
Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2011, Article ID 689427, 13 pages
doi:10.1155/2011/689427

Research Article
Similarity Solutions of Partial Differential
Equations in Probability

Mario Lefebvre
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Two-dimensional diffusion processes are considered between concentric circles and in angular
sectors. The aim of the paper is to compute the probability that the process will hit a given part of
the boundary of the stopping region first. The appropriate partial differential equations are solved
explicitly by using the method of similarity solutions and the method of separation of variables.
Some solutions are expressed as generalized Fourier series.

1. Introduction

Let (X1(t), X2(t)) be the two-dimensional diffusion process defined by the stochastic differ-
ential equations

dXi(t) = fi[Xi(t)]dt + {vi[Xi(t)]}1/2dWi(t), (1.1)

for i = 1, 2, where vi(·) is nonnegative and W1(t) and W2(t) are independent standard
Brownian motions. In this note, the problem of computing the probability that the process
(X1(t), X2(t)), starting between two concentric circles, will hit the larger circle first is solved
for the most important particular cases. The process is also considered inside a circle centered
at the origin, and, this time, the probability that (X1(t), X2(t)) will hit the boundary of the
circle before either of two radii is treated. Again, the most important particular cases are
analyzed.

Suppose that we consider only the process X1(t) in the interval [a, b]. Let

τ(x) := inf{t ≥ 0 : X1(t) = a or b | X1(0) = x ∈ [a, b]}. (1.2)
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Then, it is well known (see Cox and Miller [1, p. 230], for instance) that the moment
generating function (which is a Laplace transform)

L(x; s) := E
[
e−sτ(x)

]
(1.3)

of the first passage time τ(x), where s is a nonnegative parameter, satisfies the Kolmogorov
backward equation

v1(x)
2

L′′(x; s) + f1(x)L′(x; s) = sL(x; s), (1.4)

and it is subject to the boundary conditions

L(a; s) = L(b; s) = 1. (1.5)

Next, let

p(x) := P[X1(τ(x)) = a | X1(0) = x]. (1.6)

The function p(x) satisfies the ordinary differential equation (see Cox and Miller [1, p. 231])

v1(x)
2

p′′(x) + f1(x)p′(x) = 0, (1.7)

with

p(a) = 1, p(b) = 0. (1.8)

It is therefore a simple matter to compute explicitly the probability p(x) of hitting the point a
before b, starting from x ∈ [a, b]. In particular, in the case when X1(t) is a standard Brownian
motion, so that f1(x) ≡ 0 and v1(x) ≡ 1, we find at once that

p(x) =
b − x

b − a
for a ≤ x ≤ b. (1.9)

Many papers have been devoted to first passage time problems for diffusion processes,
either in one ormany dimensions; see, in particular, the classic papers byDoob [2] and Spitzer
[3], and alsoWendel [4]. However, a rather small number of papers have been written on first
hitting place problems; see, for instance, the papers by Yin and Wu [5] and by Yin et al. [6].
Guilbault and Lefebvre (see [7, 8]) have considered problems related to the ones treated in the
present note; however, in these problems, the processes were considered inside rectangles.

Now, define

T(x1, x2) = inf{t ≥ 0 : (X1(t), X2(t)) ∈ D | Xi(0) = xi}, (1.10)
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whereD is a subset ofR
2 for which the random variable T(x1, x2) is well defined. Themoment

generating function of T(x1, x2), namely,

M(x1, x2; s) := E
[
e−sT(x1,x2)

]
(1.11)

satisfies the Kolmogorov backward equation

2∑
i=1

{
vi(xi)
2

Mxixi + fi(xi)Mxi

}
= sM, (1.12)

whereMxi := ∂M/∂xi andMxixi := ∂2M/∂x2
i . This partial differential equation is valid in the

continuation region C := Dc and is subject to the boundary condition

M(x1, x2; s) = 1 if (x1, x2) ∈ ∂D. (1.13)

In Section 2, the set C will be given by

C1 :=
{
(x1, x2) ∈ R

2 : d2
1 < x2

1 + x2
2 < d2

2

}
, (1.14)

and the function

π(x1, x2) := P
[
X2

1(T1(x1, x2)) +X2
2(T1(x1, x2)) = d2

2

]
, (1.15)

where T1 is the random variable defined in (1.10) with D = D1 = Cc
1, will be computed in

important special cases, such as when (X1(t), X2(t)) is a two-dimensional Wiener process.
In Section 3, we will choose

C2 :=
{
(x1, x2) ∈ R

2 : 0 <
(
x2
1 + x2

2

)1/2
< d, 0 < arctan

(
x2

x1

)
< θ0

}
. (1.16)

We will calculate for important two-dimensional diffusion processes the probability

ν(x1, x2) := P
[
X2

1(T2(x1, x2)) +X2
2(T2(x1, x2)) = d2

]
, (1.17)

where T2 is the time taken by (X1(t), X2(t)) to leave the set C2, starting from Xi(0) = xi for
i = 1, 2.

Finally, a few remarks will be made in Section 4 to conclude.
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2. First Hitting Place Probabilities when Starting between Two Circles

From the Kolmogorov backward equation (1.12), we deduce that the function π(x1, x2)
defined in (1.15) satisfies the partial differential equation

2∑
i=1

{
vi(xi)
2

πxixi + fi(xi)πxi

}
= 0 (2.1)

in the set C1 defined in (1.14), and is subject to the boundary conditions

π(x1, x2) =

⎧
⎨
⎩
1 if x2

1 + x2
2 = d2

2,

0 if x2
1 + x2

2 = d2
1.

(2.2)

Because the two-dimensional process (X1(t), X2(t)) is considered between two concentric
circles, it seems natural to try to find a solution of the form

π(x1, x2) = q
(
y
)
, (2.3)

where y := x2
1 +x2

2. Actually, this only works in a few, but very important, special cases, some
of which will be presented below. The partial differential equation (2.1) becomes

2∑
i=1

{
2vi(xi)x2

i q
′′(y) + [vi(xi) + 2xifi(xi)

]
q′
(
y
)}

= 0. (2.4)

Remark 2.1. Because the region C1 is bounded, the solution to the problem (2.1), (2.2) is
unique. Therefore, if we can find a solution of the form π(x1, x2) = q(y), then we can state
that it is indeed the solution we were looking for.

2.1. The Two-Dimensional Wiener Process

First, we take fi(xi) ≡ 0 and vi(xi) ≡ v0 > 0. Then (X1(t), X2(t)) is a two-dimensional
Wiener process with zero infinitesimal means and infinitesimal variances both equal to v0.
Equation(2.4) can be rewritten as

yq′′
(
y
)
+ q′
(
y
)
= 0. (2.5)

Notice that this is a first-order linear ordinary differential equation for h(y) := q′(y). It is a
simple matter to find that

q
(
y
)
= c1 ln

(
y
)
+ c0, (2.6)

where c1 and c0 are constants. Therefore,

π(x1, x2) = c1 ln
(
x2
1 + x2

2

)
+ c0. (2.7)
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The boundary condition (2.2) yields that

π(x1, x2) =
ln
((
x2
1 + x2

2

)
/d2

1

)

ln
(
d2
2/d

2
1

) for d2
1 ≤ x2

1 + x2
2 ≤ d2

2. (2.8)

Remark 2.2. If we choose fi(xi) ≡ f0 /= 0 or if vi(xi) ≡ v0i > 0 for i = 1, 2, with v01 /=v02, then
the particular case of the method of similarity solutions that we have used above fails. Notice
also that the solution does not depend on the parameter v0.

2.2. The Two-Dimensional Ornstein-Uhlenbeck Process

Next, we choose fi(xi) = −αxi and vi(xi) ≡ v0 for i = 1, 2, where α is a positive
parameter, so that (X1(t), X2(t)) is a two-dimensional Ornstein-Uhlenbeck process with the
same infinitesimal parameters. This time, (2.4) becomes

v0yq
′′(y) + (v0 − αy

)
q′
(
y
)
= 0, (2.9)

the general solution of which can be expressed as

q
(
y
)
= c1Ei

(
αy

v0

)
+ c0, (2.10)

where Ei(·) is the exponential integral function defined by

Ei(z) = −
∫∞

−z

e−t

t
dt for z > 0, (2.11)

in which the principal value of the integral is taken. It follows that

π(x1, x2) =
Ei
(
α
(
x2
1 + x2

2

)
/v0
) − Ei

(
αd2

1/v0
)

Ei
(
αd2

2/v0
) − Ei

(
αd2

1/v0
) for d2

1 ≤ x2
1 + x2

2 ≤ d2
2. (2.12)

2.3. The Two-Dimensional Bessel Process

The last particular case that we consider is the one when fi(xi) = (α − 1)/2xi and vi(xi) ≡ 1
for i = 1, 2. Again, α is a positive parameter, so that (X1(t), X2(t)) is a two-dimensional Bessel
process. We assume that 0 < α < 2 (and α/= 1); then, the origin is a regular boundary for X1(t)
and X2(t) (see Karlin and Taylor [9, p. 238-239]).

Equation (2.4) takes the form

yq′′
(
y
)
+ αq′

(
y
)
= 0. (2.13)

We find that, for α/= 1, the function q(y) is

q
(
y
)
= c1y

1−α + c0. (2.14)
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Finally, the solution that satisfies the boundary condition (2.2) is

π(x1, x2) =

(
x2
1 + x2

2

)1−α − d
2(1−α)
1

d
2(1−α)
2 − d

2(1−α)
1

for d2
1 ≤ x2

1 + x2
2 ≤ d2

2. (2.15)

Remarks 2.3. (1) When α = 1, the ordinary differential equation (2.14) reduces to the one
obtained in Section 2.1 with the two-dimensional Wiener process, if v0 = 1.

(2) If the parameter α is greater than or equal to 2, the origin is an inaccessible
boundary forX1(t) andX2(t); that is, it cannot be reached in finite time. Therefore, in this case
the continuation region could be the region between the two concentric circles, but inside the
first quadrant (for instance).

In the next section, the problem of computing explicitly the function ν(x1, x2) defined
in (1.17) for important two-dimensional diffusion processes in angular sectors will be treated.
This time, we will work in polar coordinates and make use of the method of separation of
variables, which can be viewed as a special case of the method of similarity solutions. The
solutions will be expressed as generalized Fourier series and will therefore be more involved
than the simple solutions obtained in this section.

3. First Hitting Place Probabilities when Starting in Angular Sectors

We consider the two-dimensional processes defined by the stochastic differential equations
(1.1) inside the circle of radius d centered at the origin. In polar coordinates, the function
M(x1, x2; s) = N(r, θ; s) satisfies the Kolmogorov backward equation (see (1.12))

sN =
1
2
v1(x1)

{
x2
1

r2
Nrr − 2

x1x2

r3
Nrθ +

x2
2

r4
Nθθ +

x2
2

r3
Nr + 2

x1x2

r4
Nθ

}

+
1
2
v2(x2)

{
x2
2

r2
Nrr + 2

x1x2

r3
Nrθ +

x2
1

r4
Nθθ +

x2
1

r3
Nr − 2

x1x2

r4
Nθ

}

+ f1(x1)
{
x1

r
Nr − x2

r2
Nθ

}
+ f2(x2)

{
x2

r
Nr +

x1

r2
Nθ

}
,

(3.1)

where r := (x2
1 + x2

2)
1/2 and θ := arctan(x2/x1). Let

T(x1, x2) := inf{t ≥ 0 : r = d or θ = 0 or θ0 (>0) | Xi(0) = xi, i = 1, 2}, (3.2)

that is,

T(x1, x2) = inf{t ≥ 0 : (x1, x2) /∈ C2 | Xi(0) = xi, i = 1, 2}, (3.3)
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with C2 defined in (1.16). The probability ν(x1, x2) defined in (1.17) satisfies the same partial
differential equation asM(x1, x2; s) in polar coordinates, with s = 0. Furthermore, ν(x1, x2) =
ρ(r, θ) is such that

ρ(d, θ) = 1 ∀θ ∈ [0, θ0],

ρ(r, 0) = ρ(r, θ0) = 0 if r < d.
(3.4)

As in the previous section, we will obtain explicit (and exact) solutions to the first
hitting place problem set up above for the most important particular cases.

3.1. The Two-Dimensional Wiener Process

When (X1(t), X2(t)) is a two-dimensional Wiener process, with independent components and
infinitesimal parameters 0 and v0, the partial differential equation that we must solve reduces
to

ρrr +
1
r
ρr +

1
r2
ρθθ = 0. (3.5)

Looking for a solution of the form ρ(r, θ) = F(r)G(θ), we find that

F ′′(r)G(θ) +
1
r
F ′(r)G(θ) +

1
r2

F(r)G′′(θ) = 0, (3.6)

so that we obtain the ordinary differential equations

G′′(θ) = λG(θ), (3.7)

r2F ′′(r) + rF ′(r) + λF(r) = 0, (3.8)

where λ is the separation constant. The ordinary differential equation (3.7) is subject to the
boundary conditions

G(0) = G(θ0) = 0, (3.9)

whereas

F(0) = 0. (3.10)

It is well known that the function G(θ)must be of the form

Gn(θ) = cn sin
(
nπθ

θ0

)
for n = 1, 2, . . . , (3.11)
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where cn is a constant; therefore, the separation constant must be given by

λ = λn = − (nπ)
2

θ2
0

for n = 1, 2, . . . (3.12)

Next, the solution of (3.8) (which is an Euler-Cauchy equation), with λ = −(πn)2/θ2
0,

that is such that F(0) = 0 is

Fn(r) = const. rnπ/θ0 . (3.13)

We then consider the infinite series

ρ(r, θ) =
∞∑
n=1

an sin
(
nπθ

θ0

)
rnπ/θ0 , (3.14)

where an is a constant. This series, as a function of θ, is a Fourier series. The condition
ρ(d, θ) = 1 implies that

an =
2
θ0

∫θ0

0
d−nπ/θ0 sin

(
nπθ

θ0

)
dθ = 2d−nπ/θ0 (−1)n+1 + 1

nπ
. (3.15)

Hence, the solution is

ρ(r, θ) = 2
∞∑
n=1

( r
d

)nπ/θ0 1 + (−1)n+1
nπ

sin
(
nπθ

θ0

)
, (3.16)

for 0 ≤ θ ≤ θ0 and 0 ≤ r ≤ d.

Remark 3.1. If the infinitesimal mean of Xi(t) is not equal to zero, we cannot separate the
variables in the partial differential equation satisfied by the function ρ(r, θ). So, as in Section 2,
the cases for which the technique we have used will work are actually rather few. Fortunately,
it does work in the most important cases for applications.

3.2. The Two-Dimensional Ornstein-Uhlenbeck Process

When X1(t) and X2(t) are independent Ornstein-Uhlenbeck processes with infinitesimal
parameters −αXi(t) and v0 for i = 1, 2, we must solve the partial differential equation

1
2
v0

{
ρrr +

1
r
ρr +

1
r2

ρθθ

}
− αrρr = 0. (3.17)
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Writing ρ(r, θ) = F(r)G(θ), we obtain the ordinary differential equations

G′′(θ) = λG(θ), (3.18)

r2F ′′(r) + rF ′(r) − 2
α

v0
r3F ′(r) + λF(r) = 0. (3.19)

The boundary conditions are the same as in Section 3.1. Therefore, we find that we still have
λ = λn = −(πn)2/θ2

0 and

Gn(θ) = cn sin
(
nπθ

θ0

)
for n = 1, 2, . . . (3.20)

Next, the general solution of (3.19) can be written as

F(r) = c1r
−2

√
−λM

(
−1
2

√
−λ, 1 −

√
−λ,−1

2
kr2
)
+ c2r

2
√
−λM

(
1
2

√
−λ, 1 +

√
−λ,−1

2
kr2
)
,

(3.21)

where k := −2α/v0 andM(·, ·, ·) is a confluent hypergeometric function (see Abramowitz and
Stegun [10, p. 504]). We find at once that we must choose c1 equal to zero. We then consider
the infinite series

ρ(r, θ) =
∞∑
n=1

an sin
(
nπθ

θ0

)
r2nπ/θ0M

(
nπ

2θ0
, 1 +

nπ

θ0
,−1

2
kr2
)
. (3.22)

Making use of the boundary condition ρ(d, θ) = 1, we find that

ρ(r, θ) =
∞∑
n=1

1 + (−1)n+1
nπ

sin
(
nπθ

θ0

)( r
d

)2nπ/θ0 M(nπ/2θ0, 1 + nπ/θ0,−(1/2)kr2
)

M(nπ/2θ0, 1 + nπ/θ0,−(1/2)kd2)
, (3.23)

for 0 ≤ θ ≤ θ0 and 0 ≤ r ≤ d.

3.3. The Two-Dimensional Bessel Process

Finally, with fi(xi) = (α − 1)/2xi (0 < α < 2, α /= 1) and vi(xi) ≡ 1 for i = 1, 2, we obtain the
partial differential equation

1
2

{
ρrr +

1
r
ρr +

1
r2
ρθθ

}
+
α − 1
2

{
2
r
ρr +

1
r2

(
cos θ
sin θ

− sin θ
cos θ

)
ρθ

}
= 0. (3.24)
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It follows that we must solve the ordinary differential equation

G′′(θ) + (α − 1)
(
cos θ
sin θ

− sin θ
cos θ

)
G′(θ) + λG(θ) = 0. (3.25)

We assume that θ0 is in the interval (0, π/2). Writing that G(θ) = H(z), where z := sin θ, we
find that this ordinary differential equation is transformed to

(
1 − z2

)
H ′′(z) − zH ′(z) + (α − 1)

1 − 2z2

z
H ′(z) + λH(z) = 0. (3.26)

The general solution of (3.26) can be written in the form

H(z) = z2−αc1F

⎛
⎝1

2
−
(
γ2 + λ

)1/2
2

,
1
2
+

(
γ2 + λ

)1/2
2

;
3
2
− γ

2
; z2
⎞
⎠

+ c2F

⎛
⎝γ

2
−
(
γ2 + λ

)1/2
2

,
γ

2
+

(
γ2 + λ

)1/2
2

;
1
2
+
γ

2
; z2
⎞
⎠,

(3.27)

where γ := α − 1 and F(a, b; c; z) is a hypergeometric function (see Abramowitz and Stegun
[10, p. 556]). Hence, we have

G(θ) = (sin θ)2−αc1F
(
1
2
− δ,

1
2
+ δ; 2 − α

2
; sin2 θ

)

+ c2F

(
α − 1
2

− δ,
α − 1
2

+ δ;
α

2
; sin2 θ

)
, (3.28)

where δ := (1/2)(γ2 + λ)1/2.
The condition G(0) = 0 implies that we must set c2 equal to zero. Next, we must find

the value(s) of the separation constant λ for which G(θ0) = 0; that is,

(sin θ0)
2−αF

(
1
2
− δ,

1
2
+ δ; 2 − α

2
; sin2 θ0

)
= 0. (3.29)

Now, notice that (3.25) can be written in the form

d

dθ

[
P(θ)

d

dθ
G(θ)

]
− S(θ)G(θ) + λR(θ)G(θ) = 0, (3.30)

with P(θ) = (sin θ cos θ)α−1, S(θ) ≡ 0 and R(θ) ≡ P(θ). If we assume that 0 < θ00 < θ < θ0 <
π/2 in C2, then the problem of solving (3.25) together with the boundary conditionsG(θ00) =
G(θ0) = 0 is a regular Sturm-Liouville problem. It follows that we can state (see Edwards Jr.
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and Penney [11, p. 519], for instance) that there exist an infinite number of eigenvalues λn for
which the conditions G(θ00) = 0 and G(θ0) = 0 are satisfied. These eigenvalues constitute an
increasing sequence λ1 < λ2 < · · · < λn < · · · of real numbers with limn→∞λn = ∞. Moreover,
we can also state (see Butkov [12, p. 337–340]) that the eigenfunctions Gn(θ) corresponding
to the eigenvalues λn are orthogonal to each other with respect to the weight function R(θ).
However, computing these eigenvalues explicitly is another problem.

Here, we consider the case where θ00 = 0, so that we do not have a regular Sturm-
Liouville problem. However, one can check graphically, using a computer software, that there
exist an infinite number of positive constants λn for which

F

(
1
2
− δn,

1
2
+ δn; 2 − α

2
; sin2 θ0

)
= 0, (3.31)

where δn := (1/2)[(α − 1)2 + λn]
1/2 for n = 1, 2, . . . We thus have, apart from an arbitrary

constant,

Gn(θ) := (sin θ)2−αF
(
1
2
− δn,

1
2
+ δn; 2 − α

2
; sin2 θ

)
(3.32)

for 0 ≤ θ ≤ θ0.
Finally, we must solve the ordinary differential equation

r2F ′′(r) + (2α − 1)rF ′(r) = λnF(r), (3.33)

subject to F(0) = 0. This is an Euler-Cauchy differential equation; for all positive eigenvalues
λn, we can write that

Fn(r) = const. rkn , (3.34)

where kn := (1−α) + [(α − 1)2 +λn]
1/2. Since there are an infinite number of such eigenvalues,

we can consider the infinite series (a generalized Fourier series)

ρ(r, θ) =
∞∑
n=1

anr
knGn(θ). (3.35)

Making use of the boundary condition ρ(d, θ) = 1, we can write that the constant an is given
by (see Butkov [12, p. 339])

an =
d−kn ∫θ0

0 R(θ)Gn(θ)dθ∫θ0
0 R(θ)G2

n(θ) dθ
. (3.36)

Remark 3.2. There is at least another particular case of interest for which we can obtain an
explicit expression (when 0 < θ00 < θ < θ0 < π/2). Indeed, if we choose f1(x1) = −1/2x1
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(i.e., α = 0) and f2(x2) = 1/2x2 (which corresponds to α = 2), with vi(xi) ≡ 2, we find that the
partial differential equation that we must solve is

2
{
ρrr +

1
r
ρr +

1
r2
ρθθ

}
+

1
r2

(
1

cos θ sin θ

)
ρθ = 0. (3.37)

This equation is separable; the two ordinary differential equations that result from the
separation of variables are

G′′(θ) +
(

1
2 cos θ sin θ

)
G′(θ) + λG(θ) = 0, (3.38)

r2F ′′(r) + rF(r) = λF(r). (3.39)

Writing G(θ) = H(z) with z := sin θ, (3.38) becomes

(
1 − z2

)
H ′′(z) − zH ′(z) +

1
2z

H ′(z) + λH(z) = 0, (3.40)

which we can solve to find

H(z) = z1/2c1F

(
1
4
−
√
λ

2
,
1
4
+

√
λ

2
;
5
4
; z2
)

+ c2F

(
−
√
λ

2
,

√
λ

2
;
3
4
; z2
)
. (3.41)

Moreover, (3.39) is again an Euler-Cauchy equation; the solution that satisfies the boundary
condition F(0) = 0 is (for positive eigenvalues λn)

F(r) = const. r
√

λn . (3.42)

Hence, proceeding as above, we can obtain the function ρ(r, θ), expressed as a generalized
Fourier series, in this case too.

4. Concluding Remarks

We have considered, in this note, the problem of computing first hitting place probabilities for
important two-dimensional diffusion processes starting between two concentric circles or in
an angular sector. We have obtained explicit (and exact) solutions to a number of problems
in Sections 2 and 3. Furthermore, we have arbitrarily chosen in Section 2 to compute the
probability π(x1, x2) of hitting the larger circle first. It would be a simple matter to obtain the
probability of hitting the smaller circle first instead. Actually, because the continuation region
is bounded, the probability of hitting the smaller circle first should simply be 1 −π(x1, x2), at
least in the cases treated here. Similarly, in Section 3 we could have computed the probability
that the process (X1(t), X2(t)) will exit the continuation region through the radius θ = 0, or
through θ = θ0.

Now, there are other important two-dimensional diffusion processes for which the
techniques used in this note do not work. In particular, there is the two-dimensional
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Wiener process with nonzero infinitesimal means and also the geometric Brownian motion.
Moreover, we have always assumed, except in the last remark above, that the two diffusion
processes, X1(t) and X2(t), had the same infinitesimal parameters; it would be interesting to
try to find the solutions to the first hitting place problems in the general cases.

Next, we could also try to find explicit solutions to first hitting place problems, but in
three or more dimensions. It should at least be possible to solve some special problems.

Finally, we have computed the probability that the process (X1(t), X2(t)) will hit a
given part of the boundary of the stopping region first. Another problem would be to try to
obtain the distribution of (X1(T), X2(T)).
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