−∞
h∗l(lnx − s)φ

(
s;μ, σ

)
ds

l∏

k=1

λ(tk)dt1dt2 · · ·dtl l!

x
(∫ t

0 λ(u)du
)l
.

(3.9)

By multiplying the above density by the probability of l jumps, namely,

Pr(N(t) = l) = exp

[
−
∫ t

0
λ(u)du

](∫ t
0 λ(u)du

)l

l!
, (3.10)

and then taking the summation over l, the marginal probability density function of x(t) given
in (3.7) is established.

4. Probability Distribution of Multivariate Linear
Homogeneous Models

In this section, we will derive the probability density function of the solution process x(t) for
the n-dimensional stochastic system (2.9) under the following assumptions.

(i) The drift and diffusion coefficients, Ak and B
j

k
for all k ∈ N ∪ {0} and j = 1, 2, . . . , q,

are diagonalizable.

(ii) The coefficients in each regime pairwise commute, that is,AkB
j

k
= B

j

k
Ak and B

j

k
Bl
k
=

Bl
k
B
j

k
for all k ∈ N ∪ {0} and j, l = 1, 2, . . . , q.

(iii) Ak ∈ C for k ∈ N ∪ {0}, where C denotes the set of n × n diagonalizable matrices
whose eigenvector matrix,M, is such that M−1x > 0 for any x > 0.

We first consider the stochastic system on the interval between jumps. Given that
N(t) = l and T1 = t1, T2 = t2, . . . , Tl = tl, consider the following SDE on [tk, tk+1), for some
k = 0, 1, . . . , l:

dx(s) = Akx(s)dt +
q∑

j=1

B
j

kx(s)dwj(s), tk ≤ s < tk+1, x(tk) = xk. (4.1)

In the following, we provide the necessary background material that will be used,
subsequently. The following result provides away to find amodal matrix that can diagonalize
the coefficients in the above system.

Theorem 4.1 (see [27]). A set of diagonalizable matrices commutes if and only if the set is
simultaneously diagonalizable, that is, there exists an invertible matrix that can diagonalize all the
matrices simultaneously.
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Remark 4.2. In fact, the set of diagonalizable and commuting matrices shares the same
set of independent eigenvectors. The eigenvector matrix is the one that simultaneously
diagonalizes all the matrices in this set, and the resulting diagonal elements are the
eigenvalues of each matrix.

We recall [26] that a random vector x is said to have a n-dimensional multivariate
normal distribution with mean and covariance matrix, μx and Σx, if its probability density
function is given by

f(x) = (2π)−n/2|Σx|−1/2 exp
[
−1
2
(
x − μx

)TΣ−1
x

(
x − μx

)]
. (4.2)

The following lemma gives the useful fact that the linear transformation of a multivariate
normal random vector is again multivariate normally distributed.

Theorem 4.3 (see [26]). If x has a multivariate normal distribution with mean and covariance
matrix, μx and Σx, then y = Px + c as a linear transformation of x follows also multivariate normal
distribution with mean and covariance matrix, μy = Pμx + c and Σy = PΣxP

T .

Proof. Since yi =
∑n

j=1 Pijxj + ci and every linear combination of normal random variables is
still normal, then y follows a multivariate normal distribution. By the linearity of expectation
we have

μy = E
[
y
]
= E

[
Pμx + c

]
= PE[x] + c = Pμx + c,

Σy = E
[(
y − μy

)(
y − μy

)T] = E
[[
P
(
x − μx

)][
P
(
x − μx

)]T]

= E
[
P
(
x − μx

)(
x − μx

)T
PT

]
= PE

[(
x − μx

)(
x − μx

)T]
PT = PΣxP

T .

(4.3)

To find the probability density function of x(s) satisfying the SDE (4.1), we need to
introduce some notations and definitions that will be used, subsequently. First note that
according to Theorem 4.1 and Remark 4.2, Aks and B

j

k
s have the same eigenvector matrix,

denoted by Mk. Moreover, Ãk ≡ M−1
k
AkMk = diag(ã1

k
, . . . , ãn

k
) and B̃

j

k
≡ M−1

k
B
j

k
Mk =

diag(b̃1
k,j
, . . . , b̃n

k,j
) where {ã1

k
, . . . , ãn

k
} and {b̃1

k,j
, . . . , b̃n

k,j
} are the sets of eigenvalues of Ak and

B
j

k
, respectively, for all k, j. Next, we define a linear transformation y = M−1

k
x, then x = Mky.

Define lny = (lny1, lny2, . . . , lnyn) [28].
The below proposition gives the probability distribution of solution process x(t) on

the interval [tk, tk+1) over which the coefficients are constant.

Lemma 4.4. Under assumptions (i)–(iii), the process x(s) satisfying the SDE (4.1) has a probability
density function given by

fx(s)(x) = (2π)−n/2|Σk(s)|−1/2
∣∣∣M−1

k

∣∣∣
n∏

i=1

1
(
M−1

k
x
)i

× exp
[
−1
2

(
ln

(
M−1

k x
)
− μk(s)

)T
(Σk(s))−1

(
ln

(
M−1

k x
)
− μk(s)

)]
, for s ∈ [tk, tk+1),

(4.4)
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where

μk(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

lny1(tk) +

⎛

⎝ã1
k
− 1
2

q∑

j=1

(
b̃1
k,j

)2

⎞

⎠(s − tk)

lny2(tk) +

⎛

⎝ã2
k
− 1
2

q∑

j=1

(
b̃2
k,j

)2

⎞

⎠(s − tk)

...

lnyn(tk) +

⎛

⎝ãn
k −

1
2

q∑

j=1

(
b̃nk,j

)2

⎞

⎠(s − tk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B∗
k
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b̃1k,1 b̃1k,2 · · · b̃1k,q

b̃2k,1 b̃2k,2 · · · b̃2k,q
...

...
...

...

b̃n
k,1 b̃n

k,2 · · · b̃n
k,q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Σk(s) = (s − tk)B∗
k

(
B∗
k

)T
.

(4.5)

Proof. For s ∈ [tk, tk+1), we have y(s) = M−1
k
x(s), and x(s) = Mky(s). By multiplying M−1

k
on

both sides of the SDE (4.1), we obtain the transformed SDE as follows:

M−1
k dx(s) = M−1

k Akx(s)ds +
q∑

j=1

M−1
k B

j

k
x(s)dwj(s),

=⇒ dM−1
k x(s) = M−1

k AkMky(s)ds +
q∑

j=1

M−1
k B

j

kMky(s)dwj(s),

=⇒ dy(s) = Ãky(s)ds +
q∑

j=1

B̃
j

k
y(s)dwj(s),

(4.6)

where Ãk and B̃
j

k are diagonal matrices as defined before.
From the application of Lemma 2.1 with Cr

k = 0, the solution process of the trans-
formed system (4.6) is

y(s) = exp

⎡

⎣

⎛

⎝Ã − 1
2

q∑

j=1

(
B̃
j

k

)2

⎞

⎠(s − tk) +
q∑

j=1

B̃
j

k

(
wj(s) −wj(tk)

)
⎤

⎦yk, (4.7)

for s ∈ [tk, tk+1).
It follows from assumption (iii) that y(s) = M−1

k
x(s) > 0 since x(s) > 0, then, we can

rewrite system (4.7) in the following form:

lny(s) = μk(s) + B∗
k(w(s) −w(tk)), (4.8)

where μk(s) and B∗
k
are defined above.
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Since w(t) is a standard Wiener process, then w(s) −w(tk) has a multivariate normal
distribution with mean zero and covariance matrix (s − tk)In, where In is the n × n identity
matrix. Then, by Theorem 4.3, lny(s) as a linear transformation of w(s) − w(tk) is also
multivariate normally distributed with mean μk(s) and covariance matrix Σk(s), where

Σk(s) = B∗
k[(s − tk)In]

(
B∗
k

)T = (s − tk)B∗
k

(
B∗
k

)T
, (4.9)

and the (u,v)th element of Σk(s) is (s − tk)
∑q

j=1 b̃
u
k,j
b̃v
k,j
, for u, v = 1, 2, . . . , n. The probability

density function of lny(s) is

flny(s)
(
ỹ
)
= (2π)−n/2|Σk(s)|−1/2 exp

[
−1
2
(
ỹ − μk(s)

)T (Σk(s))−1
(
ỹ − μk(s)

)]
. (4.10)

We now apply the method of transformation from yln(s) to y(s), then,

fy(s)
(
y
)
= flny(s)

(
yln

)|det(J1)|, (4.11)

where lny = (lny1, lny2, . . . , lnyn), and J1 is the Jacobian matrix. The Jacobian determinant
can be computed as

det(J1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ lny1

∂y1

∂ lny1

∂y2
· · · ∂ lny1

∂yn

∂ lny2

∂y1

∂ lny2

∂y2
· · · ∂ lny2

∂yn

...
...

...
...

∂ lnyn

∂y1

∂ lnyn

∂y2
· · · ∂ lnyn

∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
y1

0 · · · 0

0
1
y2

· · · 0

...
...

. . .
...

0 0 · · · 1
yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∏

i=1

1
yi

. (4.12)

Then, from (4.10) and (4.11), we have the probability density function of y(s) as

fy(s)
(
y
)
= (2π)−n/2|Σk(s)|−1/2

n∏

i=1

1
yi

× exp
[
−1
2
(
lny − μk(s)

)T (Σk(s))−1
(
lny − μk(s)

)]
.

(4.13)

Next step is to find the probability density function of x(s) by usingmethod of transformation
from y(s) to x(s). Since x(s) = Mky(s), or y(s) = M−1

k x(s), we have

fx(s)(x) = fy(s)
(
M−1

k x
)
|det(J2)|, (4.14)
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where

det(J2) = det

⎛

⎝ ∂

∂xv

n∑

j=1

(
M−1

k

)uj
xj

⎞

⎠

u,v

= det
((

M−1
k

)uv)

u,v
= det

(
M−1

k

)
. (4.15)

The result follows from combining (4.13) and (4.14).

Now, we are to develop the conditional probability density function of solution
process x(t), which is a result parallel to the one-dimensional case in Lemma 3.2.

Lemma 4.5. Under assumptions (i)–(iii) and given that N(t) = l, and T1 = t1, T2 = t2, . . . , Tl = tl,
the solution process x(t) has a conditional probability density function as

fx(t)|N(t)=l,t1,...,tl(x)

=
∫

R
n
+

· · ·
∫

R
n
+

fx(t),x(tl),...,x(t1)|N(t)=l,t1,...,tl(x, xl, . . . , x1)dxl · · ·dx1

=
∫

R
n
+

· · ·
∫

R
n
+

(2π)−n/2|Σl(t)|−1/2
∣∣∣M−1

l

∣∣∣
n∏

i=1

1
(
M−1

l
x
)i

× exp
[
−1
2

(
ln

(
M−1

l x
)
− μl(t)

)T
(Σl(t))−1

(
ln

(
M−1

l x
)
− μl(t)

)]

×
l−1∏

k=0

⎡

⎣
∫∞

0
(2π)−n/2|Σk(tk+1)|−1/2

∣∣∣M−1
k

∣∣∣
n∏

i=1

1
(
M−1

k (xk+1/zk+1)
)i

× exp

[
− 1
2

(
ln

(
M−1

k

(
xk+1

zk+1

))
− μk(tk+1)

)T

(Σk(tk+1))−1

×
(
ln

(
M−1

k

(
xk+1

zk+1

))
− μk(tk+1)

)]
g(zk+1)

1
zn
k+1

dzk+1

]
dxl · · ·dx1,

(4.16)

where g is the common probability density function of zk, k = 1, 2, . . . , l.

Proof. We will apply the result in Lemma 4.4 piecewisely to the system (2.9) under the
conditions N(t) = l and T1 = t1, T2 = t2, . . . , Tl = tl. First, we note that the joint probability
density function of (x(t), x(tl), . . . , x(t1)) can be expressed as

fx(t),x(tl),...,x(t1)|N(t)=l,t1,...,tl(x, xl, . . . , x1)

= fx(t)|x(tl),N(t)=l,t1,...,tl(x)fx(tl)|x(tl−1),N(t)=l,t1,...,tl(xl) · · · fx(t1)|N(t)=l,t1,...,tl(x1),
(4.17)
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then, for k = 0, 1, . . . , l − 1, consider that x(tk+1) = x(t−k+1)zk+1 as a product of two random
variables where the first one has the probability density function given in (4.4), and zk+1 is
the random jump factor at time tk+1. By the independence of x(t−

k+1) and zk+1, we then have

fx(tk+1)|x(tk),N(t)=l,t1,...,tl(xk+1)

=
∫∞

0
fx(t−

k+1)|x(tk),N(t)=l,t1,...,tl

(
xk+1

zk+1

)
g(zk+1)

1
znk+1

dzk+1

=
∫∞

0
(2π)−n/2|Σk(tk+1)|−1/2

∣∣∣M−1
k

∣∣∣
n∏

i=1

1
(
M−1

k (xk+1/zk+1)
)i

× exp

[
−1
2

(
ln

(
M−1

k

(
xk+1

zk+1

))
− μk(tk+1)

)T

(Σk(tk+1))−1

×
(
ln

(
M−1

k

(
xk+1

zk+1

)))
− μk(tk+1)

]
g(zk+1)

1
znk+1

dzk+1,

(4.18)

then (4.17) can be written as

fx(t),x(tl),...,x(t1)|N(t)=l,t1,...,tl(x, xl, . . . , x1)

= (2π)−n/2|Σl(t)|−1/2
∣∣∣M−1

l

∣∣∣
n∏

i=1

1
(
M−1

l
x
)i

× exp
[
−1
2

(
ln

(
M−1

l x
)
− μl(t)

)T
(Σl(t))−1

(
ln

(
M−1

l x
)
− μl(t)

)]

×
l−1∏

k=0

⎡

⎣
∫∞

0
(2π)−n/2|Σk(tk+1)|−1/2

∣∣∣M−1
k

∣∣∣
n∏

i=1

1
(
M−1

k (xk+1/zk+1)
)i

× exp

[
−1
2

(
ln

(
M−1

k

(
xk+1

zk+1

))
− μk(tk+1)

)T

(Σk(tk+1))−1

×
(
ln

(
M−1

k

(
xk+1

zk+1

))
− μk(tk+1)

)]
g(zk+1)

1
zn
k+1

dzk+1

]
.

(4.19)

The conditional probability density function of x(t) given in (4.16) is obtained by integrating
(4.19)with respect to x1, x2, . . ., and xl.
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Now, we can derive the unconditional probability distribution of the solution process
of the n-dimensional system given in the following proposition.

Proposition 4.6. Under assumptions (i)–(iii), the probability density function of the solution process
x(t) to the n-dimensional system (2.9) is given by

fx(t)(x)

=
∞∑

l=0

[∫ t

0
· · ·

∫ t3

0

∫ t2

0

×
⎡

⎣
∫

R
n
+

· · ·
∫

R
n
+

(2π)−n/2|Σl(t)|−1/2
∣∣∣M−1

l

∣∣∣
n∏

i=1

1
(
M−1

l
x
)i

× exp
[
−1
2

(
ln

(
M−1

l x
)
− μl(t)

)T
(Σl(t))−1

(
ln

(
M−1

l x
)
− μl(t)

)]

×
l−1∏

k=0

⎡

⎣
∫∞

0
(2π)−n/2|Σk(tk+1)|−1/2

∣∣∣M−1
k

∣∣∣
n∏

i=1

1
(
M−1

k (xk+1/zk+1)
)i

× exp

[
− 1
2

(
ln

(
M−1

k

(
xk+1

zk+1

))
− μk(tk+1)

)T

(Σk(tk+1))−1

×
(
ln

(
M−1

k

(
xk+1

zk+1

))
− μk(tk+1)

)]

×g(zk+1) 1
zn
k+1

dzk+1

]
dxl · · ·dx1

⎤

⎦

×
l∏

i=1

λ(ti)dt1dt2 · · ·dtl exp
[
−
∫ t

0
λ(u)du

]]
.

(4.20)

Proof. The proof follows the argument in Proposition 3.3 by incorporating the random jumps.

Remark 4.7. It is obvious that the result in Proposition 4.6 yields the one-dimensional result as
a special case. As a result of this, the proof for Proposition 4.6 is considered to be an alternative
proof of the one-dimensional result in Proposition 3.3.

5. Probability Distribution of an Ornstein-Uhlenbeck Model
with Jumps

In this section, we will derive the probability distribution of an Ornstein-Uhlenbeck model
with jumps described by system (2.12). To obtain the desired result, we need the following
lemma which gives the probability distribution of an Ornstein-Uhlenbeck process which is
the continuous dynamic between jumps in system (2.12).
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Lemma 5.1 (see [18, 29]). The solution process x(t) of the Ornstein-Uhlenbeck equation

dx(t) = Ax(t)dt + Cdw(t), t ≥ t0, x(t0) = x0 (5.1)

follows a multivariate normal distribution with mean μ(t) and covariance matrix Σ(t), where

μ(t) = expA(t−t0)x0, Σ(t) =
∫ t

t0

eA(t−u)VeA
T (t−u)du, (5.2)

and V = CCT .

Suppose that the number of jumps and the jump times are given, then, by applying
the above lemma piecewisely, the following result gives the conditional probability density
function of x(t).

Lemma 5.2. Under the conditions N(t) = l, and T1 = t1, T2 = t2, . . . , Tl = tl, the solution process
x(t) for system (2.12) has a conditional probability density function as

fx(t)|N(t)=l,t1,...,tl(x) =
∫

Rn

· · ·
∫

Rn

fx(t),x(tl),...,x(t1)|N(t)=l,t1,...,tl(x, xl, . . . , x1)dxl · · ·dx1

=
∫

Rn

· · ·
∫

Rn

(2π)−n/2|Σl(t)|−1/2 exp
[
−1
2
(
x − μl(t)

)T (Σl(t))−1
(
x − μl(t)

)]

×
l−1∏

k=0

[∫∞

0
(2π)−n/2|Σk(tk+1)|−1/2

× exp

[
−1
2

(
xk+1

zk+1
− μk(tk+1)

)T

(Σk(tk+1))−1
(
xk+1

zk+1
− μk(tk+1)

)]

×g(zk+1) 1
znk+1

dzk+1

]
dxl · · ·dx1,

(5.3)

where g is the common probability density function of zk, k = 1, 2, . . . , l.

Proof. As we noted before that the joint probability density function of (x(t), x(tl), . . . , x(t1)),
under the conditions N(t) = l and T1 = t1, T2 = t2, . . . , Tl = tl, can be expressed as

fx(t),x(tl),...,x(t1)|N(t)=l,t1,...,tl(x, xl, . . . , x1)

= fx(t)|x(tl),N(t)=l,t1,...,tl(x)fx(tl)|x(tl−1),N(t)=l,t1,...,tl(xl) · · · fx(t1)|N(t)=l,t1,...,tl(x1),
(5.4)
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then, by applying the result in Lemma 5.1 on each interval between jumps [tk, tk+1), we have,
for s ∈ [tk, tk+1),

fx(s)|x(tk),N(t)=l,t1,...,tl(x) = φ
(
x;μk(s),Σk(s)

)

= (2π)−n/2|Σk(s)|−1/2 exp
[
−1
2
(
x − μk(s)

)T (Σk(s))−1
(
x − μk(s)

)]
,
(5.5)

where

μk(s) = expAk(s−tk)xk, Σk(s) =
∫s

tk

eAk(s−u)Vke
AT

k
(s−u) du, (5.6)

and Vk = CkC
T
k
. Then, for k = 0, 1, . . . , l − 1, consider that x(tk+1) = x(t−

k+1)zk+1 as a product of
two random variables where the first one has the probability density function given in (5.5),
and zk+1 is the random jump factor at time tk+1. By the independence of x(t−

k+1) and zk+1, then

fx(tk+1)|N(t)=l,t1,...,tl(xk+1) =
∫∞

0
fx(t−

k+1)|N(t)=l,t1,...,tl

(
xk+1

zk+1

)
g(zk+1)

1
zn
k+1

dzk+1

=
∫∞

0
(2π)−n/2|Σk(tk+1)|−1/2

× exp

[
−1
2

(
xk+1

zk+1
− μk(tk+1)

)T

(Σk(tk+1))−1
(
xk+1

zk+1
− μk(tk+1)

)]

× g(zk+1)
1

zn
k+1

dzk+1.

(5.7)

Then the conditional joint probability density function (5.4) can be written as

fx(t),x(tl),...,x(t1)|N(t)=l,t1,...,tl(x, xl, . . . , x1)

= (2π)−n/2|Σl(t)|−1/2 exp
[
−1
2
(
x − μl(t)

)T (Σl(t))−1
(
x − μl(t)

)]

×
l−1∏

k=0

[∫∞

0
(2π)−n/2|Σk(tk+1)|−1/2

× exp

[
−1
2

(
xk+1

zk+1
− μk(tk+1)

)T

(Σk(tk+1))
−1
(
xk+1

zk+1
− μk(tk+1)

)]

×g(zk+1) 1
znk+1

dzk+1

]
.

(5.8)

The conditional probability density function of x(t) given in (5.3) is obtained by integrating
(5.8) with respect to x1, x2, . . ., and xl.
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Finally, following the same argument in Proposition 3.3, we present the unconditional
probability distribution of the solution process of the Ornstein-Uhlenbeck models with jumps
given in the following proposition.

Proposition 5.3. The probability density function of the solution process x(t) of system (2.12) is
given by

fx(t)(x) =
∞∑

l=0

[∫ t

0
· · ·

∫ t3

0

∫ t2

0

[∫

Rn

· · ·
∫

Rn

(2π)−n/2|Σl(t)|−1/2

× exp
[
−1
2
(
x − μl(t)

)T (Σl(t))−1
(
x − μl(t)

)]

×
l−1∏

k=0

[∫∞

0
(2π)−n/2|Σk(tk+1)|−1/2

× exp

[
−1
2

(
xk+1

zk+1
− μk(tk+1)

)T

(Σk(tk+1))−1
(
xk+1

zk+1
− μk(tk+1)

)]

×g(zk+1) 1
zn
k+1

dzk+1

]
dxl · · ·dx1

]
l∏

i=1

λ(ti)dt1dt2 · · ·dtl

× exp

[
−
∫ t

0
λ(u)du

]]
.

(5.9)

6. Concluding Remarks

In this work, the closed-form solutions of general linear non-homogeneous stochastic hybrid
systems are obtained. The methods of finding probability density functions of closed-form
solutions are initiated for the linear homogeneous system, and for system with drift and
additive noise (Ornstein-Uhlenbeck system). This approach provides a procedure of finding
the probability density functions without solving the Fokker-Planck equations. In fact, the
Fokker-Planck equation corresponding to system (2.9) has state-dependent coefficients. For
example, for n = 1 the Fokker-Planck equation corresponding to system (2.9) even in the
absence of discrete time interventions is given by

∂f

∂t
= − ∂

∂x

[
Axf

]
+

∂2

∂x2

[
B2x2f

]

=
(
2B2 −A

)
f +

(
4B2 −A

)
x

∂

∂x
+ B2x2 ∂2

∂x2
.

(6.1)

As a result of this, equations of this type are not easily solvable in closed-form solutions. In
future, we attempt to find the probability distribution of the solution of the general linear
non-homogeneous system. In addition, by employing nonlinear transformation, we hope to
develop probability distributions for nonlinear systems.
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