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Cohen’s kappa and weighted kappa statistics are the conventional methods used frequently
in measuring agreement for categorical responses. In this paper, through the perspective of a
generalized inverse, we propose an alternative general framework of the fixed-effects modeling
of Cohen’s weighted kappa, proposed by Yang and Chinchilli (2011). Properties of the proposed
method are provided. Small sample performance is investigated through bootstrap simulation
studies, which demonstrate good performance of the proposed method. When there are only two
categories, the proposed method reduces to Cohen’s kappa.

1. Introduction

Measurement of agreement is used widely in diverse areas of scientific research to assess the
reproducibility of a new assay, instrument, or method, the acceptability of a new or generic
process andmethodology, as well as in method comparison. Examples include the agreement
when two or more methods or raters simultaneously assess a response [1, 2] or when one
rater makes the same assessment at two times [3], the agreement of a newly developed meth-
od with a gold standard method [4], and the agreement of observed values with predicted
values [5].

Traditionally, kappa [6] is used for measurement of agreement for categorical respons-
es and weighted kappa [7] for ordinal responses. The concordance correlation coefficient
[8, 9] is often used when the responses are continuous [10, 11]. In this paper, we focus on the
measurement of agreement for categorical responses, that is, when the responses are either
nominal or ordinal.
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Table 1: The bivariate probability table.

X \ Y 0 1 2 · · · i · · · j · · · k PX(x)
0 p00 p01 p02 · · · p0i · · · p0j · · · p0k p0·
1 p10 p11 p12 · · · p1i · · · p1j · · · p1k p1·
2 p20 p21 p22 · · · p2i · · · p2j · · · p2k p2·
...

...
...

...
...

...
...

...
...

...
...

i pi0 pi1 pi2 · · · pii · · · pij · · · pik pi·
...

...
...

...
...

...
...

...
...

...
...

j pj0 pj1 pj2 · · · pji · · · pjj · · · pjk pj·
...

...
...

...
...

...
...

...
...

...
...

k pk0 pk1 pk2 · · · pki · · · pkj · · · pkk pk·
PY (y) p·0 p·1 p·2 · · · p·i · · · p·j · · · p·k 1
Note: there are k + 1 categories in the response. PX(x) and PY (y) denote the marginal probabilities.

Suppose there is a bivariate response (X,Y ), where each ofX and Y yields a categorical
response. For convenience, the categories are denoted as 0, 1, 2, . . . , k. Suppose the bivariate
distribution is defined as in Table 1.

Cohen [6] proposed a coefficient of agreement, called the kappa coefficient, for nomi-
nal scales of responses, which is defined by

κ =
po − pc
1 − pc

, (1.1)

where po is the observed proportion of agreement and pc is the proportion of agreement
expected by chance.

To deal with ordinal responses, Cohen [7] proposed a weighted version of the kappa
statistic:

κw = 1 − q′o
q′c

= 1 −
∑
vijpoij

∑
vijpcij

, (1.2)

with

q′o =

∑
vijpoij

vmax
,

q′c =

∑
vijpcij

vmax
,

(1.3)

where vij is the nonnegative weight assigned to the disagreement for the cell ij, vmax is the
weight assigned to the maximum disagreement, poij is the proportion of joint judgement in
the ij cell, and pcij is the proportion expected by chance in the same cell.

Despite the fact that they may fail to work well under certain situations [12, 13],
Cohen’s kappa and weighted kappa coefficients have been widely used in various areas as
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a measure of agreement for categorical responses, partly due to their ease in calculation; see,
for example, Justice et al. [14], Kerosuo and Ørstavik [15], Landers et al. [16], and Sueb-
nukarn et al. [17]. In the meanwhile, researchers have been exploring alternative methods
for measuring agreement for categorical data; see Agresti [18], Barlow [19], Broemeling [20],
Carrasco and Jover [21], Dou et al. [22], Fanshawe et al. [23], Graham and Jackson [24],
King and Chinchilli [25], Kraemer [26], Landis and Koch [27], Laurent [28], Lin et al. [29],
and Svensson [30], to name only a few. It is worth noting that, for ordinal or binary data,
the concordance correlation coefficient (CCC) [8] based on the squared function of distance
reduces to Cohen’s weighted kappa when the Fleiss-Cohen weight function is used and the
CCC based on the absolute value function of distance to the power δ = 1 is equivalent
to Cohen’s weighted kappa if Cicchetti-Allison weight function is used [25]. In addition,
variance of the CCC is identical to the one given by Fleiss et al. [31] if the Fleiss-Cohen weight
function and the GEE approach are used [29].

Yang and Chinchilli developed a fixed-effects modeling of kappa and weighted kap-
pa [32, 33]. Their simulation studies and illustrative examples show good performance of
the proposed methods. In this paper, we propose another version of fixed-effects model-
ing of Cohen’s kappa and weighted kappa through a perspective of a generalized inverse.
We want to stress that this paper is not to demonstrate the advantage of the proposed
method in constructing an agreement coefficient. Rather, it provides an alternative form of a
general framework and direction under which new and better matrix functions could be ex-
plored.

In Section 2 we provide the derivation and properties of the proposed method. In
Section 3, we compare the small sample performance of the proposed method with that of
three other agreement coefficients through bootstrap simulation studies. Examples are given
in Section 4 followed by a conclusion.

2. The Generalized Inverse Version of Fixed-Effects Modeling of
Kappa and Weighted Kappa

2.1. Derivation

Using similar notation as in Yang and Chinchilli [32], we letX and Y be categorical variables,
with the categories being designated as 0, 1, 2, . . . , k, as displayed in Table 1. Let pij = Pr(X =
i, Y = j), i, j = 0, 1, 2, . . . , k, denote the bivariate probability, and let pi· = Pr(X = i) and
p·j = Pr(Y = j) denote the marginal probabilities. Let I(·) denote the indicator function, and
define the (k + 1) × 1 vectors as

ZX =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I(X = 0)

I(X = 1)

I(X = 2)

...

I(X = k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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ZY =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I(Y = 0)

I(Y = 1)

I(Y = 2)

...

I(Y = k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(2.1)

Define the (k + 1) × (k + 1) matrices PD and PI as

PD = E
[
(ZX − ZY )(ZX − ZY )T

]
,

PI = EInd

[
(ZX − ZY )(ZX − ZY )T

]
,

(2.2)

where EInd[·] denotes expectation under the assumption that X and Y are independent. It
easily can be verified that PD and PI are nonnegative definite matrices, denoted by PD ≥ 0
and PI ≥ 0.

Yang and Chinchilli [32] show that

PI − PD

=

⎡

⎢
⎢
⎢
⎣

2
(
p00−p0·p·0

) (
p01−p0·p·1

)
+
(
p10−p1·p·0

) · · · (
p0k−p0·p·k

)
+
(
pk0−pk·p·0

)

(
p01−p0·p·1

)
+
(
p10−p1·p·0

)
2
(
p11−p1·p·1

) · · · (
p1k−p1·p·k

)
+
(
pk1−pk·p·1

)

...
...

. . .
...

(
p0k−p0·p·k

)
+
(
pk0−pk·p·0

) (
p1k−p1·p·k

)
+
(
pk1−pk·p·1

) · · · 2
(
pkk−pk·p·k

)

⎤

⎥
⎥
⎥
⎦
.

(2.3)

PI and PD are (k + 1)× (k+ 1)matrices of rank k because PI · 1 = 0 and PD · 1 = 0, where
1 is a (k + 1) × 1 vector of unit values. Thus, PI · 1 = 0 · 1, indicating that 0 is an eigenvalue for
PI with corresponding (standardized) eigenvector e0 = 1/

√
k + 1. The same is true for PD as

well. Let EI = [e0e1 · · · ek] denote the (k+1)×(k+1)matrix of eigenvectors for PI . By definition,
EI is orthogonal, so EI(EI)

T = (EI)
TEI = I, which yields that 1Te1 = 0, . . . , 1Tek = 0. Because

PI is not of full rank, its inverse does not exist, but it does have a Moore-Penrose generalized
inverse [34, 35], denoted by (PI)

+. If ΛI = Diag(0, λ1, . . . , λk) denotes the (k + 1) × (k + 1)
diagonal matrix of eigenvalues for PI , then the Moore-Penrose generalized inverse of ΛI is
(ΛI)

+ = Diag(0, (λ1)
−1, . . . , (λk)

−1) and the Moore-Penrose generalized inverse of PI is (PI)
+ =

EI(ΛI)
+(EI)

T .
It easily can be verified that −PI ≤ PI − PD ≤ PI , which implies that

−((PI)+
)1/2

PI

(
(PI)+

)1/2 ≤ (
(PI)+

)1/2
PI

(
(PI)+

)1/2 − (
(PI)+

)1/2
PD

(
(PI)+

)1/2

≤ (
(PI)+

)1/2
PI

(
(PI)+

)1/2
,

(2.4)

where ((PI)
+)1/2 = EI((ΛI)

+)1/2(EI)
T .
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Since ((PI)
+)1/2PI((PI)

+)1/2 = I − 1 · 1T/(k + 1), (2.4) can be rewritten as

−
{
I − 1 · 1T/(k + 1)

}
≤
{
I − 1 · 1T/(k + 1)

}
− (

(PI)+
)1/2

PD

(
(PI)+

)1/2 ≤
{
I − 1 · 1T/(k + 1)

}
.

(2.5)

Suppose g(A) is a function of the symmetric matrix A and g(·) satisfies the following
two definitions [32].

Definition 2.1. Suppose g(·) is aR
(k+1)×(k+1) �→ R function. g(·) is said to be nondecreasing if for

all nonnegative definite matrices A(k+1)×(k+1), B(k+1)×(k+1), where A ≤ B, one has g(A) ≤ g(B).

Definition 2.2. Suppose g(·) is a R
(k+1)×(k+1) �→ R function. g(·) is said to be a scale-equivariant

function [36] if g(CA) = cg(A) for all matrices and constant c.

Then a class of agreement coefficients is given by

κ∗
g = 1 −

g
{(

P+
I

)1/2
PD

(
P+
I

)1/2
}

g
{(

I − (1/(k + 1))1 · 1T)} .
(2.6)

If g(A) = tr(A), then

κ∗
tr = 1 − 1

k
tr
(
PD(PI)+

)
. (2.7)

If we set g(A) = tr(W ∗A), then

κ∗
tr(W) = 1 − tr

(
W ∗ PD ∗ (PI)+

)

tr(W) − (1/(k + 1))
∑k

i=0
∑k

j=0Wij

, (2.8)

where W is a nonnegative definite (k + 1) × (k + 1) symmetric matrix of agreement weights
with wij = 1 for i = j = 0, 1, 2, . . . , k and 0 ≤ wij < 1 for i /= j = 0, 1, 2, . . . , k. Two frequently
used weighting schemes are the Cicchetti-Allison weights [37]

wij = 1 −
∣
∣i − j

∣
∣

k
, for i, j = 0, 1, 2, . . . , k, (2.9)

and the Fleiss-Cohen weights [38]

wij = 1 −
(
i − j

)2

k2
, for i, j = 0, 1, 2, . . . , k. (2.10)

We can also use g(A) = λA1 , the largest eigenvalue of A as another function for g(·),
which leads to a new agreement coefficient κ∗

le(W).
Therefore, including the coefficients that we propose in this paper, there are four novel

coefficients to assess agreement for categorical data: (1) κtr(W), (2) κle(W), (3) κ∗
tr(W), and
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(4) κ∗
le(W). In practice, all these indices can be estimated using their sample counterparts. In

this paper, a “∧” is used to denote the estimate of an index.

2.2. Properties

In general, if g(·) satisfies the properties in the two aforementioned definitions, then κ∗
g(W)

has the following properties:

(1) −1 ≤ κ∗
g(W) ≤ 1,

(2) κ∗
g(W) = 1 if X = Y with probability one, that is, pij = 0 for all i /= j,

(3) κ∗
g(W) = −1 if and only if pii = 0 for each i = 0, 1, 2, . . . , k and pij = pji = 0.5 for one

choice of i /= j, excluding the set of degenerate cases,

(4) κ∗
g(W) = 0 if X and Y are independent.

Proof. Without loss of generality, we set W = I. The proofs for other weight matrices W are
slightly more complex.

(1) From the previous proof, we know that

0 ≤ (
P+
I

)1/2
PD

(
P+
I

)1/2 ≤ 2
(

I − 1
k + 1

1 · 1T
)

. (2.11)

Since g(·) is a nondecreasing and scale-equivariant function, we have

0 ≤ g
{(

P+
I

)1/2
PD

(
P+
I

)1/2
}
≤ 2g

{(

I − 1
k + 1

1 · 1T
)}

. (2.12)

It is then straightforward to see that −1 ≤ κ∗
g ≤ 1.

(2) If X = Y with probability one, that is, pij = 0 for all i /= j, then PD = 0 [32]. It is then
straightforward to see that κ∗

g = 0.

(3) Excluding the set of degenerate cases, if pii = 0 for each i = 0, 1, 2, . . . , k and
pij = pji = 0.5 for one choice of i /= j, then PI − PD = −PI ⇒ PI = (1/2)PD [32].
Hence, (PI)

+ = ((1/2)PD)
+ = 2(PD)

+ and ((PI)
+)1/2 =

√
2((PD)

+)1/2. Therefore,
(P+

I )
1/2PD(P+

I )
1/2 = 2(P+

D)
1/2PD(P+

D)
1/2 and (P+

I )
1/2PI(P+

I )
1/2 = (P+

D)
1/2PD(P+

D)
1/2.

Hence, κ∗
g = −1.

(4) If X and Y are independent, then PI = PD [32]. It is straightforward to see that
κ∗
g = 0.

Lemma 2.3. When k = 1, that is, when there are only two categories, the four coefficients are equiva-
lent and they all reduce to Cohen’s kappa.

For proof of the lemma, please see the appendix.
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3. Small Sample Performance

3.1. Simulation Design

In this section, we compare the performance of Cohen’s weighted kappa (κtr(W)), κle(W),
κ∗
tr(W), and κ∗

le(W). We used the bootstrap to estimate the sample variances of the last three
coefficients because the asymptotic distributions of their estimates are too complex.

We used Matlab (version 7.10.0.499, The MathWorks Inc., Natick, Mass) to gener-
ate samples following multinominal distributions. Twelve different distributions were em-
ployed, representing different levels of agreement (from poor to excellent) and different
numbers of categories in the responses (from 3 to 5). For details about the distributions and
the design of the simulations, see Yang and Chinchilli [32]. We calculated the true coefficient
values for κ, κle(W), κ∗

tr(W), and κ∗
le(W) as well as their estimate, bias, mean square error, the

empirical variance, and the bootstrap variance. The weights we used are Cicchetti-Allison
weights.

We did 5000 simulations for each sample size in each distribution and 1000 bootstrap
replicates for each simulation. The observed variances of the proposed method and the mean
bootstrap variances are compared. We follow Yang and Chinchilli [32] in the interpretation
of the results. That is, agreement measures greater than 0.75 or so may be taken to represent
excellent agreement beyond chance, values between 0.40 and 0.75 may be taken to represent
fair to good agreement beyond chance and values below 0.40 or so may be taken to represent
poor agreement.

3.2. Simulation Results and Discussion

Table 2 gives the simulation results for the four coefficients with the weighting scheme being
Cicchetti-Allison weights (the simulation results are split into two tables because it is un-
wieldy to fit in one page).

In almost all the cases, the four agreement coefficients give the same classification in
terms of the magnitude of the degrees of agreement. An interesting case is case 6 where
the degree of agreement is around the boundary of poor and medium agreement. Cohen’s
weighted kappa and κ∗

tr(W) indicate close to medium agreement while κle(W) and κ∗
le(W)

indicate poor agreement, according to our rule of interpretation of the results. Biases of all the
four coefficients are small, and, as sample sizes increase, they become almost negligible. The
bootstrap turns out to be a good alternative as an estimation of the sample variances, which
in many cases gives the estimates of the variances equivalent to the observed values.

It also should be noted that the true values of coefficients within Table 2(a) can vary,
especially for cases 5–9 (k = 3) and cases 10–12 (k = 4). This suggests that, as table size
(k + 1) × (k + 1) increases, the coefficients could lead to different interpretations.

4. Examples

In this section, we use two empirical examples to illustrate the application and compare the
result of the four agreement coefficients. The first example is from Brenner et al. [39] who
examined the agreement of cause-of-death data for breast cancer patients between Ontario
Cancer Registry (OCR) and classification results from Mount Sinai Hospital (MSH). OCR,
established in 1964, collects information about all new cases of cancer in the province of
Ontario while MSH has a systematic and rigorous monitoring and follow-up of confirmed
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Table 3: Data for example 1.

Ontario Cancer Registry MSH study
No death information Competing cause of death Breast cancer Total

No death information 1331 6 6 1343
Competing cause of death 19 129 7 155
Breast cancer 5 21 124 150
Total 1355 156 137 1648
Note: OCR and MSH studies classify cause of death for 1648 breast cancer patients as having no cancer-related information,
competing cause of death, and breast cancer death.

Table 4: Data for example 2.

OGTT at revascularization OGTT at one month later
Normal Glucose intolerance DM Total

Normal 17 2 3 22
Glucose intolerance 22 10 4 36
DM 10 11 9 30
Total 49 23 16 88
Note: OGTT classifies 88 patients admitted with an acute coronary syndrome with no previous DM as having DM, being
glucose intolerance or normal at the day after revascularization and one month later.

Table 5: Results for the two examples.

κW 95% CI κle 95% CI κ∗
tr(W) 95% CI κ∗

le(W) 95% CI
Example 1 0.900 (0.843, 0.957) 0.924 (0.899, 0.944) 0.872 (0.840, 0.902) 0.881 (0.848, 0.910)
Example 2 0.203 (0.079, 0.327) 0.257 (0.078, 0.417) 0.202 (0.052, 0.352) 0.218 (0.058, 0.374)
Note: The 95% CI was for κW calculated using the large sample variance derived by Fleiss et al. [31]. The CIs for the other
three coefficients were calculated using bootstrap method with 5000 replicates.

node-negative breast cancer patients. Due to its relative complete and accurate data, MSH
also provides specialist-determined cause of death. 1648 patients entered the analysis through
linking the OCR data to the MSH study patients via the OCR standard procedure. The pur-
pose of the study is to examine the degree of agreement between OCR, which is often used in
cancer studies, andMSH, which was taken as the reference standard. Amissed cancer-related
death is considered of greater importance. The data are summarized in Table 3.

The second example is from Jiménez-Navarro et al. [40]who studied the concordance
of oral glucose tolerance test (OGTT), proposed by the World Health Organization, in the
diagnosis of diabetes mellitus (DM)which may possibly lead to future epidemic of coronary
disease. OGTT classifies a diagnosis result as DM, glucose intolerance, or normal. Eighty-
eight patients admitted with an acute coronary syndrome who had no previous diagnosis of
DM underwent percutaneous coronary revascularization and received OGTT the day after
revascularization and one month after that. Researchers are interested in the reproducibility
of OGTT performed at these two different time points. The data are summarized in Table 4.

We calculated all the four agreement coefficients as well as their corresponding 95%
confidence intervals (CI). The 95% CI for Cohen’s weighted kappa was based on the large
sample variance derived by Fleiss et al. [31]. 5000 bootstrap replicates were used in the cal-
culation of the CI for the other three coefficients. Table 5 gives the results for the above two
examples. In all the calculations, the Cicchetti-Allison weights were used (see (2.9)).
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As can be seen from Table 5, there seems to be no substantial difference among all the
four coefficients using the aforementioned interpretation rule. For example 1, all coefficients
indicate that there is very strong agreement between OCR and MSH studies in classifying
the cause of death for the 1648 cancer patients. The second example, however, indicates that
OGTT, when taken at two different time points with a span of one month, has very poor
reproducibility in the diagnosis of DM.

5. Conclusion

We developed a fixed-effects modeling of Cohen’s kappa and weighted kappa for bivariate
multinomial data through the perspective of generalized inverse, which provides an alter-
native form of framework to the one proposed by Yang and Chinchilli [33]. The proposed
method also allows the application of different matrix functions, as long as they satisfy certain
conditions. When there are only two categories in the response, the coefficient reduces to
Cohen’s kappa. The proposed method is new and promising in that it allows the use of other
matrix functions, such as the largest eigenvalue of a matrix, that might also yield reasonable,
and possibly better, result. Exploration of such matrix functions is our future research topic.

Appendix

Proof of Lemma 2.3

Proof. (1) When k = 1, the Cicchetti-Allison weights become an identity matrix. Therefore,

κtr(W) = 1 − tr(WPD)
tr(WPI)

= 1 − tr(PD)
tr(PI)

= κ.

(A.1)

(2) Since the weighting matrix is a 2 × 2 matrix, the two eigenvalues of PD can be
denoted by 0 and λ1. Therefore, the largest eigenvalue is equal to λ1 = tr(PD). Similarly, it can
be shown that the largest eigenvalue of PI is also equal to tr(PI). Thus, κtr(W) = κle(W).

(3) From the previous proof, we know that (PI)
+ = EI(ΛI)

+ET
I . When k = 1, (ΛI) is

(ΛI) =

[
0 0

0 λI1

]

(A.2)

and (ΛI)
+ is

(ΛI)+ =

⎡

⎢
⎣

0 0

0
1

(λI1)

⎤

⎥
⎦. (A.3)
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Because k = 1,

κ∗
tr(W) = 1 − tr

(
PD(PI)+

)

= 1 − tr
(

PD
1
λI1

eI1e
′
I1

)

= 1 − tr
(
PDeI1e

′
I1

)

λI1

= 1 − tr
(
PDeI1e

′
I1

)

tr(PI)
,

(A.4)

where eI1 is the eigenvector of PI associated with the largest eigenvalue λI1 of PI .
But for the case k = 1, because eI1 = eD1 =

[
1/

√
2

−1/√2

]
, eI1 also is the eigenvector of PD

associated with the largest eigenvalue λD1 of PD. Thus,

κ∗
tr(W) = 1 − tr

(
PDeD1e

′
D1

)

tr(PI)

= 1 − tr
(
e′D1PDeD1

)

tr(PI)

= 1 − λD1

tr(PI)

= 1 − tr(PD)
tr(PI)

= κ.

(A.5)

(4) From the derivation of κ∗
le(W), whereW =

[
1 0
0 1

]
, we know that it can be written as

κ∗
le(W) = 1 −

largest eigenvalue of
[(
(PI)+

)1/2
PD

(
(PI)+

)1/2
]

largest eigenvalue of
[
I − (1/2)1 · 1T] . (A.6)

But the largest eigenvalue for the case k = 1 is equal to the trace, so κ∗
le(W) = κ∗

tr(W) = κ.
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